Skip to main content

Applying the AIM Concept in Support of Developing Improved In Vitro–In Vivo Relationships for OIPs

  • Chapter
  • First Online:
Good Cascade Impactor Practices, AIM and EDA for Orally Inhaled Products

Abstract

The previous chapters have focused primarily on the application of ­AIM-­EDA in the quality control part of an OIP lifecycle. An AIM-based approach would also be desirable for comparing and ideally correlating in vitro APSD-derived metrics with the likely particle deposition profile in the HRT that in turn should be linked with clinical effects. In addition to selection of appropriate size boundaries between coarse and fine particle mass fractions, there is the consideration of modifying the reduced impactor to add a third subfraction that relates to the measurement of the fraction of the dose ex-inhaler that comprises extra-fine submicron-sized particles. Furthermore, adapting the AIM concept to an alternative approach in which more clinically pertinent measures of in vitro performance are obtained raises the prospect of making the aerosol transport system more realistic in terms of human anatomy. An obvious move in this direction would be to replace the USP/Ph.Eur. induction port that was designed primarily to support OIP QC-based testing with an inlet that more appropriately models aerosol flow through the human oropharyngeal/nasopharyngeal region, depending upon patient age being studied. This chapter describes key features of how so-called AIM-pHRT systems might be constructed. The prefix “p” refers to the potential application of this alternative AIM-based approach. It will be for sponsors of this type of CI-based measurement application to undertake validation studies with their products. Such studies will likely compare measurements with AIM-pHRT apparatus(es) with both full-resolution CI data and particle deposition profiles utilizing imaging methods, such as gamma scintigraphy, positron emission tomography, or possibly magnetic resonance imaging. The chapter concludes with the results from the first laboratory-based evaluation of an AIM-­pHRT system based on the ACI equipped with the recently commercialized “Alberta Idealized Throat” (AIT) adult upper airway geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mitchell JP, Newman SP, Chan H-K (2007) In vitro and in vivo aspects of cascade impactor tests and inhaler performance: a review. AAPS PharmSciTech 8(4): article 24 at: http://www.aapspharmscitech.org/view.asp?art=pt0804110. Accessed 23 Jan 2012

  2. Newman SP, Chan H-K (2008) In vitro/in vivo comparisons in pulmonary drug delivery. J Aerosol Med 21(1):1–8

    Google Scholar 

  3. Gonda I (1990) Aerosols for delivery of therapeutic and diagnostic agents to the respiratory tract. Crit Rev Ther Drug Carrier Syst 7:273–313

    Google Scholar 

  4. Patton JS, Bukar JG, Eldon MA (2004) Clinical pharmacokinetics and pharmacodynamics of inhaled insulin. Clin Pharmacokinet 43(12):781–801

    Article  PubMed  CAS  Google Scholar 

  5. Usmani OS, Biddiscombe MF, Nightingale JA, Underwood SR, Barnes PJ (2003) Effects of bronchodilator particle size in asthmatic patients using monodisperse aerosols. J Appl Physiol 95(5):2106–2112

    PubMed  Google Scholar 

  6. Usmani OS, Biddiscombe MF, Barnes PJ (2005) Regional lung deposition and bronchodilator response as a Function of β2-agonist particle size. Am J Respir Crit Care Med 172(12):1497–1504

    Article  PubMed  Google Scholar 

  7. Dunbar C, Mitchell JP (2005) Analysis of cascade impactor mass distributions. J Aerosol Med 18(4):439–451

    Article  PubMed  CAS  Google Scholar 

  8. Vincent JH (1995) The inhalation of aerosols. In: Vincent JH (ed) Aerosol science for industrial hygienists. Pergamon Press, Oxford, pp 136–155

    Chapter  Google Scholar 

  9. Dolovich MB, Rhem R (1998) Impact of oropharyngeal deposition on inhaled dose. J Aerosol Med 11(S1):S112–S115

    PubMed  Google Scholar 

  10. Borgström L, Olsson B, Thorsson L (2006) Degree of throat deposition can explain the variability in lung deposition of inhaled drugs. J Aerosol Med 19(4):473–483

    Article  PubMed  Google Scholar 

  11. Cheng YS, Zhou Y, Chen BT (1999) Particle deposition in a cast of human oral airways. Aerosol Sci Technol 31(4):286–300

    Article  CAS  Google Scholar 

  12. Swift DL (1992) Apparatus and method for measuring regional distribution of therapeutic aerosols and comparing delivery systems. J Aerosol Sci 23(S1):S495–S498

    Article  CAS  Google Scholar 

  13. Berg E (1995) In vitro properties of pressurized metered dose inhalers with and without spacer devices. J Aerosol Med 8(S3):S3–S11

    Article  PubMed  Google Scholar 

  14. Velasquez DJ, Gabrio B (1998) Metered dose inhaler aerosol deposition in a model of the human respiratory system and a comparison with clinical deposition studies. J Aerosol Med 11(S1):S23–S28

    PubMed  Google Scholar 

  15. Daley-Yates PT, Parkins DA, Thomas MJ, Gillett B, House KW, Ortega HG (2009) Pharmacokinetic, pharmacodynamic, efficacy, and safety data from two randomized, double-­blind studies in patients with asthma and an in vitro study comparing two dry-powder inhalers delivering a combination of salmeterol 50 μg and fluticasone propionate 250 μg: implications for establishing bioequivalence of inhaled products. Clin Thera 31(2):370–385

    Article  CAS  Google Scholar 

  16. Grgic B, Finlay WH, Burnell PKP, Heenan AF (2004) In vitro intersubject and intrasubject deposition measurements in realistic mouth-throat geometries. J Aerosol Sci 35(8):1025–1040

    Article  CAS  Google Scholar 

  17. Finlay WH (2012) New validated extrathoracic and pulmonary deposition models for infants and children. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ, Young PM (eds) Respiratory drug delivery-2012. Davis HealthCare International Publishing, River Grove, IL, pp 325–336

    Google Scholar 

  18. Golshahi L, Noga ML, Thompson RB, Finlay WH (2011) In vitro deposition measurement of inhaled micrometer-sized particles in nasal airways of children and adolescents during nose breathing. J Aerosol Sci 42(7):474–488

    Article  CAS  Google Scholar 

  19. Golshahi L, Noga ML, Finlay WH (2012) Deposition of inhaled micrometer-sized particles in oropharyngeal airway replicas of children at constant flow rates. J Aerosol Sci 49(1):21–31

    Article  CAS  Google Scholar 

  20. Rennard SI (2005) Anticholinergics in combination bronchodilator therapy in COPD. In: Spector SL (ed) Anticholinergic agents in the lower and upper airways. Dekker, New York, NY, pp 97–111

    Google Scholar 

  21. Szefler SJ, Martin RJ, King TS, Boushey HA, Cherniack RM, Chinchilli VM, Craig TJ, Dolovich M, Drazen JM, Fagan JK, Fahy JV, Fish JE, Ford JG, Israel E, Kiley J, Kraft M, Lazarus SC, Lemanske RF, Mauger E, Peters SP, Sorkness CA (2002) Significant variability in response to inhaled steroids for persistent asthma. J Allergy Clin Immunol 109(3):S410–S418

    Article  Google Scholar 

  22. Everard ML, Dolovich MB (2002) In vivo measurements of lung dose. In: Bisgaard H, O’Callaghan C, Smaldone GC (eds) Drug delivery to the lung. Dekker, New York, NY, pp 173–209

    Google Scholar 

  23. Dolovich MB (1993) Lung dose, distribution, and clinical response to therapeutic aerosols. Aerosol Sci Technol 18(3):230–240

    Article  CAS  Google Scholar 

  24. American Thoracic Society (ATS) (1995) Standardization of spirometry—1994 update. Am J Respir Crit Care Med 152(3):1107–1136

    Article  Google Scholar 

  25. Tougas TP, Christopher D, Mitchell JP, Strickland H, Wyka B, Van Oort M, Lyapustina S (2009) Improved quality control metrics for cascade impaction measurements of orally inhaled drug products (OIPs). AAPS PharmSciTech 10(4):1276–1285

    Article  PubMed  CAS  Google Scholar 

  26. Mitchell JP, Nagel MW (2003) Cascade impactors for the size characterization of aerosols from medical inhalers: their uses and limitations. J Aerosol Med 16(4):341–377

    Article  PubMed  CAS  Google Scholar 

  27. Olsson B, Borgstrom L, Asking L, Bondesson E (1996) Effect of inlet throat on the correlation between measured fine particle dose and lung deposition. In: Dalby RN, Byron PR, Farr SJ (eds) Respiratory drug delivery-V. Interpharm Press, Buffalo Grove, IL, pp 273–282

    Google Scholar 

  28. Ehtezazi T, Horsfield MA, Barry PW, O’Callaghan C (2004) Dynamic change of the upper airway during inhalation via aerosol devices. J Aerosol Med 17(4):325–334

    Article  PubMed  Google Scholar 

  29. Ehtezazi T, Southern KW, Allanson D, Jenkinson I, O’Callaghan C (2005) Suitability of the upper airway models obtained from MRI studies in simulating drug lung deposition from inhalers. Pharm Res 22(1):166–170

    Article  PubMed  CAS  Google Scholar 

  30. Swift DL (1994) The oral airway—a conduit or collector for pharmaceutical aerosols. In: Byron P, Dalby RN, Farr SJ (eds) Respiratory drug delivery IV. Interpharm Press, Buffalo Grove, IL, pp 187–195

    Google Scholar 

  31. COPHIT Consortium (2012) Anatomic oropharyngeal model, at: http://www.isam.org/. Visited 25 June 2012

  32. McRobbie DW, Pritchard S, Quest RA (2003) Studies of the human oropharyngeal airspaces using magnetic resonance imaging. I. Validation of a three-dimensional MRI method for producing ex vivo virtual and physical casts of the oropharyngeal airways during inspiration. J Aerosol Med 16(4):401–415

    Article  PubMed  Google Scholar 

  33. Ilie M, Matida EA, Finlay WH (2008) Asymmetrical aerosol deposition in an idealized mouth with a DPI mouthpiece inlet. Aerosol Sci Technol 42(1):10–17

    Article  CAS  Google Scholar 

  34. Zhang Y, Gilbertson K, Finlay WH (2007) In vivo-in vitro comparison of deposition in three mouth-throat models with Qvar and Turbuhaler inhalers. J Aerosol Med 20(3):227–235

    Article  PubMed  CAS  Google Scholar 

  35. Stapleton KW, Guentsch E, Hoskinson MK, Finlay WH (2000) On the suitability of k-­turbulence modeling for aerosol deposition in the mouth and throat: a comparison with experiment. J Aerosol Sci 31(6):731–749

    Article  Google Scholar 

  36. Grgic B, Finlay WH, Heenan AF (2004) Regional aerosol deposition and flow measurements in an idealized mouth and throat. J Aerosol Sci 35(1):21–32

    Article  CAS  Google Scholar 

  37. Stocks J, Hislop AA (2002) Structure and function of the respiratory system. In: Bisgaard H, O’Callaghan C, Smaldone GC (eds) Drug delivery to the lung. Dekker, New York, NY, pp 47–104

    Google Scholar 

  38. Everard ML (2004) Inhaler devices in infants and children: challenges and solutions. J Aerosol Med 17(2):186–195

    Article  PubMed  CAS  Google Scholar 

  39. Mitchell JP, Nagel MW, Doyle C, Ali RS, Avvakoumova V, Christopher D, Quiroz J, Strickland H, Tougas T, Lyapustina S (2010) Relative precision of inhaler aerodynamic particle size distribution (APSD) metrics by full resolution and abbreviated Andersen Cascade Impactors (ACIs): Part 1. AAPS PharmSciTech 11(2):843–851

    Article  PubMed  CAS  Google Scholar 

  40. Mitchell JP, Nagel MW, Doyle C, Ali RS, Avvakoumova V, Christopher D, Quiroz J, Strickland H, Tougas T, Lyapustina S (2010) Relative precision of inhaler aerodynamic particle size ­distribution (APSD) metrics by full resolution and abbreviated Andersen Cascade Impactors (ACIs): Part 2—Investigation of bias in extra-fine mass fraction with AIM-HRT impactor. AAPS PharmSciTech 11(3):1115–1118

    Article  PubMed  CAS  Google Scholar 

  41. Chambers FE, Smurthwaite M (2012) Comparative performance evaluation of the Westech Fine Particle Dose (FPD) impactor. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ, Young PM (eds) Respiratory drug delivery-2012. Davis HealthCare International Publishing, River Grove, IL, pp 553–558

    Google Scholar 

  42. Mitchell JP, Copley M, Sizer Y, Russell T, Solomon D (2012) Adapting the Abbreviated Impactor Measurement (AIM) concept to make appropriate inhaler aerosol measurements to compare with clinical data: a scoping study with the “Alberta” Idealized Throat (AIT) inlet. J Aerosol Med Pulm Drug Deliv 25(4):188–197

    Article  PubMed  Google Scholar 

  43. Ehtezazi T, Saleem I, Shrubb I, Allanson ID, O’Callaghan C (2010) The interaction between the oropharyngeal geometry and aerosols via pressurized metered dose inhalers. Pharm Res 27(1):175–186

    Article  PubMed  CAS  Google Scholar 

  44. Mitchell JP, Nagel MW, Avvakoumova V, MacKay H, Ali R (2009) The abbreviated impactor measurement (AIM) concept: part 1—influence of particle bounce and re-entrainment—evaluation with a “dry” pressurized metered dose inhaler (MDI)-based formulation. AAPS PharmSciTech 10(1):243–251

    Article  PubMed  CAS  Google Scholar 

  45. Copley M, Mitchell J, Solomon D (2011) Evaluating the Alberta throat: an innovation to support the acquisition of more clinically applicable aerosol aerodynamic particle size distribution (APSD) data in oral inhaled product (OIP) development. Inhalation 5(4):12–16

    Google Scholar 

  46. Roberts DL, Mitchell JP (2011) Influence of stage efficiency curves on interpretation of ­abbreviated impactor data. Drug delivery to the lungs-22, The Aerosol Society, Edinburgh, UK, pp 177–180. Available at: http://ddl-conference.org.uk/index.php?q=previous_conferences. Visited 4 Aug 2012

  47. Dolovich MB, Mitchell JP (2004) Canadian Standards Association standard CAN/CSA/Z264.1-02:2002: a new voluntary standard for spacers and holding chambers used with pressurized metered-dose inhalers. Can Respir J 11(7):489–495

    PubMed  Google Scholar 

  48. Mitchell JP, Nagel M, Finlay B (2011) Advances in models for laboratory testing of inhalers: there’s more to it than meets the nose or mouth—The ADAM face models. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ, Young PM (eds) Respiratory drug delivery Europe-2011. Davis Healthcare International Publishing LLC, River Grove, IL, pp 457–461

    Google Scholar 

  49. European Directorate for the Quality of Medicines and Healthcare (EDQM). Preparations for inhalation: aerodynamic assessment of fine particles. (2012) Section 2.9.18—European Pharmacopeia, Council of Europe, 67075 Strasbourg, France

    Google Scholar 

  50. United States Pharmacopeial Convention (2012) USP 35-NF 30 Chapter 601: Aerosols, nasal sprays, metered-dose inhalers and dry powder inhalers. Rockville, MD

    Google Scholar 

  51. Feddah MR, Brown KF, Gipps EM, Davies NM (2000) In-vitro characterisation of metered dose inhaler versus dry powder inhaler glucocorticoid products: influence of inspiratory flow rates. J Pharm Pharm Sci 3(3):317–324

    CAS  Google Scholar 

  52. Burnell PKP, Malton A, Reavill K, Ball MHE (1998) Design, validation and initial testing of the Electronic Lung™ device. J Aerosol Sci 29(8):1011–1025

    Article  CAS  Google Scholar 

  53. Hamilton M, Daniels G (2011) Assessment of early screening methodology using the Next Generation and Fast Screen Impactor systems. Drug Delivery to the Lungs-22, The Aerosol Society, Edinburgh, UK, 22:355–358. Available at: http://ddl-conference.org.uk/index.php?q=previous_conferences. Visited 4 Aug 2012

  54. Miller NC (2002) Apparatus and process for aerosol size measurement at varying gas flow rates. US Patent 6,435,004-B1

    Google Scholar 

  55. Olson B, Berg E, Svensson M (2010) Comparing aerosol size distributions that penetrate mouth-throat models under realistic inhalation conditions. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ, Young PM (eds) Respiratory drug delivery-2010. Davis Healthcare International Publishing, River Grove, IL, pp 225–234

    Google Scholar 

  56. Mitchell JP, Dolovich MB (2012) Clinically relevant test methods to establish in vitro ­equivalence for spacers and valved holding chambers used with pressurized metered dose inhalers (MDIs). J Aerosol Med Pulm Drug Deliv 25(4):217–242

    Article  PubMed  CAS  Google Scholar 

  57. Dolovich MB (2004) In my opinion: interview with the expert. Pediatr Asthma Allergy Immunol 17(4):292–300

    Article  Google Scholar 

  58. Morton RW, Mitchell JP (2007) Design of facemasks for delivery of aerosol-based medication via pressurized metered dose inhaler with valved holding chamber: Key issues that affect ­performance. J Aerosol Med 20(S1):S29–S45

    Article  PubMed  CAS  Google Scholar 

  59. Finlay WH, Zuberbuhler P (1999) In vitro comparison of salbutamol hydrofluoroalkane (Airomir) metered dose inhaler aerosols inhaled during pediatric tidal breathing from five valved holding chambers. J Aerosol Med 12(4):285–291

    Article  PubMed  CAS  Google Scholar 

  60. Shah SA, Berlinski A, Rubin BK (2006) Force-dependent static dead space of face masks used with holding chambers. Respir Care 51(2):140–144

    PubMed  Google Scholar 

  61. Mitchell JP, Finlay JB, Nuttall JM, Limbrick MR, Nagel MW, Avvakoumova V, MacKay H, Ali RS, Doyle CC (2011) Validation of a new model infant face with nasopharynx for the testing of valved holding chambers (VHCs) with facemask as a patient interface. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ (eds) Respiratory drug delivery-2010. Davis Healthcare International Publishing LLC, River Grove, IL, pp 777–780

    Google Scholar 

  62. Mitchell JP (2008) Appropriate face models for evaluating drug delivery in the laboratory: the current situation and prospects for future advances. J Aerosol Med 21(1):1–15

    Google Scholar 

  63. Storey-Bischoff J, Noga M, Finlay WH (2008) Deposition of micrometer-sized aerosol particles in infant nasal airway replicas. J Aerosol Sci 39(12):1055–1065

    Article  Google Scholar 

  64. Newhouse MT (1998) The current laboratory determination of “Respirable Mass” is not clinically relevant. J Aerosol Med 11(S1):S122–S132

    PubMed  Google Scholar 

  65. Labiris NR, Dolovich MB (2003) Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol 5(12):588–599

    Article  Google Scholar 

  66. Marple VA, Olson BA, Santhanakrishnan K, Mitchell JP, Murray SC, Hudson-Curtis BL (2004) Next generation pharmaceutical impactor: a new impactor for pharmaceutical inhaler testing. Part III. Extension of archival calibration to 15 L/min. J Aerosol Med 17(4):335–343

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jolyon P. Mitchell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mitchell, J.P., Copley, M., Solomon, D. (2013). Applying the AIM Concept in Support of Developing Improved In Vitro–In Vivo Relationships for OIPs. In: Tougas, T., Mitchell, J., Lyapustina, S. (eds) Good Cascade Impactor Practices, AIM and EDA for Orally Inhaled Products. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-6296-5_12

Download citation

Publish with us

Policies and ethics