Skip to main content

Graphene Technology

  • Chapter
  • First Online:
Fundamentals of Nanoscaled Field Effect Transistors

Abstract

Graphene is being considered as the future material as an alternative to Si in the MOSFET substrate. In this chapter, a review of graphene technology has been done. The graphene physics, models, challenges, strain effects, and future trends have been outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taur Y (1999) CMOS scaling beyond 0.1um: how far can it go. VLSI-TSA, 6–9

    Google Scholar 

  2. ITRS (2010) www.itrs.org

  3. Sun Y, Thompson SE, Nishida T (2007) Physics of strain effects in semiconductors and metal-oxide-semiconductor field-effect transistors. J Appl Phys 101:104503–22

    Article  Google Scholar 

  4. Iwai H (2009) Roadmap for 22 nm and beyond. Microelectron Eng 86(7–9):1520–1528

    Article  Google Scholar 

  5. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  Google Scholar 

  6. Fengnian Xia, Farmer Damon B, Yu-ming Lin, Phaedon Avouris (2010) Graphene field-effect transistors with high On/Off current ratio and large transport band gap at room temperature Nano Lett, 10(2): 715–718

    Google Scholar 

  7. Zhu W, Perebeinos V, Freitag M, Avouris P (2009) Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene. Phys Rev B 80:235402–235407

    Article  Google Scholar 

  8. Banerjee SK, Register LF, Tutuc E, Reddy D, MacDonald AH (2009) Bilayer pseudospin field-effect transistor (BiSFET): a proposed new logic device. IEEE Electron Devic Lett 30(2):158–160

    Article  Google Scholar 

  9. Awano Y (2009) Graphene for VLSI: FET and interconnect applications, Proceedings of International Electron Devices Meeting (IEDM), pp 1–4

    Google Scholar 

  10. Liao L, Duan X (2010) Graphene–dielectric integration for graphene transistors. Mat Sci Eng: R 70(3–6):354–370

    Article  Google Scholar 

  11. Kwanghyun Yoo, Takei Y, Bo Hou,Chiashi S, Matsumoto K, Shimoyama I (2011) Direct physical exfoliation and transfer of graphene grown via ethanol chemical vapor deposition, IEEE 24th international conference on Micro Electro Mechanical Systems (MEMS), pp 99–102

    Google Scholar 

  12. Obradovic B, Kotlyar R,Heinz F, Matagne P, Rakshit T, Nikonov D, Stettler MA, (2006) Carbon nanoribbons: an alternative to carbon nanotubes, International conference on Simulation of Semiconductor Processes and Devices, pp 27–30

    Google Scholar 

  13. Moon JS, Curtis D, Bui S, Marshall T, Wheeler D,Valles I, Kim S, Wang E, Weng X, Fanton M Top-gated graphene field-effect transistors using graphene on Si (111) wafers, IEEE Electron Devic Lett,31(11): 1193–1195

    Google Scholar 

  14. Meric I, Dean C, Young A, Hone J, Kim P, Shepard KL (2010) Field graphene field-effect transistors based on boron nitride gate dielectrics, IEEE International Electron Devices Meeting (IEDM), pp 23.2.1–23.2.4

    Google Scholar 

  15. Appenzeller J, Yang Sui, Zhihong Chen (2009) Graphene nanostructures for device applications, Symposium on VLSI technology, pp 124–126

    Google Scholar 

  16. Neal AT, Jiangjiang Gu, Bolen M, Tian Shen,Capano M, Engle L, Ye PD (2010) Impact of size effect on graphene nanoribbonTransport 18thBiennialUniversity/Government/Industry Micro/Nano Symposium (UGIM), pp 1–3

    Google Scholar 

  17. Shishir RS, Ferry DK, Goodnick SM (2009) Intrinsic mobility limit in graphene at room temperature, 9th IEEE conference on Nanotechnology, pp 21–24

    Google Scholar 

  18. Shu-Jen Han, Yanning Sun, Bol AA, Haensch W, Zhihong Chen (2010) Study of channel length scaling in large-scale graphene FETs Symposium on VLSI Technology (VLSIT), pp 231–232

    Google Scholar 

  19. Anteroinen J, Wonjae Kim, Stadius K, Riikonen J, Lipsanen H, Ryynanen J (2011) Electrical properties of CVD-graphene FETs, NORCHIP, pp 1–4

    Google Scholar 

  20. Zuan-Yi Leong, Kai-Tak Lam, Gengchiau Liang (2009) Device performance of graphene nanoribbon field effect transistors with edge roughness effects 13th international workshop on Computational Electronics, pp 1–4

    Google Scholar 

  21. Ancona MG (2010) Electron transport in graphene from a diffusion-drift perspective. IEEE T Electron Dev 57(3):681–689

    Article  Google Scholar 

  22. Zhang Q, Yeqing L, Xing HG, Koester SJ, Koswatta SO (2010) Scalability of Atomic-Thin-Body (ATB) transistors based on graphene nanoribbons. IEEE Electron Devic Lett 31(6):531–533

    Article  Google Scholar 

  23. Dellabetta B, Gilbert MJ (2010) Performance characteristics of strongly correlated bilayer graphene for Post-CMOS logic devices, Silicon Nanoelectronics Workshop (SNW), pp 1–2

    Google Scholar 

  24. Ryzhii V, Ryzhii M, Satou A, Otsuji T Current–voltage characteristics of a graphene nanoribbon field-effect transistor, J Appl Phys, 103(9):.094510-094510-8

    Google Scholar 

  25. Ghadiry MH, Manaf AA, Mousavi SM, Sadeghi H (2011) Study the effect of applied voltage on propagation delay of bilayer graphene nanoribbon transistor, International Semiconductor Device Research Symposium (ISDRS), pp 1–2

    Google Scholar 

  26. Fiori G, Youngki Yoon, Seokmin Hong, Iannaccone G, Jing Guo (2007) Performance comparison of graphene nanoribbon schottky barrier and MOS FETs, International electron devices meeting, pp 757–76.

    Google Scholar 

  27. Kai-Tak Lam, Gengchiau Liang (2009) Computational study on the performance comparison of monolayer and bilayer zigzag graphene nanoribbon FETs, 13th international workshop on Computational Electronics, pp 1–3

    Google Scholar 

  28. Grassi R, Gnudi A, Gnani E, Reggiani S, Baccarani G (2008) Graphene nanoribbons FETs for high-performance logic applications: perspectives and challenges, 9th international conference on Solid-State and Integrated-Circuit Technology, pp 365–368

    Google Scholar 

  29. Shan Sheng Yu,Wei Tao Zheng, Qing Jiang (2011) Physical insight into substitutional N-Doped graphene nanoribbons with armchair edges, IEEE T Nanotechnology, 10(5): 926–930

    Google Scholar 

  30. Zhang Q, Lu Y, Xing HG, Koester SJ, Koswatta SO (2010) Scalability of Atomic-Thin-Body (ATB) transistors based on graphene banoribbons. IEEE Electron Devic Lett 31(6):531–533

    Article  Google Scholar 

  31. Dorgan V, Myung-Ho Bae, Pop E (2010) Mobility and velocity-field relationship in graphene Device Research Conference (DRC), pp 73–74

    Google Scholar 

  32. Umoh IJ, Kazmierski TJ (2011) VHDL-AMS model of a dual gate graphene FET, Forum on Specification and Design Languages (FDL), pp 1–5

    Google Scholar 

  33. Chin S-K, Seah D, Lam K-T, Samudra GS, Liang G (2010) Device physics and characteristics of graphene nanoribbon tunneling FETs. IEEE T Electron Dev 57(11):3144–3152

    Article  Google Scholar 

  34. Pei Zhao, Choudhury M, Mohanram K, Guo J (2008) Analytical theory of graphene nanoribbon transistors, IEEE international workshop on Design and Test of Nano Devices, Circuits and Systems, pp 3–6

    Google Scholar 

  35. David JK, Register LF, Banerjee SK (2012) Semiclassical Monte Carlo analysis of graphene FETs. IEEE T Electron Dev 59(4):976–982

    Article  Google Scholar 

  36. Choudhury MR, Yoon Y, Guo J, Mohanram K (2011) Graphene nanoribbon FETs: technology exploration for performance and reliability. IEEE T Nanotechnology 10(4):727–736

    Article  Google Scholar 

  37. Betti A, Fiori G, Iannaccone G (2011) Atomistic investigation of low-field mobility in graphene nanoribbons. IEEE T Electron Dev 58(9):2824–2830

    Article  Google Scholar 

  38. Yoon Y, Guo J (2007) Effect of edge roughness in graphene nanoribbon transistors. Appl Phys Lett 91:073103–5

    Article  Google Scholar 

  39. Betti A, Fiori G, Iannaccone G (2011) Atomistic investigation of low-field mobility in graphene nanoribbons. IEEE T Electron Dev 58(9):2824–2830

    Article  Google Scholar 

  40. Yijian Ouyang, Youngki Yoon, Jing Guo (2008) Edge chemistry engineering of graphene nanoribbon transistors: a computational study, IEEE international electron devices meeting, pp 1–4

    Google Scholar 

  41. Fiori G, Iannaccone G (2009) Performance analysis of graphene bilayer transistors through tight-binding simulations, 13th international workshop on Computational Electronics, pp 1–4

    Google Scholar 

  42. Xinxin Yu, Jiahao Kang, Jinyu Zhang, Lilin Tian, Zhiping Yu (2010) Improving channel mobility in graphene-FETs by minimizing surface phonon scattering – a simulation study, International conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp 13–16

    Google Scholar 

  43. Habibpour O, Vukusic J, Stake J (2012) A large-signal graphene FET model. IEEE T Electron Dev 59(4):968–975

    Article  Google Scholar 

  44. Sako R, Hosokawa H, Tsuchiya H (2011) Computational study of edge configuration and quantum confinement effects on graphene nanoribbon transport. IEEE Electron Devic Lett 32(1):6–8

    Article  Google Scholar 

  45. Lang Zeng, Xiao Yan Liu, Gang Du, Jin Feng Kang, Ru Qi Han (2009) Evaluation of mobility in graphene nanoribbons including line edge roughness scattering, International conference on Simulation of Semiconductor Processes and Devices, pp 1–4

    Google Scholar 

  46. Cheli M, Fiori G, Iannaccone G (2009) A semianalytical model of bilayer-graphene field-effect transistor. IEEE T Electron Dev 56:12979–2986

    Article  Google Scholar 

  47. Sako R, Tsuchiya H, Ogawa M (2011) Influence of band-gap opening on ballistic electron transport in bilayer graphene and graphene nanoribbon FETs. IEEE T Electron Dev 58(10):3300–3306

    Article  Google Scholar 

  48. Li Y, Jiang X, Liu Z, Liu Z (2010) Strain effects in graphene and graphene nanoribbons: the underlying mechanism. Nano Res 3:545–556

    Article  Google Scholar 

  49. OhmiY, Ogawa M, Souma S (2011) Effect of uniaxial strain on the electronic transport in single layer graphene, International meeting for future of electron devices, Kansai, pp 126–127

    Google Scholar 

  50. Alam K (2009) Uniaxial strain effects on the performance of a ballistic top gate graphene nanoribbon on insulator transistor. IEEE T Nanotechnology 8(4):528–534

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chaudhry, A. (2013). Graphene Technology. In: Fundamentals of Nanoscaled Field Effect Transistors. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6822-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6822-6_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6821-9

  • Online ISBN: 978-1-4614-6822-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics