Skip to main content

Radiation-Induced Delayed Genome Instability and Hypermutation in Mammalian Cells

  • Chapter
  • First Online:
Stress-Induced Mutagenesis

Abstract

Genome instability is a hallmark of cancer cells. Inherited cancer predisposition syndromes typically show defects in DNA repair or DNA damage checkpoint systems, collectively called the DNA damage response (DDR). Several mutations in key genes are required to convert a normal cell to a cancer cell, suggesting that an early step in carcinogenesis is the acquisition of a “genome instability” (mutator) phenotype. DDR proteins suppress cancer by preventing spontaneous damage from causing excessive genome instability, and thus, normal cells display very low mutation rates and stable genomes. Genotoxins such as DNA-reactive chemicals and radiation cause DNA damage that results in small- and large-scale genetic change (mutations). Recently it has become clear that radiation, including ionizing radiation (IR) such X-rays and charged particles (heavy ion radiation), as well as nonionizing radiation (UV light) induce genome instability many cell generations after the exposure. These delayed effects are seen after high (1–10 Gy) and very low (0.01–0.1 Gy) IR doses, and include hypermutation, hyper-homologous recombination, chromosome instability, and reduced clonogenic survival (delayed death). Similar to immediate effects of radiation, delayed effects show adaptive responses. Here we focus on potential mechanisms that underlie radiation-induced delayed genome instabilities, and discuss the risks of genome destabilizing effects of occupational and accidental radiation exposures, and clinical exposures associated with radiation therapy and diagnostic imaging procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeysinghe SS, Chuzhanova N, Krawczak M, Ball EV, Cooper DN (2003) Translocation and gross deletion breakpoints in human inherited disease and cancer I: nucleotide composition and recombination-associated motifs. Hum Mutat 22:229–244

    Article  PubMed  CAS  Google Scholar 

  • Allen CP, Borak TB, Tsujii H, Nickoloff JA (2011) Heavy charged particle radiobiology: using enhanced biological effectiveness and improved beam focusing to advance cancer therapy. Mutat Res 711:150–157

    Article  PubMed  CAS  Google Scholar 

  • Barber R, Plumb MA, Boulton E, Roux I, Dubrova YE (2002) Elevated mutation rates in the germ line of first- and second-generation offspring of irradiated male mice. Proc Natl Acad Sci USA 99:6877–6882

    Article  PubMed  CAS  Google Scholar 

  • Barcellos-Hoff MH, Brooks AL (2001) Extracellular signaling through the microenvironment: a hypothesis relating carcinogenesis, bystander effects, and genomic instability. Radiat Res 156: 618–627

    Article  PubMed  CAS  Google Scholar 

  • Barcellos-Hoff MH, Park C, Wright EG (2005) Radiation and the microenvironment—­tumorigenesis and therapy. Nat Rev Cancer 5:867–875

    Article  PubMed  CAS  Google Scholar 

  • Baverstock K (2000) Radiation-induced genomic instability: a paradigm-breaking phenomenon and its relevance to environmentally induced cancer. Mutat Res 454:89–109

    Article  PubMed  CAS  Google Scholar 

  • BEIR-VII (2006) Exposure to low levels of ionizing radiation. In Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation, Washington, DC

    Google Scholar 

  • Bielfeld V, Weichenthal M, Roser M, Breitbart E, Berger J, Seemanova E, Rudiger HW (1989) Ultraviolet-induced chromosomal instability in cultured fibroblasts of heterozygote carriers for xeroderma pigmentosum. Cancer Genet Cytogenet 43:219–226

    Article  PubMed  CAS  Google Scholar 

  • Bishop AJ, Schiestl RH (2001) Homologous recombination as a mechanism of carcinogenesis. Biochim Biophys Acta 1471:M109–121

    PubMed  CAS  Google Scholar 

  • Bonner WM (2003) Low-dose radiation: thresholds, bystander effects, and adaptive responses. Proc Natl Acad Sci USA 100:4973–4975

    Article  PubMed  CAS  Google Scholar 

  • Boulton SJ (2006) Cellular functions of the BRCA tumour-suppressor proteins. Biochem Soc Trans 34:633–645

    Article  PubMed  CAS  Google Scholar 

  • Branzei D, Foiani M (2010) Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol 11:208–219

    Article  PubMed  CAS  Google Scholar 

  • Budzowska M, Kanaar R (2009) Mechanisms of dealing with DNA damage-induced replication problems. Cell Biochem Biophys 53:17–31

    Article  PubMed  Google Scholar 

  • Carls N, Schiestl RH (1999) Effect of ionizing radiation on transgenerational appearance of p(un) reversions in mice. Carcinogenesis 20:2351–2354

    Article  PubMed  CAS  Google Scholar 

  • Chang WP, Little JB (1992) Persistently elevated frequency of spontaneous mutations in progeny of CHO clones surviving X-irradiation: association with delayed reproductive death. Mutat Res 270:191–199

    Article  PubMed  CAS  Google Scholar 

  • Cheok CF, Bachrati CZ, Chan KL, Ralf C, Wu L, Hickson ID (2005) Roles of the Bloom’s syndrome helicase in the maintenance of genome stability. Biochem Soc Trans 33:1456–1459

    Article  PubMed  CAS  Google Scholar 

  • Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40:179–204

    Article  PubMed  CAS  Google Scholar 

  • D’Anjou H, Chabot C, Chartrand P (2004) Preferential accessibility to specific genomic loci for the repair of double-strand breaks in human cells. Nucleic Acids Res 32:6136–6143

    Article  PubMed  Google Scholar 

  • Dahle J, Kvam E (2003) Induction of delayed mutations and chromosomal instability in fibroblasts after UVA-, UVB-, and X-radiation. Cancer Res 63:1464–1469

    PubMed  CAS  Google Scholar 

  • Dahle J, Noordhuis P, Stokke T, Svendsrud DH, Kvam E (2005) Multiplex polymerase chain reaction analysis of UV-A- and UV-B-induced delayed and early mutations in V79 Chinese hamster cells. Photochem Photobiol 81:114–119

    Article  PubMed  CAS  Google Scholar 

  • Damelin M, Bestor TH (2007) The decatenation checkpoint. Br J Cancer 96:201–205

    Article  PubMed  CAS  Google Scholar 

  • Durant ST, Paffett KS, Shrivastav M, Timmins GS, Morgan WF, Nickoloff JA (2006) UV radiation induces delayed hyperrecombination associated with hypermutation in human cells. Mol Cell Biol 26:6047–6055

    Article  PubMed  CAS  Google Scholar 

  • Elliott B, Richardson C, Jasin M (2005) Chromosomal translocation mechanisms at intronic alu elements in mammalian cells. Mol Cell 17:885–894

    Article  PubMed  CAS  Google Scholar 

  • Eriksson D, Stigbrand T (2010) Radiation-induced cell death mechanisms. Tumour Biol 31:363–372

    Article  PubMed  Google Scholar 

  • Evans HH, Horng MF, Ricanati M, Diaz-Insua M, Jordan R, Schwartz JL (2001) Diverse delayed effects in human lymphoblastoid cells surviving exposure to high-LET 56Fe particles or low-­LET 137Cs gamma radiation. Radiat Res 156:259–271

    Article  PubMed  CAS  Google Scholar 

  • Friedberg EC (2001) How nucleotide excision repair protects against cancer. Nat Rev Cancer 1:22–33

    Article  PubMed  CAS  Google Scholar 

  • Fujimori A, Okayasu R, Ishihara H, Yoshida S, Eguchi-Kasai K, Nojima K, Ebisawa S, Takahashi S (2005) Extremely low dose ionizing radiation up-regulates CXC chemokines in normal human fibroblasts. Cancer Res 65:10159–10163

    Article  PubMed  CAS  Google Scholar 

  • Galluzzi L, Kroemer G (2008) Necroptosis: a specialized pathway of programmed necrosis. Cell 135:1161–1163

    Article  PubMed  CAS  Google Scholar 

  • Gorbunova V, Seluanov A, Mittelman D, Wilson JH (2004) Genome-wide demethylation ­destabilizes CTG.CAG trinucleotide repeats in mammalian cells. Hum Mol Genet 13: 2979–2989

    Article  PubMed  CAS  Google Scholar 

  • Gozuacik D, Kimchi A (2004) Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23:2891–2906

    Article  PubMed  CAS  Google Scholar 

  • Gudmundsdottir K, Ashworth A (2006) The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability. Oncogene 25:5864–5874

    Article  PubMed  CAS  Google Scholar 

  • Hada M, Georgakilas AG (2008) Formation of clustered DNA damage after high-LET irradiation: a review. J Radiat Res (Tokyo) 49:203–210

    Article  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  • Hanks S, Coleman K, Reid S, Plaja A, Firth H, FitzPatrick D, Kidd A, Méhes K, Nash R, Robin N et al (2004) Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat Genet 36:1159–1161

    Article  PubMed  CAS  Google Scholar 

  • Harper K, Lorimore SA, Wright EG (1997) Delayed appearance of radiation-induced mutations at the HPRT locus in murine hematopoietic cells. Exp Hematol 25:263–269

    PubMed  CAS  Google Scholar 

  • Hu B, Grabham P, Nie J, Balajee AS, Zhou H, Hei TK, Geard CR (2012) Intrachromosomal changes and genomic instability in site-specific microbeam-irradiated and bystander human-hamster hybrid cells. Radiat Res 177:25–34

    Google Scholar 

  • Huang L, Grimm S, Smith LE, Kim PM, Nickoloff JA, Goloubeva OG, Morgan WF (2004) Ionizing radiation induces delayed hyperrecombination in mammalian cells. Mol Cell Biol 24: 5060–5068

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Kim PM, Nickoloff JA, Morgan WF (2006) Targeted and non-targeted effects of ­low-­dose ionizing radiation on delayed genomic instability in human cells. Cancer Res 67: 1099–1104

    Article  Google Scholar 

  • Jass JR (2002) Pathogenesis of colorectal cancer. Surg Clin North Am 82:891–904

    Article  PubMed  Google Scholar 

  • Jiricny J (2006) The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol 7:335–346

    Article  PubMed  CAS  Google Scholar 

  • Kim GJ, Chandrasekaran K, Morgan WF (2006a) Mitochondrial dysfunction, persistently elevated levels of reactive oxygen species and radiation-induced genomic instability: a review. Mutagenesis 21:361–367

    Article  PubMed  CAS  Google Scholar 

  • Kim GJ, Fiskum GM, Morgan WF (2006b) A role for mitochondrial dysfunction in perpetuating radiation-induced genomic instability. Cancer Res 66:10377–10383

    Article  PubMed  CAS  Google Scholar 

  • Kolomietz E, Meyn MS, Pandita A, Squire JA (2002) The role of Alu repeat clusters as mediators of recurrent chromosomal aberrations in tumors. Genes Chromosomes Cancer 35:97–112

    Article  PubMed  CAS  Google Scholar 

  • Koturbash I, Rugo RE, Hendricks CA, Loree J, Thibault B, Kutanzi K, Pogribny I, Yanch JC, Engelward BP, Kovalchuk O (2006) Irradiation induces DNA damage and modulates epigenetic effectors in distant bystander tissue in vivo. Oncogene 25:4267–4275

    Article  PubMed  CAS  Google Scholar 

  • Kovalchuk O, Hendricks CA, Cassie S, Engelward AJ, Engelward BP (2004) In vivo recombination after chronic damage exposure falls to below spontaneous levels in “recombomice”. Mol Cancer Res 2:567–573

    PubMed  CAS  Google Scholar 

  • Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396:643–649

    Article  PubMed  CAS  Google Scholar 

  • Limoli CL, Giedzinski E (2003) Induction of chromosomal instability by chronic oxidative stress. Neoplasia (New York, NY) 5:339–346

    CAS  Google Scholar 

  • Limoli CL, Kaplan MI, Corcoran J, Meyers M, Boothman DA, Morgan WF (1997a) Chromosomal instability and its relationship to other end-points of genomic instability. Cancer Res 57:5557–5563

    PubMed  CAS  Google Scholar 

  • Limoli CL, Kaplan MI, Phillips JW, Adair GM, Morgan WF (1997b) Differential induction of chromosomal instability by DNA strand-breaking agents. Cancer Res 57:4048–4056

    PubMed  CAS  Google Scholar 

  • Little JB (1998) Radiation-induced genomic instability. Int J Radiat Biol 74:663–671

    Article  PubMed  CAS  Google Scholar 

  • Little JB, Nagasawa H, Pfenning T, Vetrovs H (1997) Radiation-induced genomic instability: delayed mutagenic and cytogenetic effects of X-rays and a-particles. Radiat Res 148:299–307

    Article  PubMed  CAS  Google Scholar 

  • Machida YJ, Hamlin JL, Dutta A (2005) Right place, right time, and only once: replication initiation in metazoans. Cell 123:13–24

    Article  PubMed  CAS  Google Scholar 

  • Marder BA, Morgan WF (1993) Delayed chromosomal instability induced by DNA damage. Mol Cell Biol 13:6667–6677

    PubMed  CAS  Google Scholar 

  • Mittelman D, Wilson JH (2010) Stress, genomes, and evolution. Cell Stress Chaperones 15: 463–466

    Article  PubMed  CAS  Google Scholar 

  • Mittelman D, Sykoudis K, Hersh M, Lin Y, Wilson JH (2010) Hsp90 modulates CAG repeat instability in human cells. Cell Stress Chaperones 15:753–759

    Article  PubMed  CAS  Google Scholar 

  • Mordes DA, Cortez D (2008) Activation of ATR and related PIKKs. Cell Cycle 7:2809–2812

    Article  PubMed  CAS  Google Scholar 

  • Morgan WF (2003) Is there a common mechanism underlying genomic instability, bystander effects and other nontargeted effects of exposure to ionizing radiation? Oncogene 22: 7094–7099

    Article  PubMed  CAS  Google Scholar 

  • Mothersill C, Crean M, Lyons M, McSweeney J, Mooney R, O'Reilly J, Seymour CB (1998) Expression of delayed toxicity and lethal mutations in the progeny of human cells surviving exposure to radiation and other environmental mutagens. Int J Radiat Biol 74:673–680

    Article  PubMed  CAS  Google Scholar 

  • Neglia JP, Robison LL, Stovall M, Liu Y, Packer RJ, Hammond S, Yasui Y, Kasper CE, Mertens AC, Donaldson SS et al (2006) New primary neoplasms of the central nervous system in survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. J Natl Cancer Inst 98:1528–1537

    Article  PubMed  Google Scholar 

  • Newhauser WD, Durante M (2011) Assessing the risk of second malignancies after modern radiotherapy. Nat Rev Cancer 11:438–448

    Article  PubMed  CAS  Google Scholar 

  • Nickoloff JA (2002) Recombination: mechanisms and roles in tumorigenesis. In: Bertino JR (ed) Encyclopedia of cancer, vol 4, 2nd edn, Elsevier Science. San Diego, USA, pp 49–59

    Chapter  Google Scholar 

  • Nickoloff JA, Brenneman MA (2004) Analysis of recombinational repair of DNA double-strand breaks in mammalian cells with I-SceI nuclease. In: Waldman AS (ed) Genetic recombination—reviews and protocols. Humana Press, Totowa, NJ, pp 35–52

    Google Scholar 

  • Nickoloff JA, De Haro LP, Wray J, Hromas R (2008) Mechanisms of leukemia translocations. Curr Opin Hematol 15:338–345

    Article  PubMed  CAS  Google Scholar 

  • Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194:23–28

    Article  PubMed  CAS  Google Scholar 

  • Nyberg KA, Michelson RJ, Putnam CW, Weinert TA (2002) Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet 36:617–656

    Article  PubMed  CAS  Google Scholar 

  • Okayasu R, Suetomi K, Yu Y, Silver A, Bedford JS, Cox R, Ullrich RL (2000) A deficiency in DNA repair and DNA-PKcs expression in the radiosensitive BALB/c mouse. Cancer Res 60:4342–4345

    PubMed  CAS  Google Scholar 

  • O'Reilly JP, Mothersill C (1997) Comparative effects of UV A and UV B on clonogenic survival and delayed cell death in skin cell lines from humans and fish. Int J Radiat Biol 72: 111–119

    Article  PubMed  Google Scholar 

  • Pogribny I, Raiche J, Slovack M, Kovalchuk O (2004) Dose-dependence, sex- and tissue-­specificity, and persistence of radiation-induced genomic DNA methylation changes. Biochem Biophys Res Commun 320:1253–1261

    Article  PubMed  CAS  Google Scholar 

  • Ponnaiya B, Cornforth MN, Ullrich RL (1997) Radiation-induced chromosomal instability in balb/c and C57bl/6 mice: the difference is as clear as black-and-white. Radiat Res 147:121–125

    Article  PubMed  CAS  Google Scholar 

  • Putnam CD, Jaehnig EJ, Kolodner RD (2009) Perspectives on the DNA damage and replication checkpoint responses in Saccharomyces cerevisiae. DNA Repair 8:974–982

    Article  PubMed  CAS  Google Scholar 

  • Rehani MM, Berry M (2000) Radiation doses in computed tomography. The increasing doses of radiation need to be controlled. BMJ 320:593–594

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt HC, Yaffe MB (2009) Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2. Curr Opin Cell Biol 21:245–255

    Article  PubMed  CAS  Google Scholar 

  • Roy K, Kodama S, Suzuki K, Watanabe M (1999) Delayed cell death, giant cell formation and chromosome instability induced by X-irradiation in human embryo cells. J Radiat Res 40: 311–322

    Article  PubMed  CAS  Google Scholar 

  • Schildkraut E, Miller CA, Nickoloff JA (2005) Gene conversion and deletion frequencies during double-strand break repair in human cells are controlled by the distance between direct repeats. Nucleic Acids Res 33:1574–1580

    Article  PubMed  CAS  Google Scholar 

  • Shah AP, Langen KM, Ruchala KJ, Cox A, Kupelian PA, Meeks SL (2008) Patient dose from megavoltage computed tomography imaging. Int J Radiat Oncol Biol Phys 70:1579–1587

    Article  PubMed  Google Scholar 

  • Shaheen M, Allen C, Nickoloff JA, Hromas R (2011) Synthetic lethality: exploiting the addiction of cancer to DNA repair. Blood 117:6074–6082

    Article  PubMed  CAS  Google Scholar 

  • Shih IM, Zhou W, Goodman SN, Lengauer C, Kinzler KW, Vogelstein B (2001) Evidence that genetic instability occurs at an early stage of colorectal tumorigenesis. Cancer Res 61:818–822

    PubMed  CAS  Google Scholar 

  • Snyder AR, Morgan WF (2004) Radiation-induced chromosomal instability and gene expression profiling: searching for clues to initiation and perpetuation. Mutat Res 568:89–96

    Article  PubMed  CAS  Google Scholar 

  • Snyder AR, Morgan WF (2005) Lack of consensus gene expression changes associated with radiation-­induced chromosomal instability. DNA Repair 4:958–970

    Article  PubMed  CAS  Google Scholar 

  • Stamato TD, Perez ML (1998) EMS and UV-light-induced colony sectoring and delayed mutation in Chinese hamster cells. Int J Radiat Biol 74:739–745

    Article  PubMed  CAS  Google Scholar 

  • Stamato TD, Richardson E, Perez ML (1995) UV-light induces delayed mutations in Chinese hamster cells. Mutat Res 328:175–181

    Article  PubMed  CAS  Google Scholar 

  • Stankiewicz P, Lupski JR (2002) Genome architecture, rearrangements and genomic disorders. Trends Genet 18:74–82

    Article  PubMed  CAS  Google Scholar 

  • Stephan JS, Herman PK (2006) The regulation of autophagy in eukaryotic cells: do all roads pass through Atg1? Autophagy 2:146–148

    PubMed  CAS  Google Scholar 

  • Stojic L, Brun R, Jiricny J (2004) Mismatch repair and DNA damage signalling. DNA Repair 3:1091–1101

    Article  PubMed  CAS  Google Scholar 

  • Storer JB, Mitchell TJ, Fry RJ (1988) Extrapolation of the relative risk of radiogenic neoplasms across mouse strains and to man. Radiat Res 114:331–353

    Article  PubMed  CAS  Google Scholar 

  • Szymanska H, Sitarz M, Krysiak E, Piskorowska J, Czarnomska A, Skurzak H, Hart AA, de Jong D, Demant P (1999) Genetics of susceptibility to radiation-induced lymphomas, leukemias and lung tumors studied in recombinant congenic strains. Int J Cancer 83:674–678

    Article  PubMed  CAS  Google Scholar 

  • Tawa R, Kimura Y, Komura J, Miyamura Y, Kurishita A, Sasaki MS, Sakurai H, Ono T (1998) Effects of X-ray irradiation on genomic DNA methylation levels in mouse tissues. J Radiat Res 39:271–278

    Article  PubMed  CAS  Google Scholar 

  • Tornaletti S, Rozek D, Pfeifer GP (1993) The distribution of UV photoproducts along the human p53 gene and its relation to mutations in skin cancer. Oncogene 8:2051–2057

    PubMed  CAS  Google Scholar 

  • Tremblay A, Jasin M, Chartrand P (2000) A double-strand break in a chromosomal LINE element can be repaired by gene conversion with various endogenous LINE elements in mouse cells. Mol Cell Biol 20:54–60

    Article  PubMed  CAS  Google Scholar 

  • Tutt A, Bertwistle D, Valentine J, Gabriel A, Swift S, Ross G, Griffin C, Thacker J, Ashworth A (2001) Mutation in Brca2 stimulates error-prone homology-directed repair of DNA double-­strand breaks occurring between repeated sequences. EMBO J 20:4704–4716

    Article  PubMed  CAS  Google Scholar 

  • Ullrich RL, Ponnaiya B (1998) Radiation-induced instability and its relation to radiation carcinogenesis. Int J Radiat Biol 74:747–754

    Article  PubMed  CAS  Google Scholar 

  • Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11:700–714

    Article  PubMed  CAS  Google Scholar 

  • Venkitaraman AR (2002) Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108:171–182

    Article  PubMed  CAS  Google Scholar 

  • Wakeford R (2008) Childhood leukaemia following medical diagnostic exposure to ionizing radiation in utero or after birth. Radiat Prot Dosimetry 132:166–174

    Article  PubMed  CAS  Google Scholar 

  • Warmerdam DO, Kanaar R (2010) Dealing with DNA damage: relationships between checkpoint and repair pathways. Mutat Res 704:2–11

    Article  PubMed  CAS  Google Scholar 

  • Weaver BA, Silk AD, Montagna C, Verdier-Pinard P, Cleveland DW (2007) Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 11:25–36

    Article  PubMed  CAS  Google Scholar 

  • Weinstock DM, Elliott B, Jasin M (2006a) A model of oncogenic rearrangements: differences between chromosomal translocation mechanisms and simple double-strand break repair. Blood 107:777–780

    Article  PubMed  CAS  Google Scholar 

  • Weinstock DM, Richardson CA, Elliott B, Jasin M (2006b) Modeling oncogenic translocations: distinct roles for double-strand break repair pathways in translocation formation in mammalian cells. DNA Repair 5:1065–1074

    Article  PubMed  CAS  Google Scholar 

  • Winn LM, Kim PM, Nickoloff JA (2003) Oxidative stress-induced homologous recombination as a novel mechanism for phenytoin-initiated toxicity. J Pharmacol Exp Ther 306:523–527

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Okayasu R, Weil MM, Silver A, McCarthy M, Zabriskie R, Long S, Cox R, Ullrich RL (2001) Elevated breast cancer risk in irradiated BALB/c mice associates with unique functional polymorphism of the Prkdc (DNA-dependent protein kinase catalytic subunit) gene. Cancer Res 61:1820–1824

    PubMed  CAS  Google Scholar 

  • Yuen KW, Montpetit B, Hieter P (2005) The kinetochore and cancer: what's the connection? Curr Opin Cell Biol 17:576–582

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Joel Bedford, Howard Liber, Susan Bailey, Michael Weil, and William Morgan for many helpful discussions. Research in the Nickoloff laboratory is supported by NIH grant R01 GM084020, and by the Japan National Institute of Radiological Sciences (NIRS) International Open Laboratory program. Research in the Okayasu and Fujimori laboratories is supported by the NIRS, and Okayasu also receives support from a Grant-in-Aid award from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jac A. Nickoloff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Allen, C.P., Fujimori, A., Okayasu, R., Nickoloff, J.A. (2013). Radiation-Induced Delayed Genome Instability and Hypermutation in Mammalian Cells. In: Mittelman, D. (eds) Stress-Induced Mutagenesis. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6280-4_9

Download citation

Publish with us

Policies and ethics