Skip to main content

Two Lectures on the Arithmetic of K3 Surfaces

  • Chapter
  • First Online:
Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds

Part of the book series: Fields Institute Communications ((FIC,volume 67))

Abstract

In these lecture notes we review different aspects of the arithmetic of K3 surfaces. Topics include rational points, Picard number and Tate conjecture, zeta functions and modularity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Charles (to appear in Invent. Math.) and Madapusi Pera (arXiv: 1301.6326) have announced independent proofs of the Tate Conjecture for K3 surfaces outside characteristic 2 (and 3 in Charles’ case).

References

  1. T.G. Abbott, K. Kedlaya, D. Roe, Bounding Picard numbers of surfaces using p-adic cohomology, in Arithmetic, Geometry and Coding Theory (AGCT 2005). Séminaires et Congrès, vol. 21 (Societé Mathématique de France, Paris, 2009), pp. 125–159

    Google Scholar 

  2. N. Aoki, T. Shioda, Generators of the Néron–Severi group of a Fermat surface, in Arithmetic and Geometry, vol. I. Progress in Mathematics, vol. 35 (Birkhäuser, Boston, 1983), pp. 1–12

    Google Scholar 

  3. M. Artin, P. Swinnerton-Dyer, The Shafarevich–Tate conjecture for pencils of elliptic curves on K3 surfaces. Invent. Math. 20, 249–266 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  4. W. Barth, K. Hulek, C. Peters, A. van de Ven, Compact Complex Surfaces, 2nd edn. Erg. der Math. und ihrer Grenzgebiete, 3. Folge, Band 4 (Springer, Berlin, 2004)

    Google Scholar 

  5. F.A. Bogomolov, Y. Tschinkel, Density of rational points on elliptic K3 surfaces. Asian J. Math. 4(2), 351–368 (2000)

    MathSciNet  MATH  Google Scholar 

  6. F.A. Bogomolov, B. Hassett, Y. Tschinkel, Constructing rational curves on K3 surfaces. Duke Math. J. 157, 535–550 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. J.W.S. Cassels, A Diophantine equation over a function field. J. Aust. Math. Soc. Ser. A 25(4), 489–496 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Charles, On the Picard number of K3 surfaces over number fields. Algebra Number Theor. Preprint (2011), arXiv: 1111.4117

    Google Scholar 

  9. D.A. Cox, Mordell Weil groups of elliptic curves over C(t) with p g  = 0 or 1. Duke Math. J. 49(3), 677–689 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. N.D. Elkies, Three lectures on elliptic surfaces and curves of high rank. 840 Preprint (2007), arXiv: 0709.2908 841 211 844

    Google Scholar 

  11. N.D. Elkies, Shimura Curve Computations Via K3 Surfaces of NS -Rank at Least 19. ANTS VIII, 2008. Lecture Notes in Computer Science, vol. 5011 (Springer, Berlin, 2008), pp. 196–211

    Google Scholar 

  12. N.D. Elkies, M. Schütt, Modular forms and K3 surfaces. Preprint (2008), arXiv: 0809.0830

    Google Scholar 

  13. N.D. Elkies, M. Schütt, K3 families of high Picard rank, in preparation

    Google Scholar 

  14. J. Ellenberg, K3 surfaces over number fields with geometric Picard number one, in Arithmetic of Higher-dimensional Algebraic Varieties, Palo Alto, CA, 2002. Progress in Mathematics, vol. 226 (Birkhäuser, Boston, 2004), pp. 135–140

    Google Scholar 

  15. A.-S. Elsenhans, J. Jahnel, The Picard group of a K3 surface and its reduction modulo p. Algebra Number Theor. 5, 1027–1040 (2011)

    Google Scholar 

  16. G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math. 73(3), 349–366 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. B. van Geemen, Some remarks on Brauer groups on K3 surfaces. Adv. Math. 197, 222–247 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. B. Hassett, A. Vàrilly-Alvarado, Failure of the Hasse principle on general K3 surfaces. J. Inst. Math. Jussieu. Preprint (2011), arXiv: 1110.1738

    Google Scholar 

  19. B. Hassett, A. Vàrilly-Alvarado, P. Varilly, Transcendental obstructions to weak approximation on general K3 surfaces. Adv. Math. 228, 1377–1404 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. K. Hulek, M. Schütt, Arithmetic of singular Enriques surfaces. Algebra Number Theor. 6(2), 195–230. Preprint (2012), arXiv: 1002.1598

    Google Scholar 

  21. H. Inose, Defining equations of singular K3 surfaces and a notion of isogeny, in Proceedings of the International Symposium on Algebraic Geometry, Kyoto University, Kyoto, 1977 (Kinokuniya Book Store, Tokyo, 1978), pp. 495–502

    Google Scholar 

  22. I. Karzhemanov, One construction of a K3 surface with the dense set of rational points. 865 Preprint (2011), arXiv: 1102.1873

    Google Scholar 

  23. R. Kloosterman, Elliptic K3 surfaces with geometric Mordell–Weil rank 15. Can. Math. Bull. 50(2), 215–226 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. K. Kodaira, On compact analytic surfaces I–III. Ann. Math. 71, 111–152 (1960); Ann. Math. 77, 563–626 (1963); Ann. Math. 78, 1–40 (1963)

    Google Scholar 

  25. M. Kuwata, Elliptic K3 surfaces with given Mordell–Weil rank. Comment. Math. Univ. St. Pauli 49(1), 91–100 (2000)

    MathSciNet  MATH  Google Scholar 

  26. J. Li, C. Liedtke, Rational curves on K3 surfaces. Invent. Math. 188(3), 713–727 (2011)

    Article  MathSciNet  Google Scholar 

  27. M. Lieblich, D. Maulik, A. Snowden, Finiteness of K3 surfaces and the Tate conjecture. 874 Preprint (2011), arXiv: 1107.1221

    Google Scholar 

  28. R. Livné, Motivic orthogonal two-dimensional representations of Gal\((\bar{\mathbb{Q}}/\mathbb{Q})\). Isr. J. Math. 92, 149–156 (1995)

    Article  MATH  Google Scholar 

  29. R. van Luijk, K3 surfaces with Picard number one and infinitely many rational points. Algebra Number Theor. 1(1), 1–15 (2007)

    Article  MATH  Google Scholar 

  30. Y.I. Manin, Le groupe de Brauer-Grothendieck en géométrie diophantienne, in Actes du Congrès International des Mathématiciens, Nice, 1970. Tome 1 (Gauthier-Villars, Paris, 1971), pp. 401–411

    Google Scholar 

  31. J. Milne, On a conjecture of Artin and Tate. Ann. Math. 102, 517–533 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Mizukami, Birational mappings from quartic surfaces to Kummer surfaces (in Japanese), Master’s Thesis, University of Tokyo, 1975

    Google Scholar 

  33. D.R. Morrison, On K3 surfaces with large Picard number. Invent. Math. 75(1), 105–121 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  34. H.-V. Niemeier, Definite quadratische Formen der Dimension 24 und Diskriminante 1. J. Number Theor. 5, 142–178 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  35. V.V. Nikulin, Finite groups of automorphisms of Kählerian K3 surfaces. Trudy Moskov. Mat. Obshch. 38, 75–137 (1979)

    MathSciNet  MATH  Google Scholar 

  36. V.V. Nikulin, Integral symmetric bilinear forms and some of their applications. Math. USSR Izv. 14(1), 103–167 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  37. K.-I. Nishiyama, The Jacobian fibrations on some K3 surfaces and their Mordell–Weil groups. Jpn. J. Math. 22, 293–347 (1996)

    MathSciNet  MATH  Google Scholar 

  38. N. Nygaard, A. Ogus, Tate’s conjecture for K3 surfaces of finite height. Ann. Math. 122, 461–507 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  39. K. Oguiso, On Jacobian fibrations on the Kummer surfaces of the product of nonisogenous elliptic curves. J. Math. Soc. Jpn. 41(4), 651–680 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  40. I.I. Piatetski-Shapiro, I.R. Shafarevich, Torelli’s theorem for algebraic surfaces of type K3. Izv. Akad. Nauk SSSR Ser. Mat. 35, 530–572 (1971)

    MathSciNet  MATH  Google Scholar 

  41. M. Raynaud, “p-torsion” du schéma de Picard. Astérisque 64, 87–148 (1979)

    Google Scholar 

  42. K. Ribet, Galois representations attached to eigenforms with Nebentypus, in Modular Functions of One Variable V, ed. by J.-P. Serre, D.B. Zagier, Bonn, 1976. Lecture Notes in Mathematics, vol. 601 (Springer, Berlin, 1977), pp. 17–52

    Google Scholar 

  43. M. Schütt, Fields of definition of singular K3 surfaces. Comm. Number Theor. Phys. 1(2), 307–321 (2007)

    MATH  Google Scholar 

  44. M. Schütt, CM newforms with rational coefficients. Ramanujan J. 19, 187–205 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. M. Schütt, K3 surfaces of Picard rank 20 over \(\mathbb{Q}\). Algebra Number Theor. 4(3), 335–356 (2010)

    Article  MATH  Google Scholar 

  46. M. Schütt, Sandwich theorems for Shioda–Inose structures. Izvestiya Mat. 77, 211–222 (2013)

    Article  MATH  Google Scholar 

  47. M. Schütt, T. Shioda, R. van Luijk, Lines on the Fermat quintic surface. J. Number Theor. 130, 1939–1963 (2010)

    Article  MATH  Google Scholar 

  48. E. Selmer, The Diophantine equation \(a{x}^{3} + b{y}^{3} + c{z}^{3} = 0\). Acta Math. 85, 203–362 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  49. T. Shioda, On the Picard number of a complex projective variety. Ann. Sci. École Norm. Sup.(4) 14(3), 303–321 (1981)

    Google Scholar 

  50. T. Shioda, On the Mordell–Weil lattices. Comment. Math. Univ. St. Pauli 39, 211–240 (1990)

    MathSciNet  MATH  Google Scholar 

  51. T. Shioda, Kummer sandwich theorem of certain elliptic K3 surfaces. Proc. Jpn. Acad. Ser. A 82, 137–140 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  52. T. Shioda, K3 surfaces and sphere packings. J. Math. Soc. Jpn. 60, 1083–1105 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  53. T. Shioda, H. Inose, in On Singular K3 Surfaces, ed. by W.L. Baily Jr., T. Shioda. Complex Analysis and Algebraic Geometry (Iwanami Shoten, Tokyo, 1977), pp. 119–136

    Google Scholar 

  54. T. Shioda, N. Mitani, Singular abelian surfaces and binary quadratic forms, in Classification of Algebraic Varieties and Compact Complex Manifolds. Lecture Notes in Mathematics, vol. 412 (Springer, Berlin, 1974), pp. 259–287

    Google Scholar 

  55. J.H. Silverman, Rational points on K3 surfaces: a new canonical height. Invent. Math. 105, 347–373 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  56. A. Skorobogatov, in Torsors and Rational Points. Cambridge Tracts in Mathematics, vol. 144 (Cambridge University Press, Cambridge, 2001)

    Google Scholar 

  57. H. Sterk, Finiteness results for algebraic K3 surfaces. Math. Z. 189(4), 507–513 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  58. J. Tate, Algebraic cycles and poles of zeta functions, in Arithmetical Algebraic Geometry. Proceedings of Conference of Purdue University, 1963 (Harper & Row, New York, 1965), pp. 93–110

    Google Scholar 

  59. J. Tate, in On the Conjectures of Birch and Swinnerton-Dyer and a Geometric Analog, ed. by A. Grothendieck, N.H. Kuiper. Dix exposés sur la cohomologie des schemas (North-Holland, Amsterdam, 1968), pp. 189–214

    Google Scholar 

  60. J. Tate, Algorithm for determining the type of a singular fibre in an elliptic pencil, in Modular Functions of One Variable IV, Antwerpen, 1972. SLN, vol. 476 (Springer, Berlin, 1975), pp. 33–52

    Google Scholar 

  61. T. Terasoma, Complete intersections with middle Picard number 1 defined over \(\mathbb{Q}\). Math. Z. 189(2), 289–296 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  62. P.J. Weinberger, Exponents of the class groups of complex quadratic fields. Acta Arith. 22, 117–124 (1973)

    MathSciNet  MATH  Google Scholar 

  63. A. Wiles, Modular elliptic curves and Fermat’s Last Theorem. Ann. Math. (2) 141(3), 443–551 (1995)

    Google Scholar 

Download references

Acknowledgements

It is a great pleasure to thank the other organisers of the Fields workshop and particularly all the participants for creating such a stimulating atmosphere. Special thanks to the Fields Institute for the great hospitality and to the referee for his comments. These lecture notes were written down while the author enjoyed support from the ERC under StG 279723 (SURFARI) which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Schütt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schütt, M. (2013). Two Lectures on the Arithmetic of K3 Surfaces. In: Laza, R., Schütt, M., Yui, N. (eds) Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds. Fields Institute Communications, vol 67. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6403-7_3

Download citation

Publish with us

Policies and ethics