Skip to main content

Bioinformatic Tools in Crop Improvement

  • Chapter
  • First Online:
Crop Improvement

Abstract

Bioinformatic resources and web databases are essential for the most effective use of genetic, proteomic, metabolomic and phenome information important in increasing agricultural crop productivity. Innovations in web based platforms for omics based research, and application of such information has provided the necessary platform to promote molecular based research in model plants, as well as important crop plants. Combinations of multiple omics web based sites and integration of outcomes is now an important strategy to identify molecular systems promoting comparative genomics, the biological properties in many species, and to accelerate gene discovery and functional analyses. The review details recent advances in plant omics data acquisition sites, together with relevant databases and advance molecular technology under clear biological categories. The information is set out under the molecular biology divisions of; DNA based resources and sequencing, RNA and variation analysis, proteomics, structural proteins, and post-translation modifications, metabolomics, phenome and plant comparative analyses. Tables of relevant web sites are presented under similar headings for convenience, and the application of bioinformation data is reviewed in light of the possible use of these resources for crop improvement. Finally, a long list of future perspectives and research still to be attempted is detailed, which in the fullness of time should enable the full potential of bioinformatics and use in crop improvement programs to be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams MD, Soares MB, Kerlavage AR, Fields C, Venter JC (1993) Rapid cDNA sequencing (expressed sequence tags) from a directionally cloned human infant brain cDNA library. Nat Genet 4:373–380

    Article  PubMed  CAS  Google Scholar 

  • Ahmad P, Ashraf M, Younis M, Hu X, Kumar A, Akram NA, Al-Qurainy F (2011) Role of transgenic plants in agriculture and biopharming. Biotech Advances 30:525–540

    Google Scholar 

  • Agrawal GK, Yonekura M, Iwahashi Y, Iwahashi H, Rakwal R (2005) System, trends and perspectives of proteomics in dicot plants. Part I: technologies in proteome establishment. J Chromatogr B 815:109–123

    Article  CAS  Google Scholar 

  • Akhunov E, Nicolet C, Dvorak J (2009) Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina GoldenGate assay. Theor App Genet 119:507–517

    Article  CAS  Google Scholar 

  • Akiyama K, Chikayama E, Yuasa H, Shimada Y, Tohge T, Shinozaki K et al (2008) PRIMe: a Web site that assembles tools for metabolomics and transcriptomics. In Silico Biol 8:339–345

    PubMed  CAS  Google Scholar 

  • Alonso JM, Ecker JR (2006) Moving forward in reverse: genetic technologies to enable genome-wide phenomic screens in Arabidopsis. Nat Rev Genet 7:524–536

    Article  PubMed  CAS  Google Scholar 

  • An G, Jeong DH, Jung KH, Lee S (2005) Reverse genetic approaches for functional genomics of rice. Plant Mol Biol 59:111–123

    Article  PubMed  CAS  Google Scholar 

  • Andersen JS, Mann M (2006) Organellar proteomics: turning inventories into insights. EMBO Rep 7:874–879

    Article  PubMed  CAS  Google Scholar 

  • Andreeva A, Howorth D, Chandonia JM, Brenner SE, Hubbard TJ, Chothia C et al (2008) Data growth and its impact on the SCOP database: new developments. Nucleic Acids Res 36:D419–D425

    Article  PubMed  CAS  Google Scholar 

  • Anisimov SV (2008) Serial analysis of gene expression (SAGE): 13 years of application in research. Curr Pharm Biotechnol 9:338–350

    Article  PubMed  CAS  Google Scholar 

  • Ansorge WJ (2009) Next-generation DNA sequencing techniques. Nat Biotechnol 25:195–203

    CAS  Google Scholar 

  • Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A et al (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745

    Article  PubMed  CAS  Google Scholar 

  • Baginsky S (2009) Plant proteomics: concepts, applications, and novel strategies for data interpretation. Mass Spectrom Rev 28:93–120

    Article  PubMed  CAS  Google Scholar 

  • Barakat A, Wall PK, Diloreto S, Depamphilis CW, Carlson JE (2007) Conservation and divergence of microRNAs in Populus. BMC Genomics 8:481

    Article  PubMed  CAS  Google Scholar 

  • Barjaktarovic Z, Nordheim A, Lamkemeyer T, Fladerer C, Madlung J, Hampp R (2007) Time course of changes in amounts of specific proteins upon exposure to hyper-g, 2-D clinorotation, and 3-D random positioning of Arabidopsis cultures. J Exper Botany 58:4357–4363

    Article  CAS  Google Scholar 

  • Barjaktarovic Z, Schultz W, Madlung J, Fladerer C, Nordheim A, Hampp R (2009) Changes in the effective gravitational field strength affect the state of phosphorylation of stress related proteins in callus of Arabidopsis thaliana. J Exper Botany 60:779–789

    Article  CAS  Google Scholar 

  • Barkley NA, Wang ML (2008) Application of TILLING and EcoTILLING as reverse genetic approaches to elucidate the function of genes in plants and animals. Curr Genomics 9:212–226

    Article  PubMed  CAS  Google Scholar 

  • Barnholtz-Sloan JS, Tiwari HK (2009) Population Genetics. In: Krawetz S (ed) Bioinformatics for Systems Biology. Humana Press (Springer Science Business Media)

    Google Scholar 

  • Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C et al (2009) NCBI GEO: archive for high-throughput functional genomic data. Nucleic Acids Res 37:D885–D890

    Article  PubMed  CAS  Google Scholar 

  • Benschop JJ, Mohammed S, O’Flaherty M, Heck AJ, Slijper M, Menke FL (2007) Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol Cell Proteomics 6:1198–1214

    Article  PubMed  CAS  Google Scholar 

  • Berkelman T, Stenstedt T (2002) 2-D Electrophoresis: Principles and methods. Amersham Bioscience AB, Uppsala

    Google Scholar 

  • Bernardo AN, Bradbury PJ, Ma H, Hu S, Bowden RL, Buckler ES et al (2009) Discovery and mapping of single feature polymorphisms in wheat using Affymetrix arrays. BMC Genomics 10:251

    Article  PubMed  CAS  Google Scholar 

  • Bertocchi F, Paci M (2008) Applications of high-resolution solidstate NMR spectroscopy in food science. J Agric Food Chem 5:9317–9327

    Article  CAS  Google Scholar 

  • Bino RJ, Hall RD, Fiehn O, Kopka J, Saito K, Draper J et al (2004) Potential of metabolomics as a functional genomics tool. Trends Plant Sci 9:418–425

    Article  PubMed  CAS  Google Scholar 

  • Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW et al (2003) A gene expression map of the Arabidopsis root. Science 302:1956–1960

    Article  PubMed  CAS  Google Scholar 

  • Blair MW, Torres MM, Giraldo MC, Pedraza F (2009) Development and diversity of Andean-derived, gene-based microsatellites for common bean (Phaseolus vulgaris L). BMC Plant Biol 9:100

    Article  PubMed  CAS  Google Scholar 

  • Bogdanov B, Smith RD (2005) Proteomics by FTICR mass spectrometry: top down and bottom up. Mass Spectrom Rev 24:168–200

    Article  PubMed  CAS  Google Scholar 

  • Boguski MS, Lowe TM, Tolstoshev CM (1993) dbEST—database for ‘expressed sequence tags’. Nat Genet 4:332–333

    Article  PubMed  CAS  Google Scholar 

  • Brady SM, Provart NJ (2009) Web-queryable large-scale data sets for hypothesis generation in plant biology. Plant Cell 21:1034–1051

    Article  PubMed  CAS  Google Scholar 

  • Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D et al (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18:630–634

    Article  PubMed  CAS  Google Scholar 

  • Brown M, Funk CC (2008) Climate. Food security under climate change. Science 319:580–581

    Article  PubMed  CAS  Google Scholar 

  • Caicedo AL, Williamson SH, Hernandez RD, Boyko A, Fledel-Alon A, York TL et al (2007) Genome-wide patterns of nucleotide polymorphism in domesticated rice. PLoS Genet 3:1745–1756

    Article  PubMed  CAS  Google Scholar 

  • Carollo V, Matthews DE, Lazo GR, Blake TK, Hummel DD, Lui N et al (2005) GrainGenes 2.0. an improved resource for the smallgrains community. Plant Physiol 139:643–651

    Article  PubMed  CAS  Google Scholar 

  • Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420:98–102

    Article  PubMed  CAS  Google Scholar 

  • Chellappan P, Jin H (2009) Discovery of plant microRNAs and short-interfering RNAs by deep parallel sequencing. Methods Mol Biol 495:121–132

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Harmon AC (2006) Advances in plant proteomics. Proteomics 6:5504–5516

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Qi Y, Zhu Q, Chen X, Wang N, Zhao X et al (2009) New changes in the plasma-membrane-associated proteome of rice roots under salt stress. Proteomics 9:3100–3114

    Article  PubMed  CAS  Google Scholar 

  • Chitteti BR, Peng Z (2007) Proteome and phosphoproteome differential expression under salinity stress in rice (Oryza sativa) root. J Proteome Res 2007:1718–1727

    Article  CAS  Google Scholar 

  • Chuang CF, Meyerowitz EM (2000) Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:4985–4990

    Article  PubMed  CAS  Google Scholar 

  • Clark KR, Gorley RN (2001) Primer version 5.2.7 user manual/tutorial. Plymouth Marine Laboratory. PRIMER-E Ltd, Plymouth, UK

    Google Scholar 

  • Cline MS, Kent WJ (2009) Understanding genome browsing. Nature Biotechnol 27:153–155

    Article  CAS  Google Scholar 

  • Close TJ, Wanamaker S, Roose ML, Lyon M (2007) HarvEST: an EST database and viewing software. Methods Mol Biol 406:161–178

    PubMed  CAS  Google Scholar 

  • Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N, Ramsay L et al (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10:582

    Article  PubMed  CAS  Google Scholar 

  • Cogburn LA, Porter TE, Duclos MJ, Simon J, Burgess SC, Zhu JJ et al (2007) Functional genomics of the chicken-a model organism. Poult Sci 86:2059–2094

    PubMed  CAS  Google Scholar 

  • Comai L, Young K, Till BJ, Reynolds SH, Greene EA, Codomo CA et al (2004) Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. Plant J 37:778–786

    Article  PubMed  CAS  Google Scholar 

  • Conte MG, Gaillard S, Lanau N, Rouard M, Perin C (2008) GreenPhylDB: a database for plant comparative genomics. Nucleic Acids Res 36:D991–D998

    Article  PubMed  CAS  Google Scholar 

  • Crossa J, Burgueno J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M et al (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913

    Article  PubMed  CAS  Google Scholar 

  • De Bodt S, Maere S, Van de Peer Y (2005) Genome duplication and the origin of angiosperms. Trends Ecol Evol 20:591–597

    Article  PubMed  Google Scholar 

  • De Filippis LF (2010) Biochemical and molecular aspects in phytoremediation of selenium. In: Ashraf M, Ozturk M, Ahmad MSA (eds) Plant Adaptation and Phytoremediation. Springer Science – Business Media

    Google Scholar 

  • De Filippis LF (2012) Breeding for biotic stress tolerance in plants. In: Asharaf M, Ozturk M, Ahmad MSA, Aksoy A (eds) Crop Production for Agricultural Improvement. Springer Science – Business Media

    Google Scholar 

  • De Filippis LF, Magel E (2012) Identification of biochemical differences between the sapwoos and transition zone in Robinia pseudoacacia L. by differential display of proteins. Z Holzforschung 66:543–549

    CAS  Google Scholar 

  • de Hoon M, Hayashizaki Y (2008) Deep cap analysis gene expression (CAGE): genome-wide identification of promoters, quantification of their expression, and network inference. Biotechniques 44:627–628

    Article  PubMed  CAS  Google Scholar 

  • de la Fuente van Bentem S, Anrather D, Roitinger E, Djamei A, Hufnagl T, Barta A et al (2006) Phosphoproteomics reveals extensive in vivo phosphorylation of Arabidopsis proteins involved in RNA metabolism. Nucleic Acids Res 34:3267–3278

    Article  PubMed  CAS  Google Scholar 

  • Deleu W, Esteras C, Roig C, Gonzalez-To M, Fernandez-Silva I, Gonzalez-Ibeas DD et al (2009) A set of EST-SNPs for map saturation and cultivar identification in melon. BMC Plant Biol 9:90

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA, Gang DR, Charlton AJ, Fiehn O, Kuiper HA, Reynolds TL et al (2006) Applications of metabolomics in agriculture. J Agric Food Chem 54:8984–8994

    Article  PubMed  CAS  Google Scholar 

  • Donlin MJ (2007) Using the Generic Genome Browser (GBrowse). Curr Protoc Bioinformatics Chapter 9:Unit 9

    Google Scholar 

  • Dunkley TP, Hester S, Shadforth IP, Runions J, Weimar T, Hanton SL et al (2006) Mapping the Arabidopsis organelle proteome. Proc Natl Acad Sci USA 103:6518–6523

    Article  PubMed  CAS  Google Scholar 

  • Duvick J, Fu A, Muppirala U, Sabharwal M, Wilkerson MD, Lawrence CJ et al (2008) PlantGDB: a resource for comparative plant genomics. Nucleic Acids Res 36:D959–D965

    Article  PubMed  CAS  Google Scholar 

  • Endo Y, Sawasaki T (2003) High-throughput, genome-scale protein production method based on the wheat germ cell-free expression system. Biotechnol Adv 21:695–713

    Article  PubMed  CAS  Google Scholar 

  • Endo Y, Sawasaki T (2006) Cell-free expression systems for eukaryotic protein production. Curr Opin Biotechnol 17:373–380

    Article  PubMed  CAS  Google Scholar 

  • Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185

    PubMed  CAS  Google Scholar 

  • Farrer RA, Kemen E, Jones JD, Studholme DJ (2009) De novo assembly of the Pseudomonas syringae pv. syringae B728a genome using Illumina/Solexa short sequence reads. FEMS Microbiol Lett 291:103–111

    Article  PubMed  CAS  Google Scholar 

  • Fei Z, Tang X, Alba RM, White JA, Ronning CM, Martin GB et al (2004) Comprehensive EST analysis of tomato and comparative genomics of fruit ripening. Plant J 40:47–59

    Article  PubMed  Google Scholar 

  • Feltus FA, Wan J, Schulze SR, Estill JC, Jiang N, Paterson AH (2004) An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments. Genome Res 14:1812–1819

    Article  PubMed  CAS  Google Scholar 

  • Fernie AR, Schauer N (2009) Metabolomics-assisted breeding: a viable option for crop improvement? Trends Genet 25:39–48

    Article  PubMed  CAS  Google Scholar 

  • Fernie AR, Trethewey RN, Krotzky AJ, Willmitzer L (2004) Metabolite profiling: from diagnostics to systems biology. Nat Rev Mol Cell Biol 5:763–769

    Article  PubMed  CAS  Google Scholar 

  • Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157–1161

    Article  PubMed  CAS  Google Scholar 

  • Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR et al (2008) The Pfam protein families database. Nucleic Acids Res 36:D281–D288

    Article  PubMed  CAS  Google Scholar 

  • Flicek P, Aken BL, Beal K, Ballester B, Caccamo M, Chen Y et al (2008) Ensembl 2008. Nucleic Acids Res 36:D707–D714

    Article  PubMed  CAS  Google Scholar 

  • Fox BG, Goulding C, Malkowski MG, Stewart L, Deacon A (2008) Structural genomics: from genes to structures with valuable materials and many questions in between. Nat Methods 5:129–132

    Article  PubMed  CAS  Google Scholar 

  • Frölich T, Arnold GJ (2006) Proteome research based on modern liquid chromatography-tandem mass spectrometry: Separation, identification and quantification. J Neural Transmission 133:973–994

    Article  CAS  Google Scholar 

  • Fu J, Keurentjes JJ, Bouwmeester H, America T, Verstappen FW, Ward JL et al (2009) System-wide molecular evidence for phenotypic buffering in Arabidopsis. Nat Genet 41:166–167

    Article  PubMed  CAS  Google Scholar 

  • Fujita M, Mizukado S, Fujita Y, Ichikawa T, Nakazawa M, Seki M et al (2007) Identification of stress-tolerance-related transcriptionfactor genes via mini-scale Full-length cDNA Over-eXpressor (FOX) gene hunting system. Biochem Biophys Res Commun 364:250–257

    Article  PubMed  CAS  Google Scholar 

  • Fukuchi S, Homma K, Sakamoto S, Sugawara H, Tateno Y, Gojobori T et al (2009) The GTOP database in 2009: updated content and novel features to expand and deepen insights into protein structures and functions. Nucleic Acids Res 37:D333–D337

    Article  PubMed  CAS  Google Scholar 

  • Futamura N, Totoki Y, Toyoda A, Igasaki T, Nanjo T, Seki M et al (2008) Characterization of expressed sequence tags from a full-length enriched cDNA library of Cryptomeria japonica male strobili. BMC Genomics 9:383

    Article  PubMed  CAS  Google Scholar 

  • Gao J, Agrawal GK, Thelen JJ, Xu D (2009) P3DB: a plant protein phosphorylation database. Nucleic Acids Res 37:D960–D962

    Article  PubMed  CAS  Google Scholar 

  • Goda H, Sasaki E, Akiyama K, Maruyama-Nakashita A, Nakabayashi K, Li W et al (2008) The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access. Plant J 55:526–542

    Article  PubMed  CAS  Google Scholar 

  • Greene LH, Lewis TE, Addou S, Cuff A, Dallman T, Dibley M et al (2007) The CATH domain structure database: new protocols and classification levels give a more comprehensive resource for exploring evolution. Nucleic Acids Res 35:D291–D297

    Article  PubMed  CAS  Google Scholar 

  • Gstaiger M, Aebersold R (2009) Applying mass spectrometrybased proteomics to genetics, genomics and network biology. Nat Rev Genet 10:617–627

    Article  PubMed  CAS  Google Scholar 

  • Guo HS, Fei JF, Xie Q, Chua NH (2003) A chemical-regulated inducible RNAi system in plants. Plant J 34:383–392

    Article  PubMed  CAS  Google Scholar 

  • Guo A, He K, Liu D, Bai S, Gu X, Wei L et al (2005) DATF: a database of Arabidopsis transcription factors. Bioinformatics 21:2568–2569

    Article  PubMed  CAS  Google Scholar 

  • Guo AY, Chen X, Gao G, Zhang H, Zhu QH, Liu XC et al (2008) PlantTFDB: a comprehensive plant transcription factor database. Nucleic Acids Res 36:D966–D969

    Article  PubMed  CAS  Google Scholar 

  • Hakeem KR, Ahmad A, Iqbal M, Gucel S, Ozturk M (2011) Nitrogen efficient rice genotype can reduce nitrate pollution. Environ Sci Pollut Res 18:1184–1193

    Article  CAS  Google Scholar 

  • Hakeem K, Ozturk M, Memon AR (2012) Biotechnology as an aid for crop improvement to overcome food shortage. In: Ashraf et al (eds) Crop production for agricultural improvement. Springer

    Google Scholar 

  • Haas BJ, Delcher AL, Wortman JR, Salzberg SL (2004) DAGchainer: a tool for mining segmental genome duplications and synteny. Bioinformatics 20:3643–3646

    Article  PubMed  CAS  Google Scholar 

  • Han B, Xue Y (2003) Genome-wide intraspecific DNA-sequence variations in rice. Curr Opin Plant Biol 6:134–138

    Article  PubMed  CAS  Google Scholar 

  • Harbers M, Carninci P (2005) Tag-based approaches for transcriptome research and genome annotation. Nat Methods 2:495–502

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto S, Suzuki Y, Kasai Y, Morohoshi K, Yamada T, Sese J et al (2004) 5′-end SAGE for the analysis of transcriptional start sites. Nat Biotechnol 22:1146–1149

    Article  PubMed  CAS  Google Scholar 

  • Hayashizaki Y (2003) RIKEN mouse genome encyclopedia. Mech Ageing Dev 124:93–102

    Article  PubMed  CAS  Google Scholar 

  • Heesacker A, Kishore VK, Gao W, Tang S, Kolkman JM, Gingle A et al (2008) SSRs and INDELs mined from the sunflower EST database: abundance, polymorphisms, and cross-taxa utility. Theor Appl Gene 117:1021–1029

    Article  CAS  Google Scholar 

  • Herbert BR, Grinyer J, McCarthy JT, Isaacs M, Harry E et al (2006) Improved 2-DE of microorganisms after acid digestion. Electrophoresis 27:1630–1640

    Article  PubMed  CAS  Google Scholar 

  • Hilson P, Small I, Kuiper MT (2003) European consortia building integrated resources for Arabidopsis functional genomics. Curr Opin Plant Biol 6:426–429

    Article  PubMed  CAS  Google Scholar 

  • Hirai MY, Yano M, Goodenowe DB, Kanaya S, Kimura T, Awazuhara M et al (2004) Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proc Natl Acad Sci USA 101:10205–10210

    Article  PubMed  CAS  Google Scholar 

  • Hirano H, Islam N, Kawasaki H (2004) Technical aspects of functional proteomics in plants. Phytochemistry 65:1487–1498

    Article  PubMed  CAS  Google Scholar 

  • Hiratsu K, Matsui K, Koyama T, Ohme-Takagi M (2003) Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J 34:733–739

    Article  PubMed  CAS  Google Scholar 

  • Hishiki T, Kawamoto S, Morishita S, Okubo K (2000) BodyMap: a human and mouse gene expression database. Nucleic Acids Res 28:136–138

    Article  PubMed  CAS  Google Scholar 

  • Holy J, Perkins E (2009) Structure and function of the nucleus and cell organelles. In: Krawetz S (ed) Bioinformatics for Systems Biology. Humana Press (Springer Science – Business Media)

    Google Scholar 

  • Hoang TML, De Filippis LF, Le XT (2009) Salt tolerance and screening for genetic changes in rice mutants after gamma irradiation using RAPD and microsatellite (RAMP) markers. Open J Plant Sci 2:12–18

    Google Scholar 

  • Huang X, Madan A (1999) CAP3: A DNA sequence assembly program. Genome Res 9:868–877

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A et al (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076

    Article  PubMed  CAS  Google Scholar 

  • Hyten DL, Song Q, Choi IY, Yoon MS, Specht JE, Matukumalli LK et al (2008) High-throughput genotyping with the GoldenGate assay in the complex genome of soybean. Theor Appl Genet 116:945–952

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa T, Nakazawa M, Kawashima M, Iizumi H, Kuroda H, Kondou Y et al (2006) The FOX hunting system: an alternative gain-of-function gene hunting technique. Plant J 48:974–985

    Article  PubMed  CAS  Google Scholar 

  • Igawa T, Fujiwara M, Takahashi H, Sawasaki T, Endo Y, Seki M et al (2009) Isolation and identification of ubiquitin-related proteins from Arabidopsis seedlings. J Exp Bot 60:3067–3073

    Article  PubMed  CAS  Google Scholar 

  • Iida K, Seki M, Sakurai T, Satou M, Akiyama K, Toyoda T et al (2004) Genome-wide analysis of alternative pre-mRNA splicing in Arabidopsis thaliana based on full-length cDNA sequences. Nucleic Acids Res 32:5096–5103

    Article  PubMed  CAS  Google Scholar 

  • Iijima Y, Nakamura Y, Ogata Y, Tanaka K, Sakurai N, Suda K et al (2008) Metabolite annotations based on the integration of mass spectral information. Plant J 54:949–962

    Article  PubMed  CAS  Google Scholar 

  • Imanishi T, Itoh T, Suzuki Y, O’Donovan C, Fukuchi S, Koyanagi KO et al (2004) Integrative annotation of 21,037 human genes validated by full-length cDNA clones. PLoS Biol 2:e162

    Article  PubMed  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  CAS  Google Scholar 

  • International Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Itoh T, Tanaka T, Barrero RA, Yamasaki C, Fujii Y, Hilton PB et al (2007) Curated genome annotation of Oryza sativa ssp. Japonica and comparative genome analysis with Arabidopsis thaliana. Genome Res 17:175–183

    Article  PubMed  Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:E25

    Article  PubMed  CAS  Google Scholar 

  • Jackson SA, Iwata A, Lee S-H, Schmutz J, Shoemaker R (2011) Sequencing crop genomes: approaches and applications. New Pytol 191:915–926

    Article  CAS  Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  PubMed  CAS  Google Scholar 

  • Jiao Y, Tausta SL, Gandotra N, Sun N, Liu T, Caly NK et al (2009) A transcriptome atlas of rice cell types uncovers cellular, functional and developmental hierarchies. Nat Genet 41:258–263

    Article  PubMed  CAS  Google Scholar 

  • Jonsson P, Gullberg J, Nordstrom A, Kusano M, Kowalczyk M, Sjostrom M et al (2004) A strategy for identifying differences in large series of metabolomic samples analyzed by GC/MS. Anal Chem 76:1738–1745

    Article  PubMed  CAS  Google Scholar 

  • Jorrin-Novo JV, Maldonado AM, Echevarria-Zomeno S, Valledor L, Castillejo MA, Curto M et al (2009) Plant proteomics update (2007–2008): second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge. J Proteomics 72:285–314

    Article  PubMed  CAS  Google Scholar 

  • Kakimoto T (1996) CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science 274:982–985

    Article  PubMed  CAS  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  PubMed  CAS  Google Scholar 

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M et al (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484

    Article  PubMed  CAS  Google Scholar 

  • Katz A, Waridel P, Shevchenko A, Pick U (2007) Salt-induced changes in the plasma membrane proteome of the halotolerant alga Dunaliella salina as revealed by blue native gel electrophoresis and nano-LC-MS/MS analysis. Mol Cell Proteomics 6:1459–1472

    Article  PubMed  CAS  Google Scholar 

  • Kaur S, Cogan NO, Ye G, Baillie RC, Hand ML, Ling AE et al (2009) Genetic map construction and QTL mapping of resistance to blackleg (Leptosphaeria maculans) disease in Australian canola (Brassica napus L.) cultivars. Theor Appl Genet 120:71–83

    Article  PubMed  CAS  Google Scholar 

  • Kawamoto S, Yoshii J, Mizuno K, Ito K, Miyamoto Y, Ohnishi T et al (2000) BodyMap: a collection of 3’ESTs for analysis of human gene expression information. Genome Res 10:1817–1827

    Article  PubMed  CAS  Google Scholar 

  • Kawaura K, Mochida K, Yamazaki Y, Ogihara Y (2006) Transcriptome analysis of salinity stress responses in common wheat using a 22k oligo-DNA microarray. Funct Integr Genomics 6:132–142

    Article  PubMed  CAS  Google Scholar 

  • Kawaura K, Mochida K, Enju A, Totoki Y, Toyoda A, Sakaki Y et al (2009) Assessment of adaptive evolution between wheat and rice as deduced from full-length common wheat cDNA sequence data and expression patterns. BMC Genomics 10:271

    Article  PubMed  CAS  Google Scholar 

  • Kigawa T, Yabuki T, Yoshida Y, Tsutsui M, Ito Y, Shibata T et al (1999) Cell-free production and stable-isotope labeling of milligram quantities of proteins. FEBS Lett 442:15–19

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi J, Shinozaki K, Hirayama T (2004) Stable isotope labelling of Arabidopsis thaliana for an NMR-based metabolomics approach. Plant Cell Physiol 45:1099–1104

    Article  PubMed  CAS  Google Scholar 

  • Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O et al (2007) The AtGenExpress global stress expression dataset: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50:347–363

    Article  PubMed  CAS  Google Scholar 

  • Komatsu S (2005) Rice proteome database: a step toward functional analysis of the rice genome. Plant Mol Biol 59:179–190

    Article  PubMed  CAS  Google Scholar 

  • Kondou Y, Higuchi M, Takahashi S, Sakurai T, Ichikawa T, Kuroda H et al (2009) Systematic approaches to using the FOX hunting system to identify useful rice genes. Plant J 57:883–894

    Article  PubMed  CAS  Google Scholar 

  • Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T, Yano M (2006) An SNP caused loss of seed shattering during rice domestication. Science 312:1392–1396

    Article  PubMed  CAS  Google Scholar 

  • Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Burgmüller E et al (2005) GMD@CSB.DB: the Golm Metabolome Database. Bioinformatics 21:1635–1638

    Article  PubMed  CAS  Google Scholar 

  • Kota R, Varshney RK, Prasad M, Zhang H, Stein N, Graner A (2008) EST-derived single nucleotide polymorphism markers for assembling genetic and physical maps of the barley genome. FunctIntegr Genomics 8:223–233

    Article  CAS  Google Scholar 

  • Kouranov A, Xie L, de la Cruz J, Chen L, Westbrook J, Bourne PE et al (2006) The RCSB PDB information portal for structural genomics. Nucleic Acids Res 34:D302–D305

    Article  PubMed  CAS  Google Scholar 

  • Krysan PJ, Young JC, Sussman MR (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11:2283–2290

    PubMed  CAS  Google Scholar 

  • Kumar CS, Wing RA, Sundaresan V (2005) Efficient insertional mutagenesis in rice using the maize En/Spm elements. Plant J 44:879–892

    Article  PubMed  CAS  Google Scholar 

  • Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y et al (2007) Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445:652–655

    Article  PubMed  CAS  Google Scholar 

  • Kuromori T, Takahashi S, Kondou Y, Shinozaki K, Matsui M (2009) Phenome analysis in plant species using loss-of-function and gain-of-function mutants. Plant Cell Physiol 50:1215–1231

    Article  PubMed  CAS  Google Scholar 

  • Kwon SJ, Choi EY, Choi YJ, Ahn JH, Park OK (2006) Proteomics studies of post-translational modifications in plants. J Exp Bot 57:1547–1551

    Article  PubMed  CAS  Google Scholar 

  • Laubinger S, Zeller G, Henz SR, Sachsenberg T, Widmer CK, Naouar N et al (2008) At-TAX: a whole genome tiling array resource for developmental expression analysis and transcript identification in Arabidopsis thaliana. Genome Biol 9:R112

    Article  PubMed  CAS  Google Scholar 

  • Laurentin H, Ratzinger A, Karlovsky P (2008) Relationship between metabolic and genomic diversity in sesame (Sesamum indicum L.). BMC Genomics 9:250

    Article  PubMed  CAS  Google Scholar 

  • Lawrence CJ, Dong Q, Polacco ML, Seigfried TE, Brendel V (2004) MaizeGDB, the community database for maize genetics and genomics. Nucleic Acids Res 32:D393–D397

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Tsai J, Sunkara S, Karamycheva S, Pertea G, Sultana R et al (2005) The TIGR Gene Indices: clustering and assembling EST and known genes and integration with eukaryotic genomes. Nucleic Acids Res 33:D71–D74

    Article  PubMed  CAS  Google Scholar 

  • Lein W, Usadel B, Stitt M, Reindl A, Ehrhardt T, Sonnewald U et al (2008) Large-scale phenotyping of transgenic tobacco plants (Nicotiana tabacum) to identify essential leaf functions. Plant Biotechnol J 6:246–263

    Article  PubMed  CAS  Google Scholar 

  • Li F, Kitashiba H, Inaba K, Nishio T (2009) A Brassica rapa linkage map of EST-based SNP markers for identification of candidate genes controlling flowering time and leaf morphological traits. DNA Res 16:311–323

    Article  PubMed  CAS  Google Scholar 

  • Liang C, Jaiswal P, Hebbard C, Avraham S, Buckler ES, Casstevens T et al (2008) Gramene: a growing plant comparative genomics resource. Nucleic Acids Res 36:D947–D953

    Article  PubMed  CAS  Google Scholar 

  • Lisec J, Meyer RC, Steinfath M, Redestig H, Becher M, Witucka-Wall H et al (2008) Identification of metabolic and biomass QTL in Arabidopsis thaliana in a parallel analysis of RIL and IL populations. Plant J 53:960–972

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Lu T, Yu S, Li Y, Huang Y, Huang T et al (2007) A collection of 10,096 indica rice full-length cDNAs reveals highly expressed sequence divergence between Oryza sativa indica and japonica subspecies. Plant Mol Biol 65:403–415

    Article  PubMed  CAS  Google Scholar 

  • Long D, Martin M, Sundberg E, Swinburne J, Puangsomlee P, Coupland G (1993) The maize transposable element system Ac/Ds as a mutagen in Arabidopsis: identification of an albino mutation induced by Ds insertion. Proc Natl Acad Sci USA 90:10370–10374

    Article  PubMed  CAS  Google Scholar 

  • Lu R, Malcuit I, Moffett P, Ruiz MT, Peart J, Wu AJ et al (2003a) High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J 22:5690–5699

    Article  CAS  Google Scholar 

  • Lu R, Martin-Hernandez AM, Peart JR, Malcuit I, Baulcombe DC (2003b) Virus-induced gene silencing in plants. Methods 30:296–303

    Article  CAS  Google Scholar 

  • Lu C, Kulkarni K, Souret FF, MuthuValliappan R, Tej SS, Poethig RS et al (2006) MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant. Genome Res 16:1276–1288

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M et al (2006) A silicon transporter in rice. Nature 440:688–691

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T et al (2007) An efflux transporter of silicon in rice. Nature 448:209–212

    Article  PubMed  CAS  Google Scholar 

  • Mace ES, Rami JF, Bouchet S, Klein PE, Klein RR, Kilian A et al (2009) A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers. BMC Plant Biol 9:13

    Article  PubMed  CAS  Google Scholar 

  • Maeda N, Kasukawa T, Oyama R, Gough J, Frith M, Engström PG et al (2006) Transcript annotation in FANTOM3: mouse gene catalog based on physical cDNAs. PLoS Genet 2:e62

    Article  PubMed  CAS  Google Scholar 

  • Manzano C, Abraham Z, Lopez-Torrejon G, Del Pozo JC (2008) Identification of ubiquitinated proteins in Arabidopsis. Plant Mol Biol 68:145–158

    Article  PubMed  CAS  Google Scholar 

  • Maor R, Jones A, Nuhse TS, Studholme DJ, Peck SC, Shirasu K (2007) Multidimensional protein identification technology (MudPIT) analysis of ubiquitinated proteins in plants. Mol Cell Proteomics 6:601–610

    Article  PubMed  CAS  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    PubMed  CAS  Google Scholar 

  • Marques MC, Alonso-Cantabrana H, Forment J, Arribas R, Alamar S, Conejero V et al (2009) A new set of ESTs and cDNA clones from full-length and normalized libraries for gene discovery and functional characterization in citrus. BMC Genomics 10:428

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K, Takeda M, Kidokoro S, Yamada K, Sakuma Y, Urano K et al (2009) Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. Plant Physiol 150:1972–1980

    Article  PubMed  CAS  Google Scholar 

  • Masclaux F, Charpenteau M, Takahashi T, Pont-Lezica R, Galaud JP (2004) Gene silencing using a heat-inducible RNAi system in Arabidopsis. Biochem Biophys Res Commun 321:364–369

    Article  PubMed  CAS  Google Scholar 

  • Masoudi-Nejad A, Tonomura K, Kawashima S, Moriya Y, Suzuki M, Itoh M et al (2006) EGassembler: online bioinformatics service for large-scale processing, clustering and assembling ESTs and genomic DNA fragments. Nucleic Acids Res 34:W459–W462

    Article  PubMed  CAS  Google Scholar 

  • Mathews H, Clendennen SK, Caldwell CG, Liu XL, Connors K, Matheis N et al (2003) Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell 15:1689–1703

    Article  PubMed  CAS  Google Scholar 

  • Matsuda F, Yonekura-Sakakibara K, Niida R, Kuromori T, Shinozaki K, Saito K (2009) MS/MS spectral tag-based annotation of non-targeted profile of plant secondary metabolites. Plant J 57:555–577

    Article  PubMed  CAS  Google Scholar 

  • Matsui A, Ishida J, Morosawa T, Mochizuki Y, Kaminuma E, Endo TA et al (2008) Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array. Plant Cell Physiol 49:1135–1149

    Article  PubMed  CAS  Google Scholar 

  • Matsumura H, Reich S, Ito A, Saitoh H, Kamoun S, Winter P et al (2003) Gene expression analysis of plant host–pathogen interactions by SuperSAGE. Proc Natl Acad Sci USA 100:15718–15723

    Article  PubMed  CAS  Google Scholar 

  • Matsumura H, Kruger DH, Kahl G, Terauchi R (2008) SuperSAGE: a modern platform for genome-wide quantitative transcript profiling. Curr Pharm Biotechno 9:368–374

    Article  CAS  Google Scholar 

  • McDermott A (2009) Structure and dynamics of membrane proteins by magic angle spinning solid-state NMR. Annu Rev Biophys 38:385–403

    Article  PubMed  CAS  Google Scholar 

  • Memon AR (2012) Transcriptomics and proteomics analysis of root nodules of modern legume plants. In: Asharaf M, Ahmad MSA, Ozturk M, Aksoy A (eds) Crop Production for Agricultural Improvement. Springer Science – Business Media

    Google Scholar 

  • Mi H, Lazareva-Ulitsky B, Loo R, Kejariwal A, Vandergriff J, Rabkin S et al (2005) The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res 33:D284–D288

    Article  PubMed  CAS  Google Scholar 

  • Minami A, Fujiwara M, Furuto A, Fukao Y, Yamashita T, Kamo M et al (2009) Alterations in detergent-resistant plasma membrane microdomains in Arabidopsis thaliana during cold acclimation. Plant Cell Physiol 50:341–359

    Article  PubMed  CAS  Google Scholar 

  • Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996

    Article  PubMed  CAS  Google Scholar 

  • Mitsuda N, Ohme-Takagi M (2009) Functional analysis of transcription factors in Arabidopsis. Plant Cell Physiol 50:1232–1248

    Article  PubMed  CAS  Google Scholar 

  • Miyao A, Tanaka K, Murata K, Sawaki H, Takeda S, Abe K et al (2003) Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell 15:1771–1780

    Article  PubMed  Google Scholar 

  • Miyao A, Iwasaki Y, Kitano H, Itoh J, Maekawa M, Murata K et al (2007) A large-scale collection of phenotypic data describing an insertional mutant population to facilitate functional analysis of rice genes. Plant Mol Bio 63:625–635

    Article  CAS  Google Scholar 

  • Mochida K, Shinozaki K (2010) Genomics and bioinformatics resources for crop improvement. Plant Cell Physiol 51:497–523

    Article  PubMed  CAS  Google Scholar 

  • Mochida K, Yamazaki Y, Ogihara Y (2003) Discrimination of homoeologous gene expression in hexaploid wheat by SNP analysis. Mol Genet Genomics 270:371–377

    Article  PubMed  CAS  Google Scholar 

  • Mochida K, Kawaura K, Shimosaka E, Kawakami N, Shin-I T, Kohara Y et al (2006) Tissue expression map of a large number of expressed sequence tags and its application to in silico screening of stress response genes in common wheat. Mol Gen Genomics 276:304–312

    Article  CAS  Google Scholar 

  • Mochida K, Saisho D, Yoshida T, Sakurai T, Shinozaki K (2008) TriMEDB: a database to integrate transcribed markers and facilitate genetic studies of the tribe Triticeae. BMC Plant Biol 8:72

    Article  PubMed  CAS  Google Scholar 

  • Mochida K, Furuta T, Ebana K, Shinozaki K, Kikuchi J (2009a) Correlation exploration of metabolic and genomic diversities in rice. BMC Genomics 10:568

    Article  CAS  Google Scholar 

  • Mochida K, Yoshida T, Sakurai T, Ogihara Y, Shinozaki K (2009b) TriFLDB: a database of clustered full-length coding sequences from Triticeae with applications to comparative grass genomics. Plant Physiol 150:1135–1146

    Article  CAS  Google Scholar 

  • Mochida K, Yoshida T, Sakurai T, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2009c) In silico analysis of transcription factor repertoire and prediction of stress responsive transcription factors in soybean. DNA Res 16:353–369

    Article  CAS  Google Scholar 

  • Mochida K, Yoshida T, Sakurai T, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2010) LegumeTFDB: an integrative database of Glycine max, Lotus japonicus and Medicago truncatula transcription factors. Bioinformatics 26:290–291

    Article  PubMed  CAS  Google Scholar 

  • Moco S, Bino RJ, Vorst O, Verhoeven HA, de Groot J, van Beek TA et al (2006) A liquid chromatography–mass spectrometry-based metabolome database for tomato. Plant Physiol 141:1205–1218

    Article  PubMed  CAS  Google Scholar 

  • Mori M, Tomita C, Sugimoto K, Hasegawa M, Hayashi N, Dubouzet JG et al (2007) Isolation and molecular characterization of a Spotted leaf 18 mutant by modified activation-tagging in rice. Plant Mol Biol 63:847–860

    Article  PubMed  CAS  Google Scholar 

  • Morreel K, Goeminne G, Storme V, Sterck L, Ralph J, Coppieters W et al (2006) Genetical metabolomics of flavonoid biosynthesis in Populus: a case study. Plant J 47:224–237

    Article  PubMed  CAS  Google Scholar 

  • Mueller LA, Zhang P, Rhee SY (2003) AraCyc: a biochemical pathway database for Arabidopsis. Plant Physiol 132:453–460

    Article  PubMed  CAS  Google Scholar 

  • Mueller LA, Solow TH, Taylor N, Skwarecki B, Buels R, Binns J et al (2005) The SOL Genomics Network: a comparative resource for Solanaceae biology and beyond. Plant Physiol 138:1310–1317

    Article  PubMed  CAS  Google Scholar 

  • Mullins E, Milbourne D, Petti C, Doyle-Prestwich BM, Meade C (2006) Potato in the age of biotechnology. Trends Plant Sci 11:254–260

    Article  PubMed  CAS  Google Scholar 

  • Nakamura H, Hakata M, Amano K, Miyao A, Toki N, Kajikawa M et al (2007) A genome-wide gain-of function analysis of rice genes using the FOX-hunting system. Plant Mol Biol 65:357–371

    Article  PubMed  CAS  Google Scholar 

  • Nakano M, Nobuta K, Vemaraju K, Tej SS, Skogen JW, Meyers BC (2006) Plant MPSS databases: signature-based transcriptional resources for analyses of mRNA and small RNA. Nucleic Acids Res 34:D731–D735

    Article  PubMed  CAS  Google Scholar 

  • Nanjo T, Sakurai T, Totoki Y, Toyoda A, Nishiguchi M, Kado D et al (2007) Functional annotation of 19,841 Populus nigra full length enriched cDNA clones. BMC Genomics 8:448

    Article  PubMed  Google Scholar 

  • Neale DB, Ingvarsson PK (2008) Population, quantitative and comparative genomics of adaptation in forest trees. Curr Opin Plant Biol 11:149–155

    Article  PubMed  CAS  Google Scholar 

  • Newton RP, Brenton AG, Smith CJ, Dudley E (2004) Plant proteome analysis by mass spectrometry: principles, problems, pitfalls and recent developments. Phytochemistry 65:1449–1485

    Article  PubMed  CAS  Google Scholar 

  • Nobuta K, Venu RC, Lu C, Belo A, Vemaraju K, Kulkarni K et al (2007) An expression atlas of rice mRNAs and small RNAs. Nat Biotechnol 25:473–477

    Article  PubMed  CAS  Google Scholar 

  • Nobuta K, Lu C, Shrivastava R, Pillay M, De Paoli E, Accerbi M et al (2008) Distinct size distribution of endogeneous siRNAs in maize: evidence from deep sequencing in the mop1–1 mutant. Proc Natl Acad Sci USA 105:14958–14963

    Article  PubMed  CAS  Google Scholar 

  • Nuhse TS, Stensballe A, Jensen ON, Peck SC (2004) Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database. Plant Cell 16:2394–2405

    Article  PubMed  Google Scholar 

  • Nuhse TS, Bottrill AR, Jones AM, Peck SC (2007) Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J 51:931–940

    Article  PubMed  CAS  Google Scholar 

  • Obayashi T, Kinoshita K, Nakai K, Shibaoka M, Hayashi S, Saeki M et al (2007) ATTED-II: a database of co-expressed genes and cis elements for identifying co-regulated gene groups in Arabidopsis. Nucleic Acids Res 35:D863–D869

    Article  PubMed  CAS  Google Scholar 

  • Obayashi T, Hayashi S, Saeki M, Ohta H, Kinoshita K (2009) ATTED-II provides coexpressed gene networks for Arabidopsis. Nucleic Acids Res 37:D987–D991

    Article  PubMed  CAS  Google Scholar 

  • O’Brien EA, Zhang Y, Wang E, Marie V, Badejoko W, Lang BF, Burger G (2009) GOBASE: an organelle genome database. Nucleic Acids Res 37:D946–D950

    Article  PubMed  CAS  Google Scholar 

  • Ogasawara O, Otsuji M, Watanabe K, Iizuka T, Tamura T, Hishiki T et al (2006) BodyMap-Xs: anatomical breakdown of 17 million animal ESTs for cross-species comparison of gene expression. Nucleic Acids Res 34:D628–D631

    Article  PubMed  CAS  Google Scholar 

  • Okazaki Y, Shimojima M, Sawada Y, Toyooka K, Narisawa T, Mochida K et al (2009) A chloroplastic UDP-glucose pyrophosphorylase from Arabidopsis is the committed enzyme for the first step of sulfolipid biosynthesis. Plant Cell 21:892–909

    Article  PubMed  CAS  Google Scholar 

  • Oksman-Caldentey KM, Saito K (2005) Integrating genomics and metabolomics for engineering plant metabolic pathways. Curr Opin Biotechnol 16:174–179

    Article  PubMed  CAS  Google Scholar 

  • Ozturk M (2010) Agricultural residues and their role in bioenergy production. Version steele 24 May 09. Proceedings-second consultation AgroResidues-Second expert consultation ‘The utilization of agricultural residues with special emphasis on utilization of agricultural residues as biofuel’, Cairo Egypt, November 2007, pp 31–43

    Google Scholar 

  • Ozturk M, Ergin M, Akçiçek E (2006) Ecology, sustainability, and stewardship. Proc.of the 13th IAS science conference on “Energy for Sustainable Development” and “Science for the Future of the Islamic World and Humanity”, Kuching/Sarawak, Malaysia (2003). In: Ergin M, Zou’bi MR (eds) Islamic World Academy of Sciences (IAS). National Printing Press, Amman, pp 261–278

    Google Scholar 

  • Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA et al (2000) Crystal structure of rhodopsin: a G proteincoupled receptor. Science 289:739–745

    Article  PubMed  CAS  Google Scholar 

  • Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10:669–680

    Article  PubMed  CAS  Google Scholar 

  • Parkinson H, Kapushesky M, Shojatalab M, Abeygunawardena N, Coulson R, Farne A et al (2007) ArrayExpress-a public database of microarray experiments and gene expression profiles. NucleicAcids Res 35:D747–D750

    Article  CAS  Google Scholar 

  • Paterson AH (2008) Genomics of sorghum. Int J Plant Genomics 2008:362–451

    Article  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  PubMed  CAS  Google Scholar 

  • Peleg Z, Saranga Y, Suprunova T, Ronin Y, Roder MS, Kilian A et al (2008) High-density genetic map of durum wheat × wild emmer wheat based on SSR and DArT markers. Theor Appl Genet 117:103–115

    Article  PubMed  CAS  Google Scholar 

  • Pinstrup-Andersen P, Cohen M (2000) Modern biotechnology for food and agriculture: Risks and opportunities for the poor. In: Persley GJ, Lantin MM (eds) Agricultural biotechnology and the poor. Consultative Group on International Agricultural Research, Washington, DC

    Google Scholar 

  • Qu S, Desai A, Wing R, Sundaresan V (2008) A versatile transposonbased activation tag vector system for functional genomics in cereals and other monocot plants. Plant Physiol 146:189–199

    Article  PubMed  CAS  Google Scholar 

  • Rahman U, Shaheen T, Ashraf M, Zafar Y (2012) Bridging genomic and classic breeding approaches for improving crop productivity. In: Asharaf M, Ozturk M, Ahmad MSA, Aksoy A (eds) Crop Production for Agricultural Improvement. Springer Science – Business Media

    Google Scholar 

  • Ralph SG, Chun HJ, Cooper D, Kirkpatrick R, Kolosova N, Gunter L et al (2008a) Analysis of 4,664 high-quality sequence-finished poplar full-length cDNA clones and their utility for the discovery of genes responding to insect feeding. BMC Genomics 9:57

    Article  CAS  Google Scholar 

  • Ralph SG, Chun HJ, Kolosova N, Cooper D, Oddy C, Ritland CE et al (2008b) A conifer genomics resource of 200,000 spruce (Picea spp.) ESTs and 6,464 high-quality, sequence-finished full-length cDNAs for Sitka spruce (Picea sitchensis). BMC Genomics 9:484

    Article  CAS  Google Scholar 

  • Ramautar R, Somsen GW, de Jong GJ (2009) CE-MS in metabolomics. Electrophoresis 30:276–291

    Article  PubMed  CAS  Google Scholar 

  • Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J et al (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110

    Article  PubMed  CAS  Google Scholar 

  • Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L et al (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13:11–29

    PubMed  CAS  Google Scholar 

  • Rose JCK, Bashir S, Giovannoni JJ, Jahn MM, Saravanan RS (2004) Tackling the plant proteome: Practicalapproaches, hurdles and experimental tools. Plant J 39:715–733

    Article  PubMed  CAS  Google Scholar 

  • Rossignol M, Peltier JB, Mock HP, Matros A, Maldonado AM, Jorrin JV (2006) Plant proteome analysis: a 2004–2006 update. Proteomics 6:5529–5548

    Article  PubMed  CAS  Google Scholar 

  • Rostoks N, Borevitz JO, Hedley PE, Russell J, Mudie S, Morris J et al (2005) Single-feature polymorphism discovery in the barley transcriptome. Genome Biol 6:R54

    Article  PubMed  CAS  Google Scholar 

  • Rowe HC, Hansen BG, Halkier BA, Kliebenstein DJ (2008) Biochemical networks and epistasis shape the Arabidopsis thaliana metabolome. Plant Cell 20:1199–1216

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Ferrer V, Voinnet O (2009) Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol 60:485–510

    Article  PubMed  CAS  Google Scholar 

  • Saito K, Hirai MY, Yonekura-Sakakibara K (2008) Decoding genes with co-expression networks and metabolomics-‘majority report by precogs’. Trends Plant Sci 13:36–43

    Article  PubMed  CAS  Google Scholar 

  • Sakai A, Takano H, Kuroiwa T (2004) Organelle nuclei in higher plants: structure, composition, function and evolution. Int Rev Cytol 238:59–118

    Article  PubMed  CAS  Google Scholar 

  • Sakata K, Ohyanagi H, Nobori H, Nakamura T, Hashiguchi A, Nanjo Y et al (2009) Soybean proteome database: a data resource for plant differential ‘omics’. J Proteome Res 8:3539–3548

    Article  PubMed  CAS  Google Scholar 

  • Sakurai T, Plata G, Rodriguez-Zapata F, Seki M, Salcedo A, Toyoda A et al (2007) Sequencing analysis of 20,000 full-length cDNA clones from cassava reveals lineage specific expansions in gene families related to stress response. BMC Plant Bio 7:66

    Article  CAS  Google Scholar 

  • Samatey FA, Imada K, Nagashima S, Vonderviszt F, Kumasaka T, Yamamoto M et al (2001) Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature 410:331–337

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Tabata S (2006) Lotus japonicus as a platform for legume research. Curr Opin Plant Bio 9:128–132

    Article  CAS  Google Scholar 

  • Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M et al (2008) Genome structure of the legume, Lotus japonicus. DNA Res 15:227–239

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Shin IT, Seki M, Shinozaki K, Yoshida H, Takeda K et al (2009) Development of 5006 full-length cDNAs in barley: a tool for accessing cereal genomics resources. DNA Res 16:81–89

    Article  PubMed  CAS  Google Scholar 

  • Schauer N, Semel Y, Roessner U, Gur A, Balbo I, Carrari F et al (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24:447–454

    Article  PubMed  CAS  Google Scholar 

  • Schauer N, Semel Y, Balbo I, Steinfath M, Repsilber D, Selbig J et al (2008) Mode of inheritance of primary metabolic traits in tomato. Plant Cell 20:509–523

    Article  PubMed  CAS  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    Article  PubMed  CAS  Google Scholar 

  • Schmelzle K, White FM (2006) Phosphoproteomic approaches to elucidate cellular signaling networks. Curr Opin Biotechnol 17:406–414

    Article  PubMed  CAS  Google Scholar 

  • Schnable PS, Ware Doulton RS, Stein JC, Wei F, Pasternak S et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Schneider A, Kirch T, Gigolashvili T, Mock HP, Sonnewald U, Simon R et al (2005) A transposon-based activation-tagging population in Arabidopsis thaliana (TAMARA) and its applicationin the identification of dominant developmental and metabolic mutations. FEBS Let 579:4622–4628

    Article  CAS  Google Scholar 

  • Schripsema J (2009) Application of NMR in plant metabolomics: techniques. problems and prospects. Phytochem Anal 21:14–21

    Article  CAS  Google Scholar 

  • Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Shinozaki K (2009) Functional genomics using RIKEN Arabidopsis thaliana full-length cDNAs. J Plant Res 122:355–366

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y et al (2002a) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a fulllength cDNA microarray. Plant J 31:279–292

    Article  CAS  Google Scholar 

  • Seki M, Narusaka M, Kamiya A, Ishida J, Satou M, Sakurai T et al (2002b) Functional annotation of a full-length Arabidopsis cDNA collection. Science 296:141–145

    Article  Google Scholar 

  • Sekiyama Y, Kikuchi J (2007) Towards dynamic metabolic network measurements by multi-dimensional NMR-based fluxomics. Phytochemistry 68:2320–2329

    Article  PubMed  CAS  Google Scholar 

  • Shen YJ, Jiang H, Jin JP, Zhang ZB, Xi B, He YY et al (2004) Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol 135:1198–1205

    Article  PubMed  CAS  Google Scholar 

  • Somerville C, Dangl J (2000) Genomics. Plant biology in 2010. Science 290:2077–2078

    Article  PubMed  CAS  Google Scholar 

  • Song J, Braun G, Bevis E, Doncaster K (2006) A simple protocol for protein extraction of recalcitrant fruit tissues suitable for 2-D electrophoresis and MS analysis. Electrophoresis 27:3144–3151

    Article  PubMed  CAS  Google Scholar 

  • Springer PS (2000) Gene traps: tools for plant development and genomics. Plant Cell 12:1007–1020

    PubMed  CAS  Google Scholar 

  • Stanford WL, Cohn JB, Cordes SP (2001) Gene-trap mutagenesis: past, present and beyond. Nat Rev Gene 2:756–768

    Article  CAS  Google Scholar 

  • Sterck L, Rombauts S, Vandepoele K, Rouze P, Van de Peer Y (2007) How many genes are there in plants (… and why are they there)? Curr Opin Plant Biol 10:199–203

    Article  PubMed  CAS  Google Scholar 

  • Sterky F, Bhalerao RR, Unneberg P, Segerman B, Nilsson P, Brunner AM et al (2004) A Populus EST resource for plant functional genomics. Proc Natl Acad Sci USA 101:13951–13956

    Article  PubMed  Google Scholar 

  • Stevens RC, Yokoyama S, Wilson IA (2001) Global efforts in structural genomics. Science 294:89–92

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama N, Nakagami H, Mochida K, Daudi A, Tomita M, Shirasu K et al (2008) Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis. Mol Syst Biol 4:193

    Article  PubMed  Google Scholar 

  • Swarbreck D, Wilks C, Lamesch P, Berardini TZ, Garcia-Hernandez M, Foerster H et al (2008) The Arabidopsis Information Resource (TAIR): gene structure and function annotation. Nucleic Acids Res 36:D1009–D1014

    Article  PubMed  CAS  Google Scholar 

  • Taji T, Sakurai T, Mochida K, Ishiwata A, Kurotani A, Totoki Y et al (2008) Large-scale collection and annotation of full-length enriched cDNAs from a model halophyte, Thellungiella halophila. BMC Plant Biol 8:115

    Article  PubMed  CAS  Google Scholar 

  • Takeda S, Matsuoka M (2008) Genetic approaches to crop improvement: responding to environmental and population changes. Nat Rev Genet 9:444–457

    Article  PubMed  CAS  Google Scholar 

  • Talon M, Gmitter FG Jr (2008) Citrus genomics. Inter J Plant Genomics 2008:1–17

    Article  CAS  Google Scholar 

  • Tanaka T, Antonio BA, Kikuchi S, Matsumoto T, Nagamura Y, Numa Y et al (2008) The Rice Annotation Project Database (RAP-DB): 2008 update. Nucleic Acids Res 36:D1028–D1033

    PubMed  CAS  Google Scholar 

  • Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH (2008a) Synteny and collinearity in plant genomes. Science 320:486–488

    Article  CAS  Google Scholar 

  • Tang H, Wang X, Bowers JE, Ming R, Alam M, Paterson AH (2008b) Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. Genome Res 18:1944–1954

    Article  CAS  Google Scholar 

  • Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P et al (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939

    Article  PubMed  CAS  Google Scholar 

  • Tikunov Y, Lommen A, de Vos CH, Verhoeven HA, Bino RJ, Hall RD et al (2005) A novel approach for nontargeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles. Plant Physiol 139:1125–1137

    Article  PubMed  CAS  Google Scholar 

  • Till BJ, Reynolds SH, Weil C, Springer N, Burtner C, Young K et al (2004) Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol 4:12

    Article  PubMed  CAS  Google Scholar 

  • Till BJ, Colbert T, Codomo C, Enns L, Johnson J, Reynolds SH et al (2006) High-throughput TILLING for Arabidopsis. Methods Mol Biol 323:127–35

    PubMed  CAS  Google Scholar 

  • Tohge T, Nishiyama Y, Hirai MY, Yano M, Nakajima J, Awazuhara M et al (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42:218–235

    Article  PubMed  CAS  Google Scholar 

  • Tokimatsu T, Sakurai N, Suzuki H, Ohta H, Nishitani K, Koyama T et al (2005) KaPPA-view: a web-based analysis tool for integration of transcript and metabolite data on plant metabolic pathway maps. Plant Physiol 138:1289–1300

    Article  PubMed  CAS  Google Scholar 

  • Torada A, Koike M, Mochida K, Ogihara Y (2006) SSR-based linkage map with new markers using an intraspecific population of common wheat. Theor Appl Gene 112:1042–1051

    Article  CAS  Google Scholar 

  • Toyoda T, Wada A (2004) Omic space: coordinate-based integration and analysis of genomic phenomic interactions. Bioinformatics 20:1759–1765

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima C, Nomura H, Sugita Y (2003) Crystal structures of Ca2+-ATPase in various physiological states. Ann NY Acad Sci 986:1–8

    Article  PubMed  CAS  Google Scholar 

  • Trethewey RN (2004) Metabolite profiling as an aid to metabolic engineering in plants. Curr Opin Plant Biol 7:196–201

    Article  PubMed  CAS  Google Scholar 

  • Turner WR, Oppenheimer M, Wilcove DS (2009) A force to fight global warming. Nature 462:278–279

    Article  PubMed  CAS  Google Scholar 

  • Tyler RC, Aceti DJ, Bingman CA, Cornilescu CC, Fox BG, Frederick RO et al (2005) Comparison of cell-based and cell-free protocols for producing target proteins from the Arabidopsis thaliana genome for structural studies. Proteins 59:633–643

    Article  PubMed  CAS  Google Scholar 

  • Uauy C, Paraiso F, Colasuonno P, Tran RK, Tsai H, Berardi S, Comai L, Dubcovsky J (2009) A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat. BMC Plant Biol 9:115–129

    Article  PubMed  CAS  Google Scholar 

  • Umezawa T, Sakurai T, Totoki Y, Toyoda A, Seki M, Ishiwata A et al (2008) Sequencing and analysis of approximately 40,000 soybean cDNA clones from a full-length-enriched cDNA library. DNA Res 15:333–346

    Article  PubMed  CAS  Google Scholar 

  • Urano K, Maruyama K, Ogata Y, Morishita Y, Takeda M, Sakurai N et al (2009) Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics. Plant J 57:1065–1078

    Article  PubMed  CAS  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10:621–630

    Article  PubMed  CAS  Google Scholar 

  • Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530

    Article  PubMed  CAS  Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487

    Article  PubMed  CAS  Google Scholar 

  • Wall PK, Leebens-Mack J, Muller KF, Field D, Altman NS, de Pamphilis CW (2008) Plant Tribes: a gene and gene family resource for comparative genomics in plants. Nucleic Acids Res 36:D970–D976

    Article  PubMed  CAS  Google Scholar 

  • Wang DK, Sun ZX, Tao YZ (2006) Application of TILLING in plant improvement. Yi Chuan Xue Bao 33:957–964

    PubMed  CAS  Google Scholar 

  • Ware D (2007) Gramene: a resource for comparative grass genomics. Methods Mol Biol 406:315–330

    PubMed  CAS  Google Scholar 

  • Waterhouse PM, Graham MW, Wang MB (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA 95:13959–13964

    Article  PubMed  CAS  Google Scholar 

  • Weigel D, Mott R (2009) The 1001 genomes project for Arabidopsis thaliana. Genome Biol 10:107

    Article  PubMed  Google Scholar 

  • Weigel D, Ahn JH, Blazquez MA, Borevitz JO, Christensen SK, Fankhauser C et al (2000) Activation tagging in Arabidopsis. Plant Physiol 122:1003–1013

    Article  PubMed  CAS  Google Scholar 

  • Wenzl P, Raman H, Wang J, Zhou M, Huttner E, Kilian A (2007) A DArT platform for quantitative bulked segregant analysis. BMC Genomics 8:196

    Article  PubMed  CAS  Google Scholar 

  • Werner E, Heilier JF, Ducruix C, Ezan E, Junot C, Tabet JC (2008) Mass spectrometry for the identification of the discriminating signals from metabolomics: current status and future trends. J Chromatogr B 871:143–163

    Article  CAS  Google Scholar 

  • Wilson D, Madera M, Vogel C, Chothia C, Gough J (2007) The SUPERFAMILY database in 2007: families and functions. Nucleic Acids Res 35:D308–D313

    Article  PubMed  CAS  Google Scholar 

  • Wilson D, Charoensawan V, Kummerfeld SK, Teichmann SA (2008) DBD-taxonomically broad transcription factor predictions: new content and functionality. Nucleic Acids Res 36:D88–D92

    Article  PubMed  CAS  Google Scholar 

  • Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An ‘electronic fluorescent pictograph’ browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2:e718

    Article  PubMed  CAS  Google Scholar 

  • Wlodawer A, Minor W, Dauer Z, Jaskolski M (2008) Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structures. FEBS J 275:1–21

    Article  PubMed  CAS  Google Scholar 

  • Wu WW, Wang G, Baek SJ, Shen R-F (2005) Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC- MAL:DI TOF/TOF. J Proteome Res 5:651–658

    Article  CAS  Google Scholar 

  • Yamamoto YY, Obokata J (2008) ppdb: a plant promoter database. Nucleic Acids Res 36:D977–D981

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto YY, Yoshitsugu T, Sakurai T, Seki M, Shinozaki K, Obokata J (2009) Heterogeneity of Arabidopsis core promoters revealed by high-density TSS analysis. Plant J 60:350–362

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T et al (2004) Solution structure of the B3 DNA binding domain of the Arabidopsis cold-responsive transcription factor RAV1. Plant Cell 16:3448–3459

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki C, Murakami K, Fujii Y, Sato Y, Harada E, Takeda J et al (2008a) The H-Invitational Database (H-InvDB), a comprehensive annotation resource for human genes and transcripts. Nucleic Acids Res 36:D793–D799

    CAS  Google Scholar 

  • Yamasaki K, Kigawa T, Inoue M, Watanabe S, Tateno M, Seki M et al (2008b) Structures and evolutionary origins of plant-specific transcription factor DNA-binding domains. Plant Physiol Bioche 46:394–401

    Article  CAS  Google Scholar 

  • Yan W, Chen S (2005) Mass spectrometry-based quantitative proteomic profiling. Brief Funct Genome Proteome 4:1–12

    Google Scholar 

  • Yates JR, Ruse CI, Nakorchevsky A (2009) Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 11:49–79

    Article  PubMed  CAS  Google Scholar 

  • Yilmaz A, Nishiyama MY Jr, Fuentes BG, Souza GM, Janies D, Gray J et al (2009) GRASSIUS: a platform for comparative regulatory genomics across the grasses. Plant Physiol 149:171–180

    Article  PubMed  CAS  Google Scholar 

  • Yonekura-Sakakibara K, Tohge T, Matsuda F, Nakabayashi R, Takayama H, Niida R et al (2008) Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene-metabolite correlations in Arabidopsis. Plant Cell 20:2160–2176

    Article  PubMed  CAS  Google Scholar 

  • Zeller G, Henz SR, Widmer CK, Sachsenberg T, Ratsch G, Weigel D et al (2009) Stress-induced changes in the Arabidopsis thaliana transcriptome analyzed using whole-genome tiling arrays. Plant J 58:1068–1082

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y (2008) Progress and challenges in protein structure prediction. Curr Opin Struct Biol 18:342–348

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y (2009a) I-TASSER: fully automated protein structure prediction in CASP8. Proteins 77(Suppl 9):100–113

    Article  CAS  Google Scholar 

  • Zhang Y (2009b) Protein structure prediction: when is it useful? Curr Opin Struct Biol 19:145–155

    Article  CAS  Google Scholar 

  • Zhang H, Sreenivasulu N, Weschke W, Stein N, Rudd S, Radchuk V et al (2004) Large-scale analysis of the barley transcriptome based on expressed sequence tags. Plant J 40:276–290

    Article  PubMed  Google Scholar 

  • Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen H et al (2006) Genome-wide high resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Xu Y, Huan Q, Chong K (2009a) Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics 10:449

    Article  CAS  Google Scholar 

  • Zhang Z, Yu J, Li D, Liu F, Zhou X, Wang T, Ling Y, Su Z (2009b) PMRD: plant microRNA database. Nucleic Acids Res 38:D806–D814

    Article  CAS  Google Scholar 

  • Zheng Y, Ren N, Wang H, Stromberg AJ, Perry SE (2009) Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like 15. Plant Cell 21:2563–2577

    Article  PubMed  CAS  Google Scholar 

  • Zhu QH, Guo AY, Gao G, Zhong YF, Xu M, Huang M et al (2007) DPTF: a database of poplar transcription factors. Bioinformatics 23:1307–1308

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    Article  PubMed  CAS  Google Scholar 

  • Zubko E, Adams CJ, Machaekova I, Malbeck J, Scollan C, Meyer P (2002) Activation tagging identifies a gene from Petunia hybrida responsible for the production of active cytokinins in plants. Plant J 29:797–808

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. De Filippis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

De Filippis, L. (2013). Bioinformatic Tools in Crop Improvement. In: Hakeem, K., Ahmad, P., Ozturk, M. (eds) Crop Improvement. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-7028-1_2

Download citation

Publish with us

Policies and ethics