Skip to main content

Role of Reactive Stroma in Prostate Cancer

  • Chapter
  • First Online:
Prostate Cancer

Part of the book series: Protein Reviews ((PRON,volume 16))

Abstract

Reactive stroma initiates at sites of epithelial damage to mediate tissue repair and restore homeostasis. Genomic instability of epithelial cells at sites of early lesions such as prostatic intraepithelial neoplasia produces a similar breach of the epithelial barrier and an initiation of reactive stroma. Reactive stromal cells, termed myofibroblasts and carcinoma-associated fibroblasts, have been shown to originate potentially from several sources including tissue fibroblasts, resident stromal stem cells, vascular cells, and marrow-derived mesenchymal stem cells. Several growth factors such as transforming growth factor-β and interleukin-8 induce reactive stroma and regulate several downstream factors expressed in reactive stroma. Reactive stroma in prostate cancer is heterogeneous, and the amount of reactive stroma is predictive of disease progression. The heterogeneity of cells in reactive stroma is possibly a key aspect of the tumor-promoting properties. It is likely that reactive stroma biology is an important aspect of tumor progression to metastasis and acquired therapeutic resistance. Targeting the tumor microenvironment reactive stroma together with direct targeting of cancer cells may represent an effective therapeutic approach for the treatment of prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315(26):1650–1659

    PubMed  CAS  Google Scholar 

  2. Roupe KM, Nybo M, Sjobring U, Alberius P, Schmidtchen A, Sorensen OE (2010) Injury is a major inducer of epidermal innate immune responses during wound healing. J Invest Dermatol 130(4):1167–1177

    PubMed  CAS  Google Scholar 

  3. Grinnell F (1994) Fibroblasts, myofibroblasts, and wound contraction. J Cell Biol 124(4):401–404

    PubMed  CAS  Google Scholar 

  4. Epstein JI (2009) Precursor lesions to prostatic adenocarcinoma. Virchows Arch 454(1):1–16

    PubMed  Google Scholar 

  5. Zynger DL, Yang X (2009) High-grade prostatic intraepithelial neoplasia of the prostate: the precursor lesion of prostate cancer. Int J Clin Exp Pathol 2(4):327–338

    PubMed  CAS  Google Scholar 

  6. Ayala AG, Ro JY (2007) Prostatic intraepithelial neoplasia: recent advances. Arch Pathol Lab Med 131(8):1257–1266

    PubMed  Google Scholar 

  7. Tuxhorn JA, Ayala GE, Smith MJ, Smith VC, Dang TD, Rowley DR (2002) Reactive stroma in human prostate cancer: induction of myofibroblast phenotype and extracellular matrix remodeling. Clin Cancer Res 8(9):2912–2923

    PubMed  CAS  Google Scholar 

  8. Ayala GE, Tuxhorn JA, Wheeler TM, Frolov A, Scardino PT, Ohori M, Wheeler M, Spitler J, Rowley DR (2003) Reactive stroma as a predictor of biochemical free recurrence in prostate cancer. Clin Cancer Res 9:4792–4801

    PubMed  CAS  Google Scholar 

  9. Ayala GE, Dai H, Powell M, Li R, Ding Y, Wheeler TM, Shine D, Kadmon D, Thompson T, Miles BJ, Ittmann MM, Rowley D (2008) Cancer-related axonogenesis and neurogenesis in prostate cancer. Clin Cancer Res 14(23):7593–7603

    PubMed  CAS  Google Scholar 

  10. Franco OE, Jiang M, Strand DW, Peacock J, Fernandez S, Jackson RS II, Revelo MP, Bhowmick NA, Hayward SW (2011) Altered TGF-beta signaling in a subpopulation of human stromal cells promotes prostatic carcinogenesis. Cancer Res 71(4):1272–1281

    PubMed  CAS  Google Scholar 

  11. Kiskowski MA, Jackson RS II, Banerjee J, Li X, Kang M, Iturregui JM, Franco OE, Hayward SW, Bhowmick NA (2011) Role for stromal heterogeneity in prostate tumorigenesis. Cancer Res 71(10):3459–3470

    PubMed  CAS  Google Scholar 

  12. Franco OE, Shaw AK, Strand DW, Hayward SW (2010) Cancer associated fibroblasts in cancer pathogenesis. Semin Cell Dev Biol 21(1):33–39

    PubMed  CAS  Google Scholar 

  13. Josson S, Matsuoka Y, Chung LW, Zhau HE, Wang R (2010) Tumor-stroma co-evolution in prostate cancer progression and metastasis. Semin Cell Dev Biol 21(1):26–32

    PubMed  CAS  Google Scholar 

  14. Tuxhorn JA, Ayala GE, Rowley DR (2001) Reactive stroma in prostate cancer progression. J Urol 166(6):2472–2483

    PubMed  CAS  Google Scholar 

  15. Rowley DR (1998) What might a stromal response mean to prostate cancer progression? Cancer Metastasis Rev 17(4):411–419

    PubMed  CAS  Google Scholar 

  16. Strand DW, Hayward SW (2010) Modeling stromal-epithelial interactions in disease progression. Discov Med 9(49):504–511

    PubMed  Google Scholar 

  17. Ishii G, Hashimoto H, Asada K, Ito T, Hoshino A, Fujii S, Kojima M, Kuwata T, Harigaya K, Nagai K, Ushijima T, Ochiai A (2010) Fibroblasts associated with cancer cells keep enhanced migration activity after separation from cancer cells: a novel character of tumor educated fibroblasts. Int J Oncol 37(2):317–325

    PubMed  CAS  Google Scholar 

  18. Ao M, Franco OE, Park D, Raman D, Williams K, Hayward SW (2007) Cross-talk between paracrine-acting cytokine and chemokine pathways promotes malignancy in benign human prostatic epithelium. Cancer Res 67(9):4244–4253

    PubMed  CAS  Google Scholar 

  19. Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR (1999) Carcinoma-­associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 59(19):5002–5011

    PubMed  CAS  Google Scholar 

  20. Ao M, Williams K, Bhowmick NA, Hayward SW (2006) Transforming growth factor-beta promotes invasion in tumorigenic but not in nontumorigenic human prostatic epithelial cells. Cancer Res 66(16):8007–8016

    PubMed  CAS  Google Scholar 

  21. Tuxhorn JA, McAlhany SJ, Dang TD, Ayala GE, Rowley DR (2002) Stromal cells promote angiogenesis and growth of human prostate tumors in a differential reactive stroma (DRS) xenograft model. Cancer Res 62(11):3298–3307

    PubMed  CAS  Google Scholar 

  22. Tuxhorn JA, McAlhany SJ, Yang F, Dang TD, Rowley DR (2002) Inhibition of TGF-β activity decreases angiogenesis in a human prostate cancer reactive stroma xenograft model. Cancer Res 62:6021–6025

    PubMed  CAS  Google Scholar 

  23. Yang F, Tuxhorn JA, Ressler SJ, McAlhany SJ, Dang TD, Rowley DR (2005) Stromal expression of connective tissue growth factor promotes angiogenesis and prostate cancer tumorigenesis. Cancer Res 65(19):8887–8895

    PubMed  CAS  Google Scholar 

  24. Yanagisawa N, Li R, Rowley D, Liu H, Kadmon D, Miles BJ, Wheeler TM, Ayala GE (2007) Stromogenic prostatic carcinoma pattern (carcinomas with reactive stromal grade 3) in needle biopsies predicts biochemical recurrence-free survival in patients after radical prostatectomy. Hum Pathol 38(11):1611–1620

    PubMed  CAS  Google Scholar 

  25. Tomas D, Spajic B, Milosevic M, Demirovic A, Marusic Z, Kruslin B (2010) Intensity of stromal changes predicts biochemical recurrence-free survival in prostatic carcinoma. Scand J Urol Nephrol 44(5):284–290

    PubMed  Google Scholar 

  26. Escaff S, Fernandez JM, Gonzalez LO, Suarez A, Gonzalez-Reyes S, Gonzalez JM, Vizoso FJ (2011) Collagenase-3 expression by tumor cells and gelatinase B expression by stromal fibroblast-like cells are associated with biochemical recurrence after radical prostatectomy in patients with prostate cancer. World J Urol 29(5):657–663

    PubMed  CAS  Google Scholar 

  27. Ayala GE, Muezzinoglu B, Hammerich KH, Frolov A, Liu H, Scardino PT, Li R, Sayeeduddin M, Ittmann MM, Kadmon D, Miles BJ, Wheeler TM, Rowley DR (2011) Determining prostate cancer-specific death through quantification of stromogenic carcinoma area in prostatectomy specimens. Am J Pathol 178(1):79–87

    PubMed  Google Scholar 

  28. Dakhova O, Ozen M, Creighton CJ, Li R, Ayala G, Rowley D, Ittmann M (2009) Global gene expression analysis of reactive stroma in prostate cancer. Clin Cancer Res 15(12):3979–3989

    PubMed  CAS  Google Scholar 

  29. Orr B, Riddick AC, Stewart GD, Anderson RA, Franco OE, Hayward SW, Thomson AA (2012) Identification of stromally expressed molecules in the prostate by tag-profiling of cancer-associated fibroblasts, normal fibroblasts and fetal prostate. Oncogene 31(9):1130–1142

    PubMed  CAS  Google Scholar 

  30. Furusato B, Tsunoda T, Shaheduzzaman S, Nau ME, Vahey M, Petrovics G, McLeod DG, Naito S, Shirasawa S, Srivastava S, Sesterhenn IA (2010) Osteoblast-specific factor 2 expression in prostate cancer-associated stroma: identification through microarray technology. Urology 75(4):768–772

    PubMed  Google Scholar 

  31. Sharma M, Beck AH, Webster JA, Espinosa I, Montgomery K, Varma S, van de Rijn M, Jensen KC, West RB (2010) Analysis of stromal signatures in the tumor microenvironment of ductal carcinoma in situ. Breast Cancer Res Treat 123(2):397–404

    PubMed  CAS  Google Scholar 

  32. Casey T, Bond J, Tighe S, Hunter T, Lintault L, Patel O, Eneman J, Crocker A, White J, Tessitore J, Stanley M, Harlow S, Weaver D, Muss H, Plaut K (2009) Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer. Breast Cancer Res Treat 114(1):47–62

    PubMed  CAS  Google Scholar 

  33. Farmer P, Bonnefoi H, Anderle P, Cameron D, Wirapati P, Becette V, Andre S, Piccart M, Campone M, Brain E, Macgrogan G, Petit T, Jassem J, Bibeau F, Blot E, Bogaerts J, Aguet M, Bergh J, Iggo R, Delorenzi M (2009) A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med 15(1):68–74

    PubMed  CAS  Google Scholar 

  34. Gao Q, Wang XY, Qiu SJ, Zhou J, Shi YH, Zhang BH, Fan J (2011) Tumor stroma reaction-­related gene signature predicts clinical outcome in human hepatocellular carcinoma. Cancer Sci 102(8):1522–1531

    PubMed  CAS  Google Scholar 

  35. Albini A, Mirisola V, Pfeffer U (2008) Metastasis signatures: genes regulating tumor-­microenvironment interactions predict metastatic behavior. Cancer Metastasis Rev 27(1):75–83

    PubMed  CAS  Google Scholar 

  36. Musumeci M, Coppola V, Addario A, Patrizii M, Maugeri-Sacca M, Memeo L, Colarossi C, Francescangeli F, Biffoni M, Collura D, Giacobbe A, D’Urso L, Falchi M, Venneri MA, Muto G, De Maria R, Bonci D (2011) Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer. Oncogene 30(41):4231–4242

    PubMed  CAS  Google Scholar 

  37. Rodriguez-Canales J, Hanson JC, Tangrea MA, Erickson HS, Albert PS, Wallis BS, Richardson AM, Pinto PA, Linehan WM, Gillespie JW, Merino MJ, Libutti SK, Woodson KG, Emmert-Buck MR, Chuaqui RF (2007) Identification of a unique epigenetic sub-­microenvironment in prostate cancer. J Pathol 211(4):410–419

    PubMed  CAS  Google Scholar 

  38. Planche A, Bacac M, Provero P, Fusco C, Delorenzi M, Stehle JC, Stamenkovic I (2011) Identification of prognostic molecular features in the reactive stroma of human breast and prostate cancer. PLoS One 6(5):e18640

    PubMed  CAS  Google Scholar 

  39. San Francisco IF, DeWolf WC, Peehl DM, Olumi AF (2004) Expression of transforming growth factor-beta 1 and growth in soft agar differentiate prostate carcinoma-associated fibroblasts from normal prostate fibroblasts. Int J Cancer 112(2):213–218

    PubMed  CAS  Google Scholar 

  40. Xing F, Saidou J, Watabe K (2010) Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci 15:166–179

    PubMed  CAS  Google Scholar 

  41. Kidd S, Spaeth E, Watson K, Burks J, Lu H, Klopp A, Andreeff M, Marini FC (2012) Origins of the tumor microenvironment: quantitative assessment of adipose-derived and bone marrow-­derived stroma. PLoS One 7(2):e30563

    PubMed  CAS  Google Scholar 

  42. Paunescu V, Bojin FM, Tatu CA, Gavriliuc OI, Rosca A, Gruia AT, Tanasie G, Bunu C, Crisnic D, Gherghiceanu M, Tatu FR, Tatu CS, Vermesan S (2011) Tumor-associated fibroblasts and mesenchymal stem cells: more similarities than differences. J Cell Mol Med 15(3):635–646

    PubMed  CAS  Google Scholar 

  43. Dulauroy S, Di Carlo SE, Langa F, Eberl G, Peduto L (2012) Lineage tracing and genetic ablation of ADAM12(+) perivascular cells identify a major source of profibrotic cells during acute tissue injury. Nat Med. 2012 Jul 29. doi:1038/nm.2848 [Epub ahead of print]

    Google Scholar 

  44. Santamaria-Martinez A, Barquinero J, Barbosa-Desongles A, Hurtado A, Pinos T, Seoane J, Poupon MF, Morote J, Reventos J, Munell F (2009) Identification of multipotent mesenchymal stromal cells in the reactive stroma of a prostate cancer xenograft by side population analysis. Exp Cell Res 315(17):3004–3013

    PubMed  CAS  Google Scholar 

  45. Wang H, Cao F, De A, Cao Y, Contag C, Gambhir SS, Wu JC, Chen X (2009) Trafficking mesenchymal stem cell engraftment and differentiation in tumor-bearing mice by bioluminescence imaging. Stem Cells 27(7):1548–1558

    PubMed  CAS  Google Scholar 

  46. Menon LG, Picinich S, Koneru R, Gao H, Lin SY, Koneru M, Mayer-Kuckuk P, Glod J, Banerjee D (2007) Differential gene expression associated with migration of mesenchymal stem cells to conditioned medium from tumor cells or bone marrow cells. Stem Cells 25(2):520–528

    PubMed  CAS  Google Scholar 

  47. Liu X, Duan B, Cheng Z, Jia X, Mao L, Fu H, Che Y, Ou L, Liu L, Kong D (2011) SDF-1/CXCR4 axis modulates bone marrow mesenchymal stem cell apoptosis, migration and cytokine secretion. Protein Cell 2(10):845–854

    PubMed  CAS  Google Scholar 

  48. Mishra PJ, Humeniuk R, Medina DJ, Alexe G, Mesirov JP, Ganesan S, Glod JW, Banerjee D (2008) Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res 68(11):4331–4339

    PubMed  CAS  Google Scholar 

  49. Quante M, Tu SP, Tomita H, Gonda T, Wang SS, Takashi S, Baik GH, Shibata W, Diprete B, Betz KS, Friedman R, Varro A, Tycko B, Wang TC (2011) Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 19(2):257–272

    PubMed  CAS  Google Scholar 

  50. Heo SC, Lee KO, Shin SH, Kwon YW, Kim YM, Lee CH, Kim YD, Lee MK, Yoon MS, Kim JH (2011) Periostin mediates human adipose tissue-derived mesenchymal stem cell-­stimulated tumor growth in a xenograft lung adenocarcinoma model. Biochim Biophys Acta 1813(12):2061–2070

    PubMed  CAS  Google Scholar 

  51. Jun D, Garat C, West J, Thorn N, Chow K, Cleaver T, Sullivan T, Torchia EC, Childs C, Shade T, Tadjali M, Lara A, Nozik-Grayck E, Malkoski S, Sorrentino B, Meyrick B, Klemm D, Rojas M, Wagner DH Jr, Majka SM (2011) The pathology of bleomycin-induced fibrosis is associated with loss of resident lung mesenchymal stem cells that regulate effector T-cell proliferation. Stem Cells 29(4):725–735

    PubMed  Google Scholar 

  52. Bianchi G, Borgonovo G, Pistoia V, Raffaghello L (2011) Immunosuppressive cells and tumour microenvironment: focus on mesenchymal stem cells and myeloid derived suppressor cells. Histol Histopathol 26(7):941–951

    PubMed  CAS  Google Scholar 

  53. Bergfeld SA, DeClerck YA (2010) Bone marrow-derived mesenchymal stem cells and the tumor microenvironment. Cancer Metastasis Rev 29(2):249–261

    PubMed  Google Scholar 

  54. Kim J, Hematti P (2009) Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol 37(12):1445–1453

    PubMed  CAS  Google Scholar 

  55. Zhang B, Liu R, Shi D, Liu X, Chen Y, Dou X, Zhu X, Lu C, Liang W, Liao L, Zenke M, Zhao RC (2009) Mesenchymal stem cells induce mature dendritic cells into a novel Jagged-­2-dependent regulatory dendritic cell population. Blood 113(1):46–57

    PubMed  CAS  Google Scholar 

  56. Chiesa S, Morbelli S, Morando S, Massollo M, Marini C, Bertoni A, Frassoni F, Bartolome ST, Sambuceti G, Traggiai E, Uccelli A (2011) Mesenchymal stem cells impair in vivo T-cell priming by dendritic cells. Proc Natl Acad Sci USA 108(42):17384–17389

    PubMed  CAS  Google Scholar 

  57. Patel SA, Meyer JR, Greco SJ, Corcoran KE, Bryan M, Rameshwar P (2010) Mesenchymal stem cells protect breast cancer cells through regulatory T cells: role of mesenchymal stem cell-derived TGF-beta. J Immunol 184(10):5885–5894

    PubMed  CAS  Google Scholar 

  58. Duffy MM, Ritter T, Ceredig R, Griffin MD (2011) Mesenchymal stem cell effects on T-cell effector pathways. Stem Cell Res Ther 2(4):34

    PubMed  CAS  Google Scholar 

  59. Klopp AH, Spaeth EL, Dembinski JL, Woodward WA, Munshi A, Meyn RE, Cox JD, Andreeff M, Marini FC (2007) Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res 67(24):11687–11695

    PubMed  CAS  Google Scholar 

  60. Kang N, Yaqoob U, Geng Z, Bloch K, Liu C, Gomez T, Billadeau D, Shah V (2010) Focal adhesion assembly in myofibroblasts fosters a microenvironment that promotes tumor growth. Am J Pathol 177(4):1888–1900

    PubMed  CAS  Google Scholar 

  61. Cotran RS, Kumar V, Collins T (eds) (1999) Robbins pathologic basis of disease, 6th edn. W.B. Saunders Company, Philadelphia, PA

    Google Scholar 

  62. Kokudo T, Suzuki Y, Yoshimatsu Y, Yamazaki T, Watabe T, Miyazono K (2008) Snail is required for TGFbeta-induced endothelial-mesenchymal transition of embryonic stem cell-­derived endothelial cells. J Cell Sci 121(Pt 20):3317–3324

    PubMed  CAS  Google Scholar 

  63. Radisky DC, Kenny PA, Bissell MJ (2007) Fibrosis and cancer: do myofibroblasts come also from epithelial cells via EMT? J Cell Biochem 101(4):830–839

    PubMed  CAS  Google Scholar 

  64. Kalluri R (2009) EMT: when epithelial cells decide to become mesenchymal-like cells. J Clin Invest 119(6):1417–1419

    PubMed  CAS  Google Scholar 

  65. Flier SN, Tanjore H, Kokkotou EG, Sugimoto H, Zeisberg M, Kalluri R (2010) Identification of epithelial to mesenchymal transition as a novel source of fibroblasts in intestinal fibrosis. J Biol Chem 285(26):20202–20212

    PubMed  CAS  Google Scholar 

  66. Bellini A, Mattoli S (2007) The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses. Lab Invest 87(9):858–870

    PubMed  CAS  Google Scholar 

  67. Yang F, Strand DW, Rowley DR (2008) Fibroblast growth factor-2 mediates transforming growth factor-beta action in prostate cancer reactive stroma. Oncogene 27(4):450–459

    PubMed  CAS  Google Scholar 

  68. Verona EV, Elkahloun AG, Yang J, Bandyopadhyay A, Yeh IT, Sun LZ (2007) Transforming growth factor-beta signaling in prostate stromal cells supports prostate carcinoma growth by up-regulating stromal genes related to tissue remodeling. Cancer Res 67(12):5737–5746

    PubMed  CAS  Google Scholar 

  69. Untergasser G, Gander R, Lilg C, Lepperdinger G, Plas E, Berger P (2005) Profiling molecular targets of TGF-beta1 in prostate fibroblast-to-myofibroblast transdifferentiation. Mech Ageing Dev 126(1):59–69

    PubMed  CAS  Google Scholar 

  70. Stover DG, Bierie B, Moses HL (2007) A delicate balance: TGF-beta and the tumor microenvironment. J Cell Biochem 101(4):851–861

    PubMed  CAS  Google Scholar 

  71. Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S, Washington MK, Neilson EG, Moses HL (2004) TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303(5659):848–851

    PubMed  CAS  Google Scholar 

  72. Cheng N, Bhowmick NA, Chytil A, Gorksa AE, Brown KA, Muraoka R, Arteaga CL, Neilson EG, Hayward SW, Moses HL (2005) Loss of TGF-beta type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-alpha-, MSP- and HGF-mediated signaling networks. Oncogene 24(32):5053–5068

    PubMed  CAS  Google Scholar 

  73. Mazzocca A, Fransvea E, Dituri F, Lupo L, Antonaci S, Giannelli G (2010) Down-regulation of connective tissue growth factor by inhibition of transforming growth factor beta blocks the tumor-stroma cross-talk and tumor progression in hepatocellular carcinoma. Hepatology 51(2):523–534

    PubMed  CAS  Google Scholar 

  74. Uehara H, Troncoso P, Johnston D, Bucana CD, Dinney C, Dong Z, Fidler IJ, Pettaway CA (2005) Expression of interleukin-8 gene in radical prostatectomy specimens is associated with advanced pathologic stage. Prostate 64(1):40–49

    PubMed  CAS  Google Scholar 

  75. Schauer IG, Ressler SJ, Rowley DR (2009) Keratinocyte-derived chemokine induces prostate epithelial hyperplasia and reactive stroma in a novel transgenic mouse model. Prostate 69:373–384

    PubMed  CAS  Google Scholar 

  76. Schauer IG, Ressler SJ, Tuxhorn JA, Dang TD, Rowley DR (2008) Elevated epithelial expression of interleukin-8 correlates with myofibroblast reactive stroma in benign prostatic hyperplasia. Urology 72(1):205–213

    PubMed  Google Scholar 

  77. Schauer IG, Rowley DR (2011) The functional role of reactive stroma in benign prostatic hyperplasia. Differentiation 82(4–5):200–210

    PubMed  CAS  Google Scholar 

  78. Augsten M, Hagglof C, Olsson E, Stolz C, Tsagozis P, Levchenko T, Frederick MJ, Borg A, Micke P, Egevad L, Ostman A (2009) CXCL14 is an autocrine growth factor for fibroblasts and acts as a multi-modal stimulator of prostate tumor growth. Proc Natl Acad Sci USA 106(9):3414–3419

    PubMed  CAS  Google Scholar 

  79. Hugo HJ, Lebret S, Tomaskovic-Crook E, Ahmed N, Blick T, Newgreen DF, Thompson EW, Ackland ML (2012) Contribution of Fibroblast and Mast Cell (Afferent) and Tumor (Efferent) IL-6 Effects within the Tumor Microenvironment. Cancer Microenviron. 2012 Feb 8. doi: 10.1007/s12307-012-0098-7 [Epub ahead of print]

    Google Scholar 

  80. Giannoni E, Bianchini F, Masieri L, Serni S, Torre E, Calorini L, Chiarugi P (2010) Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial-­mesenchymal transition and cancer stemness. Cancer Res 70(17):6945–6956

    PubMed  CAS  Google Scholar 

  81. Mishra P, Banerjee D, Ben-Baruch A (2011) Chemokines at the crossroads of tumor-­fibroblast interactions that promote malignancy. J Leukoc Biol 89(1):31–39

    PubMed  CAS  Google Scholar 

  82. Orimo A, Weinberg RA (2006) Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 5(15):1597–1601

    PubMed  CAS  Google Scholar 

  83. Aghi M, Cohen KS, Klein RJ, Scadden DT, Chiocca EA (2006) Tumor stromal-derived factor-­1 recruits vascular progenitors to mitotic neovasculature, where microenvironment influences their differentiated phenotypes. Cancer Res 66(18):9054–9064

    PubMed  CAS  Google Scholar 

  84. Burger JA, Kipps TJ (2006) CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 107(5):1761–1767

    PubMed  CAS  Google Scholar 

  85. Katoh H, Hosono K, Ito Y, Suzuki T, Ogawa Y, Kubo H, Kamata H, Mishima T, Tamaki H, Sakagami H, Sugimoto Y, Narumiya S, Watanabe M, Majima M (2010) COX-2 and prostaglandin EP3/EP4 signaling regulate the tumor stromal proangiogenic microenvironment via CXCL12-CXCR4 chemokine systems. Am J Pathol 176(3):1469–1483

    PubMed  CAS  Google Scholar 

  86. Grugan KD, Miller CG, Yao Y, Michaylira CZ, Ohashi S, Klein-Szanto AJ, Diehl JA, Herlyn M, Han M, Nakagawa H, Rustgi AK (2010) Fibroblast-secreted hepatocyte growth factor plays a functional role in esophageal squamous cell carcinoma invasion. Proc Natl Acad Sci USA 107(24):11026–11031

    PubMed  CAS  Google Scholar 

  87. Harris LG, Samant RS, Shevde LA (2011) Hedgehog signaling: networking to nurture a promalignant tumor microenvironment. Mol Cancer Res 9(9):1165–1174

    PubMed  CAS  Google Scholar 

  88. Heller E, Hurchla MA, Xiang J, Su X, Chen S, Schneider J, Joeng KS, Vidal M, Goldberg L, Deng H, Hornick MC, Prior JL, Piwnica-Worms D, Long F, Cagan R, Weilbaecher KN (2012) Hedgehog signaling inhibition blocks growth of resistant tumors through effects on tumor microenvironment. Cancer Res 72(4):897–907

    PubMed  CAS  Google Scholar 

  89. Chen W, Tang T, Eastham-Anderson J, Dunlap D, Alicke B, Nannini M, Gould S, Yauch R, Modrusan Z, DuPree KJ, Darbonne WC, Plowman G, de Sauvage FJ, Callahan CA (2011) Canonical hedgehog signaling augments tumor angiogenesis by induction of VEGF-A in stromal perivascular cells. Proc Natl Acad Sci USA 108(23):9589–9594

    PubMed  CAS  Google Scholar 

  90. Shaw A, Gipp J, Bushman W (2009) The Sonic Hedgehog pathway stimulates prostate tumor growth by paracrine signaling and recapitulates embryonic gene expression in tumor myofibroblasts. Oncogene 28(50):4480–4490

    PubMed  CAS  Google Scholar 

  91. Tomas D, Ulamec M, Hudolin T, Bulimbasic S, Belicza M, Kruslin B (2006) Myofibroblastic stromal reaction and expression of tenascin-C and laminin in prostate adenocarcinoma. Prostate Cancer Prostatic Dis 9(4):414–419

    PubMed  CAS  Google Scholar 

  92. Goh FG, Piccinini AM, Krausgruber T, Udalova IA, Midwood KS (2010) Transcriptional regulation of the endogenous danger signal tenascin-C: a novel autocrine loop in inflammation. J Immunol 184(5):2655–2662

    PubMed  CAS  Google Scholar 

  93. Midwood K, Sacre S, Piccinini AM, Inglis J, Trebaul A, Chan E, Drexler S, Sofat N, Kashiwagi M, Orend G, Brennan F, Foxwell B (2009) Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat Med 15(7):774–780

    PubMed  CAS  Google Scholar 

  94. Carey WA, Taylor GD, Dean WB, Bristow JD (2010) Tenascin-C deficiency attenuates TGF-­ss-mediated fibrosis following murine lung injury. Am J Physiol Lung Cell Mol Physiol 299(6):L785–L793

    PubMed  CAS  Google Scholar 

  95. El-Karef A, Yoshida T, Gabazza EC, Nishioka T, Inada H, Sakakura T, Imanaka-Yoshida K (2007) Deficiency of tenascin-C attenuates liver fibrosis in immune-mediated chronic hepatitis in mice. J Pathol 211(1):86–94

    PubMed  CAS  Google Scholar 

  96. Tamaoki M, Imanaka-Yoshida K, Yokoyama K, Nishioka T, Inada H, Hiroe M, Sakakura T, Yoshida T (2005) Tenascin-C regulates recruitment of myofibroblasts during tissue repair after myocardial injury. Am J Pathol 167(1):71–80

    PubMed  CAS  Google Scholar 

  97. Alves TR, da Fonseca AC, Nunes SS, da Silva AO, Dubois LG, Faria J, Kahn SA, Viana NB, Marcondes J, Legrand C, Moura-Neto V, Morandi V (2011) Tenascin-C in the extracellular matrix promotes the selection of highly proliferative and tubulogenesis-defective endothelial cells. Exp Cell Res 317(15):2073–2085

    PubMed  CAS  Google Scholar 

  98. Ballard VL, Sharma A, Duignan I, Holm JM, Chin A, Choi R, Hajjar KA, Wong SC, Edelberg JM (2006) Vascular tenascin-C regulates cardiac endothelial phenotype and neovascularization. FASEB J 20(6):717–719

    PubMed  CAS  Google Scholar 

  99. Guntinas-Lichius O, Angelov DN, Morellini F, Lenzen M, Skouras E, Schachner M, Irintchev A (2005) Opposite impacts of tenascin-C and tenascin-R deficiency in mice on the functional outcome of facial nerve repair. Eur J Neurosci 22(9):2171–2179

    PubMed  Google Scholar 

  100. Oskarsson T, Acharyya S, Zhang XH, Vanharanta S, Tavazoie SF, Morris PG, Downey RJ, Manova-Todorova K, Brogi E, Massague J (2011) Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med 17(7):867–874

    PubMed  CAS  Google Scholar 

  101. O’Connell JT, Sugimoto H, Cooke VG, MacDonald BA, Mehta AI, LeBleu VS, Dewar R, Rocha RM, Brentani RR, Resnick MB, Neilson EG, Zeisberg M, Kalluri R (2011) VEGF-A and Tenascin-C produced by S100A4+ stromal cells are important for metastatic colonization. Proc Natl Acad Sci USA 108(38):16002–16007

    PubMed  Google Scholar 

  102. Clark CJ, Sage EH (2008) A prototypic matricellular protein in the tumor microenvironment–where there’s SPARC, there’s fire. J Cell Biochem 104(3):721–732

    PubMed  CAS  Google Scholar 

  103. Larsen M, Ressler SJ, Lu B, Gerdes MJ, McBride L, Dang TD, Rowley DR (1998) Molecular cloning and expression of ps20 growth inhibitor. A novel WAP- type “four-disulfide core” domain protein expressed in smooth muscle. J Biol Chem 273(8):4574–4584

    PubMed  CAS  Google Scholar 

  104. McAlhany SJ, Ayala GE, Frolov A, Ressler SJ, Wheeler TM, Watson JE, Collins C, Rowley DR (2004) Decreased stromal expression and increased epithelial expression of WFDC1/ps20 in prostate cancer is associated with reduced recurrence-free survival. Prostate 61(2):182–191

    PubMed  CAS  Google Scholar 

  105. McAlhany SJ, Ressler SJ, Larsen M, Tuxhorn JA, Yang F, Dang TD, Rowley DR (2003) Promotion of angiogenesis by ps20 in the differential reactive stroma prostate cancer xenograft model. Cancer Res 63(18):5859–5865

    PubMed  CAS  Google Scholar 

  106. Madar S, Brosh R, Buganim Y, Ezra O, Goldstein I, Solomon H, Kogan I, Goldfinger N, Klocker H, Rotter V (2009) Modulated expression of WFDC1 during carcinogenesis and cellular senescence. Carcinogenesis 30(1):20–27

    PubMed  CAS  Google Scholar 

  107. Chlenski A, Guerrero LJ, Yang Q, Tian Y, Peddinti R, Salwen HR, Cohn SL (2007) SPARC enhances tumor stroma formation and prevents fibroblast activation. Oncogene 26(31):4513–4522

    PubMed  CAS  Google Scholar 

  108. Hattori N, Carrino DA, Lauer ME, Vasanji A, Wylie JD, Nelson CM, Apte SS (2011) Pericellular versican regulates the fibroblast-myofibroblast transition: a role for ADAMTS5 protease-mediated proteolysis. J Biol Chem 286(39):34298–34310

    PubMed  CAS  Google Scholar 

  109. Ricciardelli C, Russell DL, Ween MP, Mayne K, Suwiwat S, Byers S, Marshall VR, Tilley WD, Horsfall DJ (2007) Formation of hyaluronan- and versican-rich pericellular matrix by prostate cancer cells promotes cell motility. J Biol Chem 282(14):10814–10825

    PubMed  CAS  Google Scholar 

  110. Simpson RM, Meran S, Thomas D, Stephens P, Bowen T, Steadman R, Phillips A (2009) Age-related changes in pericellular hyaluronan organization leads to impaired dermal fibroblast to myofibroblast differentiation. Am J Pathol 175(5):1915–1928

    PubMed  CAS  Google Scholar 

  111. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141(1):52–67

    PubMed  CAS  Google Scholar 

  112. Lu C, Li XY, Hu Y, Rowe RG, Weiss SJ (2010) MT1-MMP controls human mesenchymal stem cell trafficking and differentiation. Blood 115(2):221–229

    PubMed  CAS  Google Scholar 

  113. Gonda TA, Tu S, Wang TC (2009) Chronic inflammation, the tumor microenvironment and carcinogenesis. Cell Cycle 8(13):2005–2013

    PubMed  CAS  Google Scholar 

  114. Hu M, Peluffo G, Chen H, Gelman R, Schnitt S, Polyak K (2009) Role of COX-2 in epithelial-­stromal cell interactions and progression of ductal carcinoma in situ of the breast. Proc Natl Acad Sci USA 106(9):3372–3377

    PubMed  CAS  Google Scholar 

  115. Park SW, Kim HS, Choi MS, Jeong WJ, Heo DS, Kim KH, Sung MW (2011) The effects of the stromal cell-derived cyclooxygenase-2 metabolite prostaglandin E2 on the proliferation of colon cancer cells. J Pharmacol Exp Ther 336(2):516–523

    PubMed  CAS  Google Scholar 

  116. Toullec A, Gerald D, Despouy G, Bourachot B, Cardon M, Lefort S, Richardson M, Rigaill G, Parrini MC, Lucchesi C, Bellanger D, Stern MH, Dubois T, Sastre-Garau X, Delattre O, Vincent-Salomon A, Mechta-Grigoriou F (2010) Oxidative stress promotes myofibroblast differentiation and tumour spreading. EMBO Mol Med 2(6):211–230

    PubMed  CAS  Google Scholar 

  117. Sampson N, Koziel R, Zenzmaier C, Bubendorf L, Plas E, Jansen-Durr P, Berger P (2011) ROS signaling by NOX4 drives fibroblast-to-myofibroblast differentiation in the diseased prostatic stroma. Mol Endocrinol 25(3):503–515

    PubMed  CAS  Google Scholar 

  118. Ono M (2008) Molecular links between tumor angiogenesis and inflammation: inflammatory stimuli of macrophages and cancer cells as targets for therapeutic strategy. Cancer Sci 99(8):1501–1506

    PubMed  CAS  Google Scholar 

  119. Chang DZ, Ma Y, Ji B, Wang H, Deng D, Liu Y, Abbruzzese JL, Liu YJ, Logsdon CD, Hwu P (2011) Mast cells in tumor microenvironment promotes the in vivo growth of pancreatic ductal adenocarcinoma. Clin Cancer Res 17(22):7015–7023

    PubMed  CAS  Google Scholar 

  120. Huang B, Lei Z, Zhang GM, Li D, Song C, Li B, Liu Y, Yuan Y, Unkeless J, Xiong H, Feng ZH (2008) SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood 112(4):1269–1279

    PubMed  CAS  Google Scholar 

  121. Yang Z, Zhang B, Li D, Lv M, Huang C, Shen GX, Huang B (2010) Mast cells mobilize myeloid-derived suppressor cells and Treg cells in tumor microenvironment via IL-17 pathway in murine hepatocarcinoma model. PLoS One 5(1):e8922

    PubMed  Google Scholar 

  122. Tanner MJ, Welliver RC Jr, Chen M, Shtutman M, Godoy A, Smith G, Mian BM, Buttyan R (2011) Effects of androgen receptor and androgen on gene expression in prostate stromal fibroblasts and paracrine signaling to prostate cancer cells. PLoS One 6(1):e16027

    PubMed  CAS  Google Scholar 

  123. Yu S, Yeh CR, Niu Y, Chang HC, Tsai YC, Moses HL, Shyr CR, Chang C, Yeh S (2012) Altered prostate epithelial development in mice lacking the androgen receptor in stromal fibroblasts. Prostate 72(4):437–449

    PubMed  CAS  Google Scholar 

  124. Joyce JA (2005) Therapeutic targeting of the tumor microenvironment. Cancer Cell 7(6):513–520

    PubMed  CAS  Google Scholar 

  125. Loberg RD, Gayed BA, Olson KB, Pienta KJ (2005) A paradigm for the treatment of prostate cancer bone metastases based on an understanding of tumor cell-microenvironment interactions. J Cell Biochem 96(3):439–446

    PubMed  CAS  Google Scholar 

  126. Swartz MA, Iida N, Roberts EW, Sangaletti S, Wong MH, Yull FE, Coussens LM, Declerck YA (2012) Tumor microenvironment complexity: emerging roles in cancer therapy. Cancer Res 72(10):2473–2480

    PubMed  CAS  Google Scholar 

  127. Karlou M, Tzelepi V, Efstathiou E (2010) Therapeutic targeting of the prostate cancer microenvironment. Nat Rev Urol 7(9):494–509

    PubMed  Google Scholar 

  128. Liao D, Liu Z, Wrasidlo WJ, Luo Y, Nguyen G, Chen T, Xiang R, Reisfeld RA (2011) Targeted therapeutic remodeling of the tumor microenvironment improves an HER-2 DNA vaccine and prevents recurrence in a murine breast cancer model. Cancer Res 71(17):5688–5696

    PubMed  CAS  Google Scholar 

  129. Lee J, Fassnacht M, Nair S, Boczkowski D, Gilboa E (2005) Tumor immunotherapy targeting fibroblast activation protein, a product expressed in tumor-associated fibroblasts. Cancer Res 65(23):11156–11163

    PubMed  CAS  Google Scholar 

  130. Santos AM, Jung J, Aziz N, Kissil JL, Pure E (2009) Targeting fibroblast activation protein inhibits tumor stromagenesis and growth in mice. J Clin Invest 119(12):3613–3625

    PubMed  CAS  Google Scholar 

  131. Wen Y, Wang CT, Ma TT, Li ZY, Zhou LN, Mu B, Leng F, Shi HS, Li YO, Wei YQ (2010) Immunotherapy targeting fibroblast activation protein inhibits tumor growth and increases survival in a murine colon cancer model. Cancer Sci 101(11):2325–2332

    PubMed  CAS  Google Scholar 

  132. Lebeau AM, Brennen WN, Aggarwal S, Denmeade SR (2009) Targeting the cancer stroma with a fibroblast activation protein-activated promelittin protoxin. Mol Cancer Ther 8(5):1378–1386

    PubMed  CAS  Google Scholar 

  133. Karp JM, Leng Teo GS (2009) Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4(3):206–216

    PubMed  CAS  Google Scholar 

  134. Loebinger MR, Eddaoudi A, Davies D, Janes SM (2009) Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res 69(10):4134–4142

    PubMed  CAS  Google Scholar 

  135. Loebinger MR, Sage EK, Davies D, Janes SM (2010) TRAIL-expressing mesenchymal stem cells kill the putative cancer stem cell population. Br J Cancer 103(11):1692–1697

    PubMed  CAS  Google Scholar 

  136. Mohr A, Albarenque SM, Deedigan L, Yu R, Reidy M, Fulda S, Zwacka RM (2010) Targeting of XIAP combined with systemic mesenchymal stem cell-mediated delivery of sTRAIL ligand inhibits metastatic growth of pancreatic carcinoma cells. Stem Cells 28(11):2109–2120

    PubMed  CAS  Google Scholar 

  137. Bussard KM, Venzon DJ, Mastro AM (2010) Osteoblasts are a major source of inflammatory cytokines in the tumor microenvironment of bone metastatic breast cancer. J Cell Biochem 111(5):1138–1148

    PubMed  CAS  Google Scholar 

  138. Chantrain CF, Feron O, Marbaix E, DeClerck YA (2008) Bone marrow microenvironment and tumor progression. Cancer Microenviron 1(1):23–35

    PubMed  Google Scholar 

  139. Morrissey C, Vessella RL (2007) The role of tumor microenvironment in prostate cancer bone metastasis. J Cell Biochem 101(4):873–886

    PubMed  CAS  Google Scholar 

  140. Fritz V, Brondello JM, Gordeladze JO, Reseland JE, Bony C, Yssel H, Noel D, Jorgensen C (2011) Bone-metastatic prostate carcinoma favors mesenchymal stem cell differentiation toward osteoblasts and reduces their osteoclastogenic potential. J Cell Biochem 112(11):3234–3245

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Rowley Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Mayo Clinic

About this chapter

Cite this chapter

Martin, R.S., Rowley, D.R. (2013). Role of Reactive Stroma in Prostate Cancer. In: Tindall, D. (eds) Prostate Cancer. Protein Reviews, vol 16. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6828-8_2

Download citation

Publish with us

Policies and ethics