Skip to main content

Monoclonal Antibodies and Antibody-Based Biotherapeutics in Inflammatory Diseases

  • Chapter
  • First Online:
Pharmaceutical Biotechnology

Abstract

Immune-mediated inflammatory diseases encompass a broad and diverse spectrum of serious chronic disorders, many of which have significant need for safe and effective pharmacotherapies. The classes of conventional drugs used to treat immune-mediated inflammatory diseases include nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, sulfasalazine, 5-aminosalicylates, methotrexate, azathioprine, and 6-mercaptopurine; however, in many instances, these agents have exhibited limited efficacy or are associated with significant serious on-target and off-target side effects. The initial rationale and promise of complex biologics, such as monoclonal antibodies (mAbs), as pharmacotherapy was focused on oncology and organ transplantation (Ehrlich 1891; Gura 2002); however, recent decades have witnessed the successful development of a number of complex biologics as both anti-allergic and anti-inflammatory therapies. Five of the top-selling mAbs are for the treatment of chronic inflammatory conditions, and this area of research and development is rapidly expanding. Complex biologics are a subclass of protein therapeutics. They are large molecular weight glycoproteins designed and produced through recombinant DNA technology and require production in eukaryotic cells using bioreactor technology. These modalities have provided many targeted and efficacious therapeutic options for patients and are providing significant insights into the underlying complex pathological processes of these disorders, which, in turn, are identifying new targets for treatment of these diseases. A significant translational insight derived from the clinical development programs of complex biologic pharmacotherapy is the dysregulation of common proinflammatory mediators, such as tumor necrosis factor alpha (TNFα), across diverse rheumatologic, dermatologic, and gastroenterologic pathologies. In addition, the observation of patient subsets within a disease that are refractory to a particular therapy indicates that dysregulation of different mediators can drive the underlying pathological processes within a disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Actemra (tocilizumab) (2011) US prescribing information. Genentech Inc., South San Francisco

    Google Scholar 

  • Airoldi I, Di Carlo E, Cocco C et al (2005) Lack of Il12rb2 signaling predisposes to spontaneous autoimmunity and malignancy. Blood 106:3846–3853

    Article  PubMed  CAS  Google Scholar 

  • Amevive (alefacept) (2011) US prescribing information. Astellas Pharma US, Inc., Deerfield

    Google Scholar 

  • Arcalyst (rilonacept) (2009) US prescribing information. Regeneron Pharmaceuticals Inc., Tarrytown

    Google Scholar 

  • Baumgart DC, Sandborn WJ (2007) Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet 369:1641–1657

    Article  PubMed  CAS  Google Scholar 

  • Benlysta (Belimumab) (2012) US prescribing information. Human Genome Sciences, Inc., Rockville

    Google Scholar 

  • Bongartz T, Sutton AJ, Sweeting MJ et al (2006) Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA 295:2275–2285

    Article  PubMed  CAS  Google Scholar 

  • Brown SL, Greene MH, Gershon SK et al (2002) Tumor necrosis factor antagonist therapy and lymphoma development: twenty-six cases reported to the Food and Drug Administration. Arthritis Rheum 46:3151–3158

    Article  PubMed  CAS  Google Scholar 

  • Centers for Disease Control and Prevention (2011) Inflammatory bowel disease. www.cdc.gov/ibd/

  • Chaudhary R, Butler M, Playford RJ, Ghosh S (2006) Anti-TNF antibody induced stimulated T lymphocyte apoptosis depends on the concentration of the antibody and etanercept induces apoptosis at rates equivalent to infliximab and adalimumab at 10 micrograms per ml concentration. Gastroenterology 130:A696

    Google Scholar 

  • Christophers E (2001) Psoriasis—epidemiology and clinical spectrum. Clin Exp Dermatol 26:314–320

    Article  PubMed  CAS  Google Scholar 

  • Cimzia (certolizumab pegol) (2011) US prescribing information. UCB Inc, Smyrna

    Google Scholar 

  • D’Haens G, Baert F, van Assche G et al (2008) Early combined immunosuppression or conventional management in patients with newly diagnosed Crohn’s disease: an open randomised trial. Lancet 371:660–667

    Article  PubMed  Google Scholar 

  • Davis JC, Mease PJ (2008) Insights into the pathology and treatment of spondyloarthritis: from the bench to the clinic. Semin Arthritis Rheum 38:83–100

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich P (1891) Experimentelle untersuchungen über immunität. I. Ueber Ricin. Dtsch Med Wochenschr 17:976–979

    Article  Google Scholar 

  • Ellerin T, Rubin RH, Weinblatt ME (2003) Infections and anti-tumor necrosis factor alpha therapy. Arthritis Rheum 48:3013–3022

    Article  PubMed  CAS  Google Scholar 

  • Enbrel (etanercept) (2011) US prescribing information. Immunex Corporation, Thousand Oaks

    Google Scholar 

  • Feldman SR, Krueger GG (2005) Psoriasis assessment tools in clinical trials. Ann Rheum Dis 64(Suppl II):ii65–ii68

    Article  PubMed  Google Scholar 

  • Gold R, Jawad A, Miller DH et al (2007) Expert opinion: guidelines for the use of natalizumab in multiple sclerosis patients previously treated with immunomodulating therapies. J Neuroimmunol 187:156–158

    Article  PubMed  CAS  Google Scholar 

  • Griffiths CE, Barker JN (2007) Pathogenesis and clinical features of psoriasis. Lancet 370:263–271

    Article  PubMed  CAS  Google Scholar 

  • Griffiths CE, Strober BE, van de Kerkhof P et al (2010) Comparison of ustekinumab and etanercept for moderate-to-severe psoriasis. N Engl J Med 362:118–128

    Google Scholar 

  • Gura T (2002) Therapeutic antibodies: magic bullets hit the target. Nature 417:584–586

    Article  PubMed  CAS  Google Scholar 

  • Haldar P, Brightling CE, Hargadon B et al (2009) Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med 360:379–384

    Article  Google Scholar 

  • Hauser SL et al (2008) B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 358:676–688

    Article  PubMed  CAS  Google Scholar 

  • Hawkins PN, Lachmann HJ (2003) Interleukin-1-receptor antagonist in the Muckle–Wells syndrome. N Engl J Med 348:2583–2584

    Article  PubMed  Google Scholar 

  • Hochhaus G, Brookman L, Fox H et al (2003) Pharmacodynamics of omalizumab: implications for optimised dosing strategies and clinical efficacy in the treatment of allergic asthma. Curr Med Res Opin 19:491–498

    Google Scholar 

  • Hoentjen F, van Bodegraven AA (2009) Safety of anti-tumor necrosis factor therapy in inflammatory bowel disease. World J Gastroenterol 15:2067–2073

    Article  PubMed  CAS  Google Scholar 

  • Humira (adalimumab) (2011) US prescribing information. Abbott Laboratories, North Chicago

    Google Scholar 

  • Humira (adalimumab) (2012) Summary of product characteristics (SPC). Abbott Laboratories, North Chicago (updated on the eMC: April 11, 2012)

    Google Scholar 

  • Ilaris (canakinumab) (2012) US prescribing information. Novartis Pharmaceuticals Corporation, East Hanover

    Google Scholar 

  • Krueger GG (2003) Clinical response to alefacept: results of a phase 3 study of intravenous administration of alefacept in patients with chronic plaque psoriasis. J Eur Acad Dermatol Venereol 17 (Suppl 2):17–24

    Google Scholar 

  • Kubota T, Koike R (2010) Cryopyrin-associated periodic syndromes: background and therapeutics. Mod Rheumatol 20:213–221

    Article  PubMed  Google Scholar 

  • Laffaldano P, Lucchese G, Trojano M (2011) Treating multiple sclerosis with natalizumab. Expert Rev Neurother 11:1683–1692

    Article  Google Scholar 

  • Langley RG (2012) Effective and sustainable biologic treatment of psoriasis: what can we learn from new clinical data? J Eur Acad Dermatol Venereol 26(Suppl 2):21–29

    Article  PubMed  Google Scholar 

  • Lebwohl M, Christophers E, Langley R et al (2003) An international, randomized, double-blind, placebo-controlled phase 3 trial of intramuscular alefacept in patients with chronic plaque psoriasis. Arch Dermatol 139:719–727

    Google Scholar 

  • Leonardi CL, Kimball AB, Papp KA et al (2008) Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet 371:1665–1674

    Article  PubMed  CAS  Google Scholar 

  • McInnes IB, Schett G (2011) The pathogenesis of rheumatoid arthritis. N Engl J Med 365:2205–2219

    Article  PubMed  CAS  Google Scholar 

  • Modigliani R, Mary JY, Simon JF et al (1990) Clinical, biological, and endoscopic picture of attacks of Crohn’s disease: evolution on prednisolone. Gastroenterology 98:811–818

    Article  PubMed  CAS  Google Scholar 

  • Nestle FO, Kaplan DH, Barker J (2009) Psoriasis. N Engl J Med 361:496–509

    Article  PubMed  CAS  Google Scholar 

  • O’Dell JR (2004) Therapeutic strategies for rheumatoid arthritis. N Engl J Med 350(25):2591–2602

    Article  PubMed  Google Scholar 

  • Orencia (abatacept) (2011) US prescribing information. Bristol-Myers Squibb, Princeton

    Google Scholar 

  • Papp KA, Langley RG, Lebwohl M et al (2008) Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet 371:1675–1684

    Article  PubMed  CAS  Google Scholar 

  • Papp K, Gulliver W, Lynde C et al (2011) Canadian guidelines for the management of plaque psoriasis. J Cutan Med Surg 15(4):210–219

    Google Scholar 

  • Polman CH, O’Connor PW, Havrdova E et al (2006) A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Eng J Med 354:899–910

    Article  CAS  Google Scholar 

  • Reich K, Burden AD, Eaton JN, Hawkins NS (2012) Efficacy of biologics in the treatment of moderate to severe psoriasis: a network meta-analysis of randomized controlled trials. Br J Dermatol 166:179–188

    Article  PubMed  CAS  Google Scholar 

  • Remicade (infliximab) (2011) US prescribing information. Janssen Biotech Inc., Horsham

    Google Scholar 

  • Rituxan (rituximab) (2012) US prescribing information. Genentech Inc., South San Francisco

    Google Scholar 

  • Rudick RA, Stuart WH, Calabresi PA et al (2006) Natalizumab plus interferon-β-1a for relapsing multiple sclerosis. N Engl J Med 354:911–923

    Article  PubMed  CAS  Google Scholar 

  • Salliot C, Finckh A, Katchamart W et al (2011) Indirect comparisons of the efficacy of biological antirheumatic agents in rheumatoid arthritis in patients with an inadequate response to conventional disease-modifying antirheumatic drugs or to an anti-tumour necrosis factor agent: a meta-analysis. Ann Rheum Dis 70:266–271

    Article  PubMed  CAS  Google Scholar 

  • Sandborn WJ, Feagan BG, Stoinov S et al (2006) Certolizumab pegol administered subcutaneously is effective and well tolerated in patients with active Crohn’s disease: results from a 26-week, placebo-controlled phase III study (PRECiSE 1). Gastroenterology 130:A-107

    Google Scholar 

  • Simponi (golimumab) (2011) US prescribing information. Janssen Biotech Inc., Horsham

    Google Scholar 

  • Smedby KE, Askling J, Mariette X et al (2008) Autoimmune and inflammatory disorders and risk of malignant lymphomas–an update. J Intern Med 264:514–527

    Article  PubMed  CAS  Google Scholar 

  • Stelara (ustekinumab) (2011) US prescribing information. Janssen Biotech Inc., Horsham

    Google Scholar 

  • Taylor PC, Steuer A, Gruber J et al (2004) Comparison of ultrasonographic assessment of synovitis and joint vascularity radiographic evaluation in a randomized, placebo-controlled study of infliximab therapy in early rheumatoid arthritis. Arthritis Rheum 50:1107–1116

    Article  PubMed  CAS  Google Scholar 

  • Tracey D, Klareskog L, Sasso EH et al (2008) Tumor necrosis factor antagonist mechanisms of action: a comprehensive review. Pharmacol Ther 117:244–279

    Google Scholar 

  • Tysabri® (natalizumab) (2012) US prescribing information. Biogen Idec Inc, Cambridge

    Google Scholar 

  • Van den Brande JM, Braat H, van den Brink GR et al (2003) Infliximab but not etanercept induces apoptosis in lamina propria T-lymphocytes from patients with Crohn’s disease. Gastroenterology 124:1774–1785

    Article  PubMed  Google Scholar 

  • Xolair (omalizumab) (2010) US prescribing information. Genentech Inc., South San Francisco

    Google Scholar 

Download references

Acknowledgement 

The authors would like to express their gratitude to the critical review of Dr. Karen Weiss and editorial support of Dr. Kenneth Graham of Janssen Research and Development, LLC of Johnson & Johnson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honghui Zhou Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhou, H., Xu, Z., Mascelli, M.A., Davis, H.M. (2013). Monoclonal Antibodies and Antibody-Based Biotherapeutics in Inflammatory Diseases. In: Crommelin, D., Sindelar, R., Meibohm, B. (eds) Pharmaceutical Biotechnology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6486-0_20

Download citation

Publish with us

Policies and ethics