Skip to main content

Quantitative EMG Analysis

  • Chapter
  • First Online:
Neuromuscular Disorders in Clinical Practice

Abstract

In the past five decades, a variety of quantitative analysis techniques have been developed. Some require special electrodes as in single-fiber or macro EMG techniques. In this chapter, we will limit our discussion to EMG quantification by the concentric and monopolar needle electrodes used for the routine EMG examination. We will also review some techniques of motor unit number estimation that complement the routine needle electrode analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Daube J. Clinical neurophysiology. Philadelphia: Oxford University Press; 2009.

    Google Scholar 

  2. Dumitru D, Amato AA, Zwarts M. Electrodiagnostic medicine. 2nd ed. Philadelphia: Hanley & Belfus; 2001.

    Google Scholar 

  3. Kimura J. Electrodiagnosis of diseases of nerve and muscle: principles and practice. 3rd ed. Philadelphia: Oxford University Press; 2001.

    Google Scholar 

  4. Nandedkar S. “Objective EMG”: quantitation and documentation in the routine needle electromyographic examination. In: Johnson E, editor. Practical electromyography. 3rd ed. Baltimore: Williams & Wilkins; 1997. p. 41–61.

    Google Scholar 

  5. Stålberg E, Trontelj JV, Sanders DB. Single fiber electromyography in healthy and diseased muscle. 3rd ed. Fiskebäckskil: Edshagen Publishing; 2010.

    Google Scholar 

  6. Stålberg E, Antoni L. Electrophysiological cross section of the motor unit. J Neurol Neurosurg Psychiatry. 1980;43:469–74.

    Article  PubMed  Google Scholar 

  7. Aquilonius S-M, Askmark H, Gillberg P-G, et al. Topographic localization of motor endplates in cryosections of whole human muscles. Muscle Nerve. 1984;7:287–93.

    Article  PubMed  CAS  Google Scholar 

  8. Dubowitz V, Brooke M. Muscle biopsy: a modern approach. Philadelphia: WB Saunders Co.; 1973.

    Google Scholar 

  9. Feinstein B, Lindegard B, Nyman E, Wohlfart G. Morphological studies of motor units in normal human muscles. Acta Anat. 1955;23:127–42.

    Article  PubMed  CAS  Google Scholar 

  10. Henneman E, Clamann HP, Gillus JD, Skinner RD. Rank order of motor neurons within a pool: law of combination. J Neurophysiol. 1974;37:1338–47.

    PubMed  CAS  Google Scholar 

  11. Stålberg E. Electrogenesis in human dystrophic muscle. In: Rowland LP, editor. Pathogenesis of human muscular dystrophies. Amsterdam: Excerpta Medica; 1977. p. 570–87.

    Google Scholar 

  12. Hilton-Brown P, Stålberg E. Motor unit size in muscular dystrophy: a macro EMG and scanning EMG study. J Neurol Neurosurg Psychiatry. 1983;46:996–1005.

    Article  PubMed  CAS  Google Scholar 

  13. Stålberg E, Nandedkar SD, Sanders DB, Falck B. Quantitative motor unit potential analysis. J Clin Neurophysiol. 1996;13:401–22.

    Article  PubMed  Google Scholar 

  14. Falck B, Stålberg E, Bischoff C. Influence of recording site within the muscle on motor unit potentials. Muscle Nerve. 1995;18:1385–9.

    Article  PubMed  CAS  Google Scholar 

  15. Stålberg E. Propagation velocity in single human muscle fibers. Acta Physiol Scand. 1966;Suppl 287:1–112.

    Google Scholar 

  16. Andreassen S. Methods for computer-aided measurement of motor unit parameters. Electroencephalogr Clin Neurophysiol Suppl. 1987;39:13–20.

    PubMed  CAS  Google Scholar 

  17. Bischoff C, Stålberg E, Falck B, Eeg-Olofsson K. Reference values of motor unit action potentials obtained with multi- MUAP analysis. Muscle Nerve. 1994;17:842–51.

    Article  PubMed  CAS  Google Scholar 

  18. Nandedkar SD, Barkhaus PE, Charles A. Multi-motor unit action potential analysis (MMA). Muscle Nerve. 1995;18:1155–66.

    Article  PubMed  CAS  Google Scholar 

  19. McGill KC, Dorfman LJ. Automatic decomposition electromyography (ADEMG). Methodologic and technical considerations. In: Desmedt JE, editor. Computer-aided electromyography and expert systems. Clinical neurophysiology updates. Amsterdam: Elsevier; 1989. p. 91–101.

    Google Scholar 

  20. Dorfman L, Howard J, McGill K. Clinical studies using automatic decomposition electromyography (ADEMG) in needle and surface EMG. In: Desmedt JE, editor. Computer aided electromyography and expert systems. Clinical neurophysiology updates. Amsterdam: Elsevier; 1989. p. 189–204.

    Google Scholar 

  21. Barkhaus PE, Periquet MI, Nandedkar SD. Quantitative motor unit action potential analysis in paraspinal muscles. Muscle Nerve. 1997;20:272–5.

    Article  Google Scholar 

  22. Stålberg E, Andreassen S, Falck B, et al. Quantitative analysis of individual motor unit potentials – a proposition for standardized terminology and criteria for measurement. J Clin Neurophysiol. 1986;3:313–48.

    Article  PubMed  Google Scholar 

  23. Buchthal F, Guld C, Rosenfalck P. Action potential parameters in normal human muscles and their dependence on physical variables. Acta Physiol Scand. 1954;32:200–18.

    Article  PubMed  CAS  Google Scholar 

  24. Stewart C, Nandedkar SD, Massey JM, Gilchrist J, Barkhaus P, Sanders DB. Evaluation of an automatic method of measuring features of motor unit action potentials. Muscle Nerve. 1989;12:141–8.

    Article  PubMed  CAS  Google Scholar 

  25. Zalewska E, Hausmanowa-Petrusewicz I. Evaluation of MUAP shape irregularity – a new concept of quantification. IEEE Trans Biomed Eng. 1995;42:16–20.

    Article  Google Scholar 

  26. Nandedkar S, Barkhaus P, Sanders D, Stålberg E. Analysis of the amplitude and area of the concentric needle EMG motor unit action potentials. Electroencephalogr Clin Neurophysiol. 1988;69:561–7.

    Article  PubMed  CAS  Google Scholar 

  27. Sonoo M, Stålberg E. The ability of MUP parameters to discriminate between normal and neurogenic MUPs in concentric EMG: analysis of MUP “thickness” and the proposal of “size index”. Electroencephalogr Clin Neurophysiol. 1993;89:291–303.

    Article  PubMed  CAS  Google Scholar 

  28. Stålberg E, Sonoo M. Assessment of variability in the shape of the motor unit action potential, the “jiggle” at consecutive discharges. Muscle Nerve. 1994;17:1135–44.

    Article  PubMed  Google Scholar 

  29. Payan J. The blanket principle: a technical note. Muscle Nerve. 1978;1:423–6.

    Article  PubMed  CAS  Google Scholar 

  30. Buchthal F. Electromyography in the evaluation of muscle diseases. In: Fuglsang-Frederiksen A, editor. Methods in clinical neurophysiology, vol. 2. 2nd ed. Skovlunde: DANTEC Elektronik; 1991.

    Google Scholar 

  31. Bischoff C, Stålberg E, Falck B. Outliers – a way to detect abnormality in quantitative EMG. Muscle Nerve. 1994;17:392–9.

    Article  PubMed  Google Scholar 

  32. Bischoff C, Machetanz J, Conrad B. Is there age-dependent continuous increase in the duration of the motor unit potential? Electroencephalogr Clin Neurophysiol. 1991;81:304–11.

    Article  PubMed  CAS  Google Scholar 

  33. Stålberg E. Macro EMG, a new recording technique. J Neurol Neurosurg Psychiatry. 1980;43:475–82.

    Article  PubMed  Google Scholar 

  34. Barkhaus PE, Nandedkar SD. On the selection of concentric needle electromyogram motor unit action potentials: is the rise time criterion too restrictive? Muscle Nerve. 1996;19:1554–60.

    Article  PubMed  CAS  Google Scholar 

  35. Chan RC, Hsu TC. Quantitative comparison of motor unit potential parameters between monopolar and concentric needles. Muscle Nerve. 1991;14:1028–32.

    Article  PubMed  CAS  Google Scholar 

  36. Howard JE, McGill KC, Dorfman LJ. Properties of motor unit action potentials recorded with concentric and monopolar needle electrodes: ADEMG analysis. Muscle Nerve. 1988;11:1051–5.

    Article  PubMed  CAS  Google Scholar 

  37. Nandedkar SD, Sanders DB. Recording characteristics of monopolar EMG electrodes. Muscle Nerve. 1991;14:108–12.

    Article  PubMed  CAS  Google Scholar 

  38. Pease WS, Bowyer BI. Motor unit analysis: comparison between concentric and monopolar electrodes. Am J Phys Med Rehabil. 1988;67:2–6.

    Article  PubMed  CAS  Google Scholar 

  39. Stålberg E, Sanders D. The motor unit in ALS studies with different electrophysiological techniques. In: Rose C, editor. Progress in motor neuron disease. London: Pitman Books; 1983.

    Google Scholar 

  40. Buchthal F, Kamieniecka Z. The diagnostic yield of quantified electromyography and quantified muscle biopsy in neuromuscular disorders. Muscle Nerve. 1982;2:265–80.

    Article  Google Scholar 

  41. Kopec J, Hausmanowa-Petrusewicz I. On-line computer application in clinical quantitative electromyography. Electroencephalogr Clin Neurophysiol. 1976;31:404–6.

    Google Scholar 

  42. Barkhaus PE, Nandedkar SD, Sanders DB. Quantitative EMG in inflammatory myopathy. Muscle Nerve. 1990;13:247–53.

    Article  PubMed  CAS  Google Scholar 

  43. Barkhaus PE, Nandedkar SD. Electronic atlas of electromyographic waveforms. In: Nandedkar SD, editor. EMG on CD, vol. II. New York: CASA Engineering; 1999.

    Google Scholar 

  44. Barkaus PE, Periquet MI, Nandedkar SD. Quantitative electrophysiologic studies in sporadic inclusion body myositis. Muscle Nerve. 1999;22:480–7.

    Article  Google Scholar 

  45. Barkhaus PE, Nandedkar SD. Serial quantitative electrophysiologic studies in sporadic inclusion body myositis. Electroencephalogr Clin Neurophysiol. 2007;36:87–92.

    Google Scholar 

  46. Buchthal F. Electrophysiological signs of myopathy as related with muscle biopsy. Acta Neurol (Napoli). 1977;32:1–29.

    CAS  Google Scholar 

  47. Nandedkar S, Sanders D, Stålberg E, Andreassen S. Simulation of concentric needle EMG motor unit action potentials. Muscle Nerve. 1988;2:151–9.

    Article  Google Scholar 

  48. Nandedkar SD, Sanders DB. Simulation of myopathic motor unit action potentials. Muscle Nerve. 1989;12:197–202.

    Article  PubMed  CAS  Google Scholar 

  49. Dumitru D, King JC, Nandedkar SD. Concentric/monopolar needle electrode modelling: spatial recording territory and physiologic implications. Electroencephalogr Clin Neurophysiol. 1997;105:370–8.

    Article  PubMed  CAS  Google Scholar 

  50. King JC, Dumitru D, Stegeman D. Monopolar needle electrode spatial recording characteristics. Muscle Nerve. 1996;19:1310–9.

    Article  PubMed  CAS  Google Scholar 

  51. Nandedkar SD, Dumitru D, King JC. Concentric needle electrode ­duration measurement and uptake area. Muscle Nerve. 1997;20:1225–8.

    Article  PubMed  CAS  Google Scholar 

  52. Petajan JH, Phillips BA. Frequency control of motor unit action potentials. Electroencephalogr Clin Neurophysiol. 1969;27:66–72.

    Article  PubMed  CAS  Google Scholar 

  53. Petajan JH. Clinical electromyographic studies of diseases of the motor unit. Electroencephalogr Clin Neurophysiol. 1974;36:395–401.

    Article  PubMed  CAS  Google Scholar 

  54. Petajan JH. AAEM minimonograph # 3: motor unit recruitment. Muscle Nerve. 1991;14:489–502.

    Article  PubMed  CAS  Google Scholar 

  55. Freund H, Hefter H, Homberg V. Motor unit activity in motor ­disorders. In: Shahani BT, editor. Electromyography in CNS ­disorders: central EMG. Boston: Butterworth Publishers; 1984.

    Google Scholar 

  56. Lefever RS, DeLuca CJ. A procedure for decomposing the myoelectric signal into its constituent action potentials. I: technique, theory and implementation. IEEE Trans Biomed Eng. 1982;29:149–57.

    Article  PubMed  CAS  Google Scholar 

  57. Stashuk D, Deluca CJ. Update on the decomposition and analysis of EMG signals. In: Desmedt JE, editor. Computer aided electromyography and expert systems. Clinical neurophysiology updates. Basel: Karger; 1989. p. 39–53.

    Google Scholar 

  58. Walton JN. The electromyogram in myopathy: analysis with the audio-frequency spectrometer. J Neurol Neurosurg Psychiatry. 1952;15:219–26.

    Article  PubMed  CAS  Google Scholar 

  59. Christensen H, Fuglsang-Frederiksen A. Power spectrum and turns analysis of EMG at different voluntary effort in normal subjects. Electroencephalogr Clin Neurophysiol. 1984;64:528–35.

    Google Scholar 

  60. Sandstedt P, Henriksson KG, Larsson LE. Quantitative electromyography in polymyositis and dermatomyositis. Acta Neurol Scand. 1982;65:110–21.

    Article  PubMed  CAS  Google Scholar 

  61. Lindstrom L, Magnusson R, Petersen I. Muscular fatigue and action potential conduction velocity changes studied with frequency analysis of EMG signals. Electromyography. 1970;4:341–56.

    Google Scholar 

  62. Sanders DB, Stålberg EV, Nandedkar SD. Analysis of electromyographic interference pattern. J Clin Neurophysiol. 1996;13:385–400.

    Article  PubMed  CAS  Google Scholar 

  63. Willison RG. Analysis of electrical activity in healthy and dystrophic muscle in man. J Neurol Neurosurg Psychiatry. 1964;27:386–94.

    Article  PubMed  CAS  Google Scholar 

  64. Rose AL, Willison RG. Quantitative electromyography using automatic analysis: studies in healthy subjects and patients with primary muscle disease. J Neurol Neurosurg Psychiatry. 1967;30:403–10.

    Article  PubMed  CAS  Google Scholar 

  65. Hayward M. Automatic analysis of the electromyogram in healthy subjects of different ages. J Neurol Sci. 1977;33:397–413.

    Article  PubMed  CAS  Google Scholar 

  66. Hayward M, Willison RG. Automatic analysis of the electromyogram in patients with chronic partial denervation. J Neurol Sci. 1977;33:415–23.

    Article  PubMed  CAS  Google Scholar 

  67. Fuglsang-Frederiksen A, Mansson A. Analysis of electrical activity of normal muscle in man at different degrees of voluntary effort. J Neurol Neurosurg Psychiatry. 1975;38:683–94.

    Article  PubMed  CAS  Google Scholar 

  68. Fuglsang-Frederiksen A, Scheel U, Buchthal F. Diagnostic yield of the analysis of the pattern of electrical activity and of individual motor unit potentials in myopathy. J Neurol Neurosurg Psychiatry. 1976;39:742–50.

    Article  PubMed  CAS  Google Scholar 

  69. Fuglsang-Frederiksen A, Scheel U, Buchthal F. Diagnostic yield of the analysis of the pattern of electrical activity and of individual motor unit potentials in neurogenic involvement. J Neurol Neurosurg Psychiatry. 1977;40:544–54.

    Article  PubMed  CAS  Google Scholar 

  70. Smyth DP, Willison RG. Quantitative electromyography in babies and young children with no evidence of neuromuscular disease. J Neurol Sci. 1982;56:209–17.

    Article  PubMed  CAS  Google Scholar 

  71. Smyth D. Quantitative electromyography in babies and young children with primary muscle disease and neurogenic lesions. J Neurol Sci. 1982;56:199–207.

    Article  PubMed  CAS  Google Scholar 

  72. Gilchrist JM, Nandedkar SD, Stewart CS, et al. Automatic analysis of the electromyographic interference pattern using turns:amplitude ratio. Electroencephalogr Clin Neurophysiol. 1988;70:534–40.

    Article  PubMed  CAS  Google Scholar 

  73. Stålberg E, Chu J, Bril V, et al. Automatic analysis of the EMG interference pattern. Electroencephalogr Clin Neurophysiol. 1983;56:672–81.

    Article  PubMed  Google Scholar 

  74. Nandedkar SD, Sanders DB, Stålberg EV. Simulation and analysis of the electromyographic interference pattern. Part I: turns and amplitude measurements. Muscle Nerve. 1986;9:419–26.

    Google Scholar 

  75. Nandedkar SD, Sanders DB, Stålberg EV. Automatic analysis of the electromyographic interference pattern. Part II: findings in control subjects and in some patients with neuromuscular diseases. Muscle Nerve. 1986;9:491–500.

    Article  PubMed  CAS  Google Scholar 

  76. Nandedkar SD, Sanders DB. Measurement of the amplitude of the EMG envelope. Muscle Nerve. 1990;13:933–8.

    Article  PubMed  CAS  Google Scholar 

  77. Fuglsang-Frederiksen A. EMG interference analysis. In: Desmedt JE, editor. Computer aided electromyography and expert systems. Clinical neurophysiology updates. Amsterdam: Elsevier; 1989. p. 161–88.

    Google Scholar 

  78. Gilai AN. Analysis of turns and amplitude in EMG. In: Desmedt JE, editor. Computer aided electromyography and expert systems. Clinical neurophysiology updates. Amsterdam: Elsevier; 1989. p. 142–60.

    Google Scholar 

  79. Nandedkar SD, Sanders DB, Stålberg EV. On the shape of the normal turns-amplitude cloud. Muscle Nerve. 1991;14:8–13.

    Article  PubMed  CAS  Google Scholar 

  80. McComas AJ, Fawcett PRW, Campbell MJ, Sica REP. Electrophysiological estimation of the number of motor units within a human muscle. J Neurol Neurosurg Psychiatry. 1971;34:121–31.

    Article  PubMed  CAS  Google Scholar 

  81. McComas AJ. Neuromuscular function and disorders. London: Butterworths; 1977.

    Google Scholar 

  82. McComas AJ. Invited review. Motor unit estimation: methods, results and present status. Muscle Nerve. 1991;14:585–97.

    Article  PubMed  CAS  Google Scholar 

  83. McComas AJ. Motor unit estimation: anxieties and achievements. Muscle Nerve. 1995;18:369–79.

    Article  PubMed  CAS  Google Scholar 

  84. McComas AJ, Quartly C, Griggs RC. Early and late losses of motor units after poliomyelitis. Brain. 1997;120:1415–21.

    Article  PubMed  Google Scholar 

  85. Ballantyne IP, Hansen S. A new method for estimation of the number of motor units in a muscle. J Neurol Neurosurg Psychiatry. 1974;3:907–15.

    Article  Google Scholar 

  86. Doherty TJ, Brown WF. The estimated number and relative sizes of thenar motor units as selected by multiple point stimulation in young and older adults. Muscle Nerve. 1993;16:355–66.

    Article  PubMed  CAS  Google Scholar 

  87. Slawnych M, Laszlo C, Hershler C. Motor unit estimates obtained using the new “MUESA” method. Muscle Nerve. 1996;19:626–36.

    Article  PubMed  CAS  Google Scholar 

  88. Wang F, Delwaide PJ. Number and relative size of thenar motor units estimated by an adapted multiple point stimulation method. Muscle Nerve. 1995;18:969–79.

    Article  PubMed  CAS  Google Scholar 

  89. Stashuk DW, Doherty TJ, Kassam A, Brown W. Motor unit number estimates based on the automated analysis of F-responses. Muscle Nerve. 1994;17:881–90.

    Article  PubMed  CAS  Google Scholar 

  90. Bromberg MB. Motor unit estimation: reproducibility of spike triggered averaging technique in normal and ALS subjects. Muscle Nerve. 1993;16:466–71.

    Article  PubMed  CAS  Google Scholar 

  91. Brown WF, Strong MJ, Snow R. Methods for estimating numbers of motor units in biceps brachialis muscles and losses of motor units with aging. Muscle Nerve. 1988;11:423–32.

    Article  PubMed  CAS  Google Scholar 

  92. Nandedkar SD, Barkhaus PE. Estimation of the number of motor units in human muscle. Proceeding IEEE/9th annual conference of EMBS, Boston; 1987. p. 1999–2000.

    Google Scholar 

  93. Fang J, Shahani BT, Graupe D. Motor unit number estimation by spatial-temporal summation of single motor unit potentials. Muscle Nerve. 1997;20:461–8.

    Article  PubMed  CAS  Google Scholar 

  94. DeKoning P, Wieneke GH, Spijk D, Huffelen A, Gispen W, Jennekens F. Estimation of the number of motor units based on macro EMG. J Neurol Neurosurg Psychiatry. 1988;51:403–11.

    Article  CAS  Google Scholar 

  95. Stein RB, Yang JF. Methods for estimating the number of motor units in human muscles. Ann Neurol. 1990;28:487–95.

    Article  PubMed  CAS  Google Scholar 

  96. Daube J. Estimating the number of motor units in a muscle. J Clin Neurophysiol. 1995;12:585–94.

    Article  PubMed  CAS  Google Scholar 

  97. Shefner JM, Jillapalli D, Bradshaw DY. Reducing intersubject variability in motor unit number estimation. Muscle Nerve. 1999;22:1457–60.

    Article  PubMed  CAS  Google Scholar 

  98. Nandedkar SD, Nandedkar DS, Barkhaus PE, Stalberg EV. Motor unit number index (MUNIX). IEEE Trans Biomed Eng. 2004;BME-51:2009–11.

    Google Scholar 

  99. Panayotopoulos C, Scarpalezos S, Papetropolos T. Electro­physiologic estimation of motor units in Duchenne muscular dystrophy. J Neurol Sci. 1974;23:89.

    Article  Google Scholar 

  100. Armon C, Brandstater ME, Peterson GW. Motor unit number estimates and quantitative muscle strength measurements of distal muscles in patients with amyotrophic lateral sclerosis. Muscle Nerve. 1997;20:499–501.

    Article  PubMed  CAS  Google Scholar 

  101. Felice KJ. A longitudinal study comparing thenar motor unit number estimates to other quantitative tests in patients with amyotrophic lateral sclerosis. Muscle Nerve. 1997;20:179–85.

    Article  PubMed  CAS  Google Scholar 

  102. Yang JF, Stein RB, Jhamandas J, Gordon T. Motor unit numbers and contractile properties after spinal cord injury. Ann Neurol. 1990;28:496–502.

    Article  PubMed  CAS  Google Scholar 

  103. Nandedkar SD, Barkhaus PE, Stalberg EV. Motor unit number index (MUNIX): principle, method and findings in healthy subjects and in patients with motor neuron disease. Muscle Nerve. 2010;42:796–807.

    Article  Google Scholar 

  104. Neuwirth C, Nandedkar S, Stalberg E, Barkhaus P, Carvallo M, Furtula J, et al. Motor unit number index (MUNIX): reference values of five different muscles in healthy subjects from a multi-center study. Clin Neurophysiol. 2011;122:1895–8.

    Article  PubMed  Google Scholar 

  105. Barkhaus PE, Nandedkar SD. Recording characteristics of the surface EMG electrodes. Muscle Nerve. 1994;17:1317–23.

    Article  PubMed  CAS  Google Scholar 

  106. Bromberg MB. Electrodiagnostic studies in clinical trials for motor neuron disease. J Clin Neurophysiol. 1998;15:117–28.

    Article  PubMed  CAS  Google Scholar 

  107. Barkhaus PE, Collins MI, Nandedkar SD. Influence of the surface EMG electrode on the compound muscle action potential. Electromyogr Clin Neurophysiol. 2006;46:235–9.

    PubMed  CAS  Google Scholar 

  108. Sanders DB, Stålberg EV. AAEM minimonograph #25: single fiber electromyography. Muscle Nerve. 1996;19:1069–83.

    Article  PubMed  CAS  Google Scholar 

  109. Stålberg E. Single fiber EMG, macro EMG, and scanning EMG. New ways of looking at the motor unit. CRC Crit Rev Clin Neurobiol. 1986;2:125–67.

    PubMed  Google Scholar 

  110. Stålberg EV. Electrodiagnostic assessment and monitoring of motor unit changes in disease. Muscle Nerve. 1991;14:292–303.

    Article  Google Scholar 

  111. Pino LJ, Stashuk DW, Podnar S. Bayesian characterization of external anal sphincter muscle using quantitative electromyography. Clin Neurophysiol. 2008;119:2266–73.

    Article  PubMed  CAS  Google Scholar 

  112. Derry KL, Venance SL, Doherty TJ. Decomposition based quantitative electromyography in the evaluation of muscular dystrophy severity. Muscle Nerve. 2012;45:507–13.

    Article  PubMed  Google Scholar 

  113. Stålberg E, Grimby G. Dynamic EMG and biopsy changes in a 4-year follow up study of patients with history of polio. Muscle Nerve. 1995;18:699–707.

    Article  PubMed  Google Scholar 

  114. Podnar S. Predictive value of motor unit potential analysis in limb muscles. Clin Neurophysiol. 2009;120:937–40.

    Article  PubMed  Google Scholar 

  115. Doherty TJ, Stashuk DW. Decomposition based quantitative electromyography: methods and initial normative data in five muscles. Muscle Nerve. 2003;28:204–11.

    Article  PubMed  Google Scholar 

  116. Barkhaus PE, Roberts MM, Nandedkar SD. “Facial” and standard concentric needle electrodes are not interchangeable. Electromyogr Clin Neurophysiol. 2006;46:259–61.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The first author would like to thank CareFusion for their support in this project. Mr. Desh Nandedkar and Nandedkar Productions, LLC, www.netemg.com, prepared most of the figures. They are reproduced with permission from Nandedkar Productions, LLC. Dr. B. Smith of Mayo Clinic, Scotsdale, supplied Fig. 9.24.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul E. Barkhaus MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nandedkar, S.D., Barkhaus, P.E. (2014). Quantitative EMG Analysis. In: Katirji, B., Kaminski, H., Ruff, R. (eds) Neuromuscular Disorders in Clinical Practice. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6567-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6567-6_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6566-9

  • Online ISBN: 978-1-4614-6567-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics