Skip to main content

New Maximal Regularity Results for the Heat Equation in Exterior Domains, and Applications

  • Chapter
  • First Online:
Studies in Phase Space Analysis with Applications to PDEs

Abstract

This paper is dedicated to the proof of new maximal regularity results involving Besov spaces for the heat equation in the half-space or in bounded or exterior domains of ℝ n. We strive for time independent, a priori estimates in regularity spaces of type L 1(0, T; X) where X stands for some homogeneous Besov space. In the case of bounded domains, the results that we get are similar to those of the whole space or of the half-space. For exterior domains, we need to use mixed Besov norms in order to get a control on the low frequencies. Those estimates are crucial for proving global-in-time results for nonlinear heat equations in a critical functional framework.

2010 Mathematics Subject Classification: 35K05, 35K10, 35B65.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Without any support assumption, it is obvious that if s > 0, then we have \(\|\cdot \|_{\dot{B}_{p,r}^{s}({\mathbb{R}}^{n})} \lesssim \|\cdot \|_{B_{p,r}^{s}({\mathbb{R}}^{n})}\) and that, if s < 0, then \(\|\cdot \|_{\dot{B}_{p,r}^{s}({\mathbb{R}}^{n})} \gtrsim \|\cdot \|_{B_{p,r}^{s}({\mathbb{R}}^{n})}.\)

  2. 2.

    Nonhomogeneous Besov spaces on domains may be defined by the same token.

  3. 3.

    Here we just consider the case q <  to shorten the presentation.

  4. 4.

    Below \(\mathcal{M}(X)\) denotes the multiplier space associated to the Banach space X that is the set of those functions f such that fg ∈ X, whenever g is in X, endowed with the norm \(\|f\|_{\mathcal{M}(X)} :=\inf _{g}\|fg\|_{X}\) where the infimum is taken over all g ∈ X with norm 1.

References

  1. Bahouri, H., Chemin, J.-Y., Danchin, R.: In: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der mathematischen Wissenschaften, vol. 343. Springer, Berlin (2011)

    Google Scholar 

  2. Bennett, C., Sharpley, R.: Interpolation of operators. Pure and Applied Mathematics, vol. 129. Academic, Boston (1988)

    Google Scholar 

  3. Danchin, R., Mucha, P.: A critical functional framework for the inhomogeneous Navier–Stokes equations in the half-space. J. Funct. Anal. 256(3), 881–927 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Danchin, R., Mucha, P.B.: A Lagrangian approach for solving the incompressible Navier–Stokes equations with variable density. Comm. Pure Appl. Math. 65, 1458–1480 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Danchin, R., Mucha, P.: Critical functional framework and maximal regularity in action on systems of incompressible flows. in progress.

    Google Scholar 

  6. Denk, R., Hieber, M., Prüss, J.: R-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc. 166 (2003)

    Google Scholar 

  7. Friedman, A.: Partial Differential Equations. Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London (1969)

    Google Scholar 

  8. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Grundlehren der Mathematischen Wissenschaften, vol. 224. Springer, Berlin (1983)

    Google Scholar 

  9. Hill, A.T., Süli, E.: Dynamics of a nonlinear convection-diffusion equation in multidimensional bounded domains. Proc. Roy. Soc. Edinburgh Sect. A 125(2), 439–448 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Horsin, Th.: Local exact Lagrangian controllability of the Burgers viscous equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 25(2), 219–230 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ladyzhenskaja, O., Solonnikov, V., Uraltseva, N.: In: Linear and quasilinear equations of parabolic type. Translations of Mathematical Monographs, vol. 23. American Mathematical Society, Providence (1967)

    Google Scholar 

  12. Lewicka, M., Mucha, P.B.: On the existence of traveling waves in the 3D Boussinesq system. Comm. Math. Phys. 292(2), 417–429 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Maremonti, P., Solonnikov, V.A.: On nonstationary Stokes problem in exterior domains. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24(3), 395–449 (1997)

    Google Scholar 

  14. Triebel, H.: Interpolation theory, function spaces, differential operators. North-Holland Mathematical Library, vol. 18. North-Holland Publishing Co., Amsterdam (1978)

    Google Scholar 

  15. Xin, J.: Front propagation in heterogeneous media. SIAM Rev. 42(2), 161–230 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The second author has been supported by the MN grant IdP2011 000661.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphaël Danchin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Danchin, R., Mucha, P.B. (2013). New Maximal Regularity Results for the Heat Equation in Exterior Domains, and Applications. In: Cicognani, M., Colombini, F., Del Santo, D. (eds) Studies in Phase Space Analysis with Applications to PDEs. Progress in Nonlinear Differential Equations and Their Applications, vol 84. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4614-6348-1_6

Download citation

Publish with us

Policies and ethics