Skip to main content

Part of the book series: Lecture Notes in Statistics ((LNSP,volume 211))

Abstract

Many time series contain measurement (often sampling) error and the problem of assessing the impacts of such errors and accounting for them has been receiving increasing attention of late. This paper provides a survey of this problem with an emphasis on estimating the coefficients of the underlying dynamic model, primarily in the context of fitting linear and nonlinear autoregressive models. An overview is provided of the biases induced by ignoring the measurement error and of methods that have been proposed to correct for it, and remaining inferential challenges are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aigner, D., Hsiao, C., Kapteyn, A., Wansbeek, T.: Latent variable models in econometrics. In: Griliches, Z., Intriligator, M.D. (eds.) Handbook of Econometrics, pp. 1321–1393. Elsevier, Amsterdam (1984)

    Google Scholar 

  • Barker, D., Sibly, R.M.: The effects of environmental perturbation and measurement error on estimates of the shape parameter in the theta-logistic model of population regulation. Ecol. Model. 219, 170–177 (2008)

    Article  Google Scholar 

  • Bell, W.R., Wilcox, D.W.: The effect of sampling error on the time series behavior of consumption data. J. Econometrics. 55, 235–265 (1993)

    Article  Google Scholar 

  • Berliner L.M.: Likelihood and Bayesian prediction of chaotic systems. J. Am. Stat. Assoc. 86, 938–952 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Bolker, B.: Ecological Models and Data in R. Princeton University Press, Princeton, NJ (2008)

    MATH  Google Scholar 

  • Box, G., Jenkins, G., Reinsel, G.: Time Series Analysis, Forecasting and Control, 3rd edn. Prentice Hall, Englewood Cliffs, NJ (1994)

    MATH  Google Scholar 

  • Brockwell, P., Davis, R.: Introduction to Time Series and Forecasting. Springer, New York (2002)

    Book  MATH  Google Scholar 

  • Buonaccorsi, J.P.: Measurement Error, Models, Methods, and Applications. Chapman and Hall, London (2010)

    Book  MATH  Google Scholar 

  • Buonaccorsi, J.P., Staudenmayer, J., Carreras, M.: Modeling observation error and its effects in a random walk/extinction model. Theor. Popul. Biol. 70, 322–335 (2006)

    Article  MATH  Google Scholar 

  • Buonaccorsi J,P., Staudenmayer, J.: Statistical methods to correct for observation error in a density-independent population model. Ecol. Monogr. 79, 299–324 (2009)

    Google Scholar 

  • Buonaccorsi, J.P., Staudenmayer, J.: Measurement error in linear autoregressive models II: further results and inferences. Working Paper, University of Massachusetts (2012)

    Google Scholar 

  • Burr, T., Chowell, G.: Observation and model error effects on parameter estimates in susceptible-infected-recovered epidemic model. Far East J. Theor. Stat. 19, 163–183 (2006)

    MathSciNet  MATH  Google Scholar 

  • Calder, C., Lavine, M., Muller, P., Clark, J.: Incorporating multiple sources of stochasticity into dynamic population models. Ecology 84, 1395–1402 (2003)

    Article  Google Scholar 

  • Carroll, R.J., Stefanski, L.A., Ruppert, D., Crainiceanu C.M.: Measurement Error in Nonlinear Models, 2nd edn. Chapman and Hall, London (2006)

    Book  MATH  Google Scholar 

  • Chanda, K.C.: Asymptotic properties of estimators for autoregressive models with errors in variables. Ann. Stat. 24, 423–430 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Cheang, W., Reinsel, G.C.: Bias reduction of autoregressive estimates in time series regression model through restricted maximum likelihood. J. Am. Stat. Assoc. 95, 1173–1184 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Clark, J.S., Bjornstad, O.N.: Population time series, process variability, observation errors, missing values, lags, and hidden states. Ecology. 85, 3140–3150 (2004)

    Article  Google Scholar 

  • Dennis, B., Ponciano, J., Lele, S., Taper, M., Staples, D.: Estimating density dependence, process noise, and observation error. Ecol. Monogr. 76, 323–341 (2006)

    Article  Google Scholar 

  • Dennis, B., Ponciano, J.M., Taper, M.L.: Replicated sampling increases efficiency in monitoring biological populations. Ecology 91, 610–620 (2010)

    Article  Google Scholar 

  • De Valpine, P.: Review of methods for fitting time-series models with process and observation error and likelihood calculations for nonlinear non-Gaussian state-space models. Bull. Mar. Sci. 70, 455–471 (2002)

    Google Scholar 

  • De Valpine, P.: Monte-Carlo state-space likelihoods by weighted posterior kernel density estimation. J. Am. Stat. Assoc. 99, 523–536 (2004)

    Article  MATH  Google Scholar 

  • De Valpine, P., Hastings, A.: Fitting population models incorporating process noise and observation error. Ecol. Monogr. 72, 57–76 (2002)

    Article  Google Scholar 

  • De Valpine, P., Hilborn, R.: State-space likelihoods for nonlinear fisheries time series. Can. J. Fish. Aquat. Sci. 62, 1937–1952 (2005)

    Article  Google Scholar 

  • Ellner, S., Yodit, S., Smith, R.: Fitting population dynamic models to time-series by gradient matching. Ecology 83, 2256–2270 (2002)

    Article  Google Scholar 

  • Feder, M.: Time series analysis of repeated surveys: the state-space approach. Stat. Neerl. 55, 182–199 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Harvey, A.C.: Forecasting, Structural Time Series Models, and the Kalman Filter. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  • Fuller, W.: Time Series Analysis. Wiley, New York (1996)

    Google Scholar 

  • Hovestadt, T., Nowicki, P.: Process and measurement errors of population size, their mutual effects on precision and bias of estimates for demographic parameters. Biodivers. Conserv. 17, 3417–3429 (2008)

    Article  Google Scholar 

  • Ives, A.R., Dennis, B., Cottingham, K.L., Carpenter, S.R.: Estimating community stability and ecological interactions from time-series data. Ecol. Monogr. 73, 301–330 (2003)

    Article  Google Scholar 

  • Ives, A.R, Abbott, K., Ziebarth, N.: Analysis of ecological time series with ARMA(p,q) models. Ecololgy 91, 858–871 (2010)

    Article  Google Scholar 

  • Jungbacker, B., Koopman, S.J.: Monte Carlo estimation for nonlinear non-Gaussian state space models. Biometrika 94, 827–839 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Knape, J.: Estimability of density dependence in models of time series data. Ecology 89, 2994–3000 (2008)

    Article  Google Scholar 

  • Knape, J., Jonzén, N., Skold, M.: Observation distributions for state space models of population survey data. J. Anim. Ecol. 80, 1269–1277 (2011)

    Article  Google Scholar 

  • Koons, B.K., Foutz, R.V.: Estimating moving average parameters in the presence of measurement error. Comm. Stat. 19, 3179–3187 (1990)

    Article  MathSciNet  Google Scholar 

  • Lee, J.H., Shin, D.W.: Maximum likelihood estimation for ARMA models in the presence of ARMA errors. Comm. Stat. Theor. Meth. 26, 1057–1072 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Lele, S.R.: Sampling variability and estimates of density dependence, a composite-likelihood approach. Ecology 87, 189–202 (2006)

    Article  Google Scholar 

  • Lele, S.R., Dennis, B., Lutscher, F.: Data cloning, easy maximum likelihood estimation for complex ecological models using Bayesian Markov chain Monte Carlo methods. Ecol. Lett. 10, 551–563 (2007)

    Article  Google Scholar 

  • Lillegard, M., Engen, S., Saether, B.E., Grotan, V., Drever, M.: Estimation of population parameters from aerial counts of North American mallards: a cautionary tale. Ecol. Appl. 18, 197–207 (2008)

    Article  Google Scholar 

  • Mallick, T., Sutradhar, B.: GQL versus conditional GQL inferences for non-stationary time series of counts with overdispersion. J. Time Anal. 29, 402–420 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Miazaki, E.S., Dorea, C.C.Y.: Estimation of the parameters of a time series subject to the error of rotation sampling. Commun. Stat. A - Theor. Meth. 22, 805–825 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • McCulloch, C., Searle, S., Neuhaus, J.: Generalized, Linear, and Mixed Models, 2nd edn. Wiley, New York (2008)

    MATH  Google Scholar 

  • Morris, W.F., Doak, D.F.: Quantitative Conservation Biology: Theory and Practice of Population Variability Analysis. Sinauer Associates, Sunderland, MA (2002)

    Google Scholar 

  • Pagano, M.: Estimation of models of autoregressive signal plus white noise. Ann. Stat. 2, 99–108 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  • Parke, W.: Pseudo maximum likelihood estimation: the asymptotic distribution. Ann. Stat. 14, 355–357 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Pfeffermann, D., Feder, M., Signorelli, D.: Estimation of autocorrelations of survey errors with application to trend estimation in small areas. J. Bus. Econ. Stat. 16, 339–348 (1998)

    MathSciNet  Google Scholar 

  • Ponciano, J., Taper, M., Dennis, B., Lele, S.: Hierarchical models in ecology, confidence intervals hypothesis testing, and model selection using data cloning. Ecology 90, 356–362 (2009)

    Article  Google Scholar 

  • Resendes, D.: Statistical methods for nonlinear dynamic models with measurement error using the Ricker model. Ph.D. thesis, University of Massachusetts, Amherst (2011)

    Google Scholar 

  • Sakai, H., Soeda, T., Hidekatsu, T.: On the relation between fitting autoregression and periodogram with applications. Ann. Stat. 7, 96–107 (1979)

    Article  MATH  Google Scholar 

  • Saether, B., Lilligard, M., Grotan, V., Drever, M., Engen, S., Nudds, T., Podruzny, K.: Geographical gradients in the population dynamics of North American prairie ducks. J. Anim. Ecol. 77, 869–882 (2008)

    Article  Google Scholar 

  • Schmid, C.H., Segal, M.R., Rosner, B.: Incorporating measurement error in the estimation of autoregressive models for longitudinal data. J. Stat. Plann. Infer. 42, 1–18 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Solow, A.R.: On fitting a population model in the presence of observation error. Ecology 79, 1463–1466 (1998)

    Article  Google Scholar 

  • Solow, A.R.: Observation error and the detection of delayed density dependence. Ecology 82, 3263–3264 (2001)

    Article  Google Scholar 

  • Staudenmayer, J., Buonaccorsi, J.P.: Measurement error in linear autoregressive models. J. Am. Stat. Assoc. 100, 841–852 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Stefanski, L.: The effects of measurement error on parameter estimation. Biometrika 72, 583–592 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Stefanski, L., Cook, J.: Simulation-extrapolation: the measurement error jackknife. J. Am. Stat. Assoc. 90, 1247–1256 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Stenseth, N.C., Viljugrein, H., Saitoh, T., Hansen, T.F., Kittilsen, M.O., Bolviken, E., Glockner, F.: Seasonality, density dependence, and population cycles in Hokkaido voles. Proc. Natl. Acad. Sci. USA. 100, 11478–11483 (2003)

    Article  Google Scholar 

  • Tripodis, Y., Buonaccorsi, J.P.: Prediction and forecasting in linear models with measurement error and unknown parameters. J. Stat. Plann. Infer. 139, 4039–4050 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Viljugrein, H., Stenseth, N.C., Smith, G.W., Steinbakk, G.H.: Density dependence in North American ducks. Ecology 86, 245–254 (2005)

    Article  Google Scholar 

  • Walker, A.M.: Some consequences of superimposed error in time series analysis. Biometrika 47, 33–43 (1960)

    MathSciNet  MATH  Google Scholar 

  • Wang, G.: On the latent state estimation of nonlinear population dynamics using Bayesian and non-Bayesian state-space models. Ecol. Model. 20, 521–528 (2007)

    Article  Google Scholar 

  • Wang, G., Hobbs, N.T., Boone, R.B., Illius, A.W., Gordon, I.J., Gross, J.E., Hamlin, K.L.: Spatial and temporal variability modify density dependence in populations of large herbivores. Ecology 87(1), 95–102 (2006)

    Article  Google Scholar 

  • Williams, C.K., Ives, A.R., Applegate, R.D.: Population dynamics across geographical ranges, time-series analyses of three small game species. Ecology 84, 2654–2667 (2003)

    Article  Google Scholar 

  • Wong, W-K., Miller, R.B.: Repeated time series analysis of ARIMA-noise models. J. Bus. Econ. Stat. 8, 243–250 (1990)

    Google Scholar 

  • Wong, W-K., Miller, R.B., Shrestha, K.: Maximum likelihood estimation of ARMA models with error processes for replicated observations. J. Appl. Stat. Sci. 10, 287–297 (2001)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I wish to express my appreciation to Brajendra Sutradhar for organizing the International Symposium in Statistics on Longitudinal Data Analysis and for serving as editor for the written contributions to this volume. I would also like to thank the members of the audience at the conference for helpful feedback and particularly thank the two referees whose comments and corrections helped improve the initial draft of this paper. Portions of this work grew out of earlier joint work with John Staudenmayer, which was supported by NSF-DMS-0306227, and with David Resendes. I am grateful to David for allowing the use of some results here from his dissertation. This paper also grew out of a seminar presented at the Center for Ecological and Evolutionary Synthesis (CEES), at the University of Oslo, in spring of 2010. I am very grateful to Nils Stenseth and CEES for support during my stay there.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Buonaccorsi .

Editor information

Editors and Affiliations

1 Appendix

Assessing bias via estimating equations. Suppose \(\mathbf{Y} \sim N(\mu \mathbf{1},\boldsymbol{\Sigma }_{Y })\). The estimating equations for the ML estimators of the parameters in \(\boldsymbol{\Sigma }_{Y }\) (say ψ 1, …, ψ J ) can be written McCulloch et al. (2008, p. 165) as \(tr(\boldsymbol{\Sigma }_{Y }^{-1}\mathbf{G}_{j}) - (\mathbf{y} -\mu \mathbf{1})^\prime\boldsymbol{\Sigma }_{Y }^{-1}\mathbf{G}_{j}\boldsymbol{\Sigma }_{Y }^{-1}(\mathbf{y} -\mu \mathbf{1}) = 0\), for j = 1 to J, where J is the number of parameters in \(\boldsymbol{\Sigma }_{Y }\) and \(\mathbf{G}_{j} = \partial \boldsymbol{\Sigma }_{Y }/\partial \psi _{j}\). Replacing y with W and taking the expected value, but denoting the arguments of the estimating equations denoted with a ∗ leads to an expected value of the jth estimating equation of \(E_{j} = tr(\boldsymbol{\Sigma }_{Y }^{{\ast}-1}\mathbf{G}_{j}^{{\ast}}) - tr(\boldsymbol{\Sigma }_{Y }^{{\ast}-1}\mathbf{G}_{j}^{{\ast}}\boldsymbol{\Sigma }_{Y }^{{\ast}-1}\boldsymbol{\Sigma }_{W})\). If we can find \(\boldsymbol{\Sigma }_{Y }^{{\ast}}\) of the same form as \(\boldsymbol{\Sigma }_{Y }\) so that each E j is 0, then the naive estimators of the parameters in \(\boldsymbol{\Sigma }_{Y }\) are consistent for the parameters in \(\boldsymbol{\Sigma }_{Y }^{{\ast}}\). Obviously E j is 0 if \(\boldsymbol{\Sigma }_{Y }^{{\ast}} = \boldsymbol{\Sigma }_{W}\) but this only provides the asymptotic bias immediately if \(\boldsymbol{\Sigma }_{W}\) is of the same form as \(\boldsymbol{\Sigma }_{Y }\). If the measurement errors are additive with constant (unconditional) variance \(\sigma _{u}^{2}\), then \(\boldsymbol{\Sigma }_{W} = \boldsymbol{\Sigma }_{Y } +\sigma _{ u}^{2}\mathbf{I}\), and we can take \(\boldsymbol{\Sigma }_{Y }^{{\ast}} = \boldsymbol{\Sigma }_{W}\). This means the naive estimator or \(\sigma _{Y }^{2}\) asymptotically estimates \(\sigma _{Y }^{2} +\sigma _{ u}^{2}\) while the naive estimators of the off-diagonal covariance terms in Y are correct and the ML estimators are asymptotically like the YW estimators.

Allowing unequal unconditional variances (as can occur with changing sampling effort) \(\boldsymbol{\Sigma }_{W} = \boldsymbol{\Sigma }_{Y } + Diag(\sigma _{u1}^{2},\ldots,\sigma _{uT}^{2})\) the question, which we have not investigated, is whether E j  → 0 as T increases if we take \(\boldsymbol{\Sigma }_{Y }^{{\ast}} = \boldsymbol{\Sigma }_{Y } +\sigma _{ u}^{2}\), where \(\sigma _{u}^{2} =\sum _{ t=1}^{T}\sigma _{ut}^{2}/T\).

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Buonaccorsi, J.P. (2013). Measurement Error in Dynamic Models. In: Sutradhar, B. (eds) ISS-2012 Proceedings Volume On Longitudinal Data Analysis Subject to Measurement Errors, Missing Values, and/or Outliers. Lecture Notes in Statistics(), vol 211. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6871-4_3

Download citation

Publish with us

Policies and ethics