Skip to main content

Kisspeptin and Clinical Disorders

  • Chapter
  • First Online:
Kisspeptin Signaling in Reproductive Biology

Abstract

The hypothalamic hormone GnRH has traditionally been viewed as a central driver of the hypothalamic-pituitary-gonadal axis. Pulsatile GnRH release is required for pulsatile gonadotropin secretion, which then modulates gonadal steroid feedback and brings about full fertility in the adult. Pathways governing GnRH ontogeny and physiology have been discovered by studying humans with disorders of GnRH secretion. In this chapter, the human genetics of the kisspeptin signaling pathway in patients with diverse reproductive phenotypes will be explored. The discovery of defects in the kisspeptin system in several reproductive disorders has shed light on the mechanisms involved in regulating GnRH secretion, revealing the critical role played by the kisspeptin signaling pathway in pubertal initiation and reproductive function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crowley WF Jr, McArthur JW (1980) Simulation of the normal menstrual cycle in Kallman’s syndrome by pulsatile administration of luteinizing hormone-releasing hormone (LHRH). J Clin Endocrinol Metab 51:173–175

    Article  PubMed  Google Scholar 

  2. Hoffman AR, Crowley WF Jr (1982) Induction of puberty in men by long-term pulsatile administration of low-dose gonadotropin-releasing hormone. N Engl J Med 307:1237–1241

    Article  PubMed  CAS  Google Scholar 

  3. de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E (2003) Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci U S A 100:10972–10976

    Article  PubMed  Google Scholar 

  4. Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS Jr, Shagoury JK, Bo-Abbas Y, Kuohung W, Schwinof KM, Hendrick AG, Zahn D, Dixon J, Kaiser UB, Slaugenhaupt SA, Gusella JF, O’Rahilly S, Carlton MB, Crowley WF Jr, Aparicio SA, Colledge WH (2003) The GPR54 gene as a regulator of puberty. N Engl J Med 349:1614–1627

    Article  PubMed  CAS  Google Scholar 

  5. Maquat LE, Carmichael GG (2001) Quality control of mRNA function. Cell 104:173–176

    Article  PubMed  CAS  Google Scholar 

  6. Frischmeyer PA, van Hoof A, O’Donnell K, Guerrerio AL, Parker R, Dietz HC (2002) An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science 295:2258–2261

    Article  PubMed  CAS  Google Scholar 

  7. van Hoof A, Frischmeyer PA, Dietz HC, Parker R (2002) Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science 295:2262–2264

    Article  PubMed  Google Scholar 

  8. Chan YM, Broder-Fingert S, Wong KM, Seminara SB (2009) Kisspeptin/Gpr54-independent gonadotrophin-releasing hormone activity in Kiss1 and Gpr54 mutant mice. J Neuroendocrinol 21:1015–1023

    Article  PubMed  CAS  Google Scholar 

  9. Funes S, Hedrick JA, Vassileva G, Markowitz L, Abbondanzo S, Golovko A, Yang S, Monsma FJ, Gustafson EL (2003) The KiSS-1 receptor GPR54 is essential for the development of the murine reproductive system. Biochem Biophys Res Commun 312:1357–1363

    Article  PubMed  CAS  Google Scholar 

  10. Gottsch ML, Cunningham MJ, Smith JT, Popa SM, Acohido BV, Crowley WF, Seminara S, Clifton DK, Steiner RA (2004) A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology 145:4073–4077

    Article  PubMed  CAS  Google Scholar 

  11. Shahab M, Mastronardi C, Seminara SB, Crowley WF, Ojeda SR, Plant TM (2005) Increased hypothalamic GPR54 signaling: a potential mechanism for initiation of puberty in primates. Proc Natl Acad Sci U S A 102:2129–2134

    Article  PubMed  CAS  Google Scholar 

  12. Navarro VM, Castellano JM, Fernandez-Fernandez R, Barreiro ML, Roa J, Sanchez-Criado JE, Aguilar E, Dieguez C, Pinilla L, Tena-Sempere M (2004) Developmental and hormonally regulated messenger ribonucleic acid expression of KiSS-1 and its putative receptor, GPR54, in rat hypothalamus and potent luteinizing hormone-releasing activity of KiSS-1 peptide. Endocrinology 145:4565–4574

    Article  PubMed  CAS  Google Scholar 

  13. Smith JT, Dungan HM, Stoll EA, Gottsch ML, Braun RE, Eacker SM, Clifton DK, Steiner RA (2005) Differential regulation of KiSS-1 mRNA expression by sex steroids in the brain of the male mouse. Endocrinology 146:2976–2984

    Article  PubMed  CAS  Google Scholar 

  14. Smith JT, Cunningham MJ, Rissman EF, Clifton DK, Steiner RA (2005) Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology 146:3686–3692

    Article  PubMed  CAS  Google Scholar 

  15. Irwig MS, Fraley GS, Smith JT, Acohido BV, Popa SM, Cunningham MJ, Gottsch ML, Clifton DK, Steiner RA (2004) Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KiSS-1 mRNA in the male rat. Neuroendocrinology 80:264–272

    Article  PubMed  CAS  Google Scholar 

  16. Shibata M, Friedman RL, Ramaswamy S, Plant TM (2007) Evidence that down regulation of hypothalamic KiSS-1 expression is involved in the negative feedback action of testosterone to regulate luteinising hormone secretion in the adult male rhesus monkey (Macaca mulatta). J Neuroendocrinol 19:432–438

    Article  PubMed  CAS  Google Scholar 

  17. Smith JT, Popa SM, Clifton DK, Hoffman GE, Steiner RA (2006) Kiss1 neurons in the forebrain as central processors for generating the preovulatory luteinizing hormone surge. J Neurosci 26:6687–6694

    Article  PubMed  CAS  Google Scholar 

  18. Kinoshita M, Tsukamura H, Adachi S, Matsui H, Uenoyama Y, Iwata K, Yamada S, Inoue K, Ohtaki T, Matsumoto H, Maeda K (2005) Involvement of central metastin in the regulation of preovulatory luteinizing hormone surge and estrous cyclicity in female rats. Endocrinology 146:4431–4436

    Article  PubMed  CAS  Google Scholar 

  19. Greives TJ, Mason AO, Scotti MA, Levine J, Ketterson ED, Kriegsfeld LJ, Demas GE (2007) Environmental control of kisspeptin: implications for seasonal reproduction. Endocrinology 148:1158–1166

    Article  PubMed  CAS  Google Scholar 

  20. Greives TJ, Kriegsfeld LJ, Demas GE (2008) Exogenous kisspeptin does not alter photoperiod-­induced gonadal regression in Siberian hamsters (Phodopus sungorus). Gen Comp Endocrinol 156:552–558

    Article  PubMed  CAS  Google Scholar 

  21. Smith JT, Coolen LM, Kriegsfeld LJ, Sari IP, Jaafarzadehshirazi MR, Maltby M, Bateman K, Goodman RL, Tilbrook AJ, Ubuka T, Bentley GE, Clarke IJ, Lehman MN (2008) Variation in kisspeptin and RFamide-related peptide (RFRP) expression and terminal connections to gonadotropin-releasing hormone neurons in the brain: a novel medium for seasonal breeding in the sheep. Endocrinology 149:5770–5782

    Article  PubMed  CAS  Google Scholar 

  22. Greives TJ, Humber SA, Goldstein AN, Scotti MA, Demas GE, Kriegsfeld LJ (2008) Photoperiod and testosterone interact to drive seasonal changes in kisspeptin expression in Siberian hamsters (Phodopus sungorus). J Neuroendocrinol 20:1339–1347

    Article  PubMed  CAS  Google Scholar 

  23. Smith JT, Saleh SN, Clarke IJ (2009) Seasonal and cyclical change in the luteinizing hormone response to kisspeptin in the ewe. Neuroendocrinology 90:283–291

    Article  PubMed  CAS  Google Scholar 

  24. Paul MJ, Pyter LM, Freeman DA, Galang J, Prendergast BJ (2009) Photic and nonphotic seasonal cues differentially engage hypothalamic kisspeptin and RFamide-related peptide mRNA expression in Siberian hamsters. J Neuroendocrinol 21:1007–1014

    Article  PubMed  CAS  Google Scholar 

  25. Chalivoix S, Bagnolini A, Caraty A, Cognie J, Malpaux B, Dufourny L (2010) Effects of photoperiod on kisspeptin neuronal populations of the ewe diencephalon in connection with reproductive function. J Neuroendocrinol 22(2):110–118

    Article  PubMed  CAS  Google Scholar 

  26. Smith JT, Acohido BV, Clifton DK, Steiner RA (2006) KiSS-1 neurones are direct targets for leptin in the ob/ob mouse. J Neuroendocrinol 18:298–303

    Article  PubMed  CAS  Google Scholar 

  27. Castellano JM, Navarro VM, Fernandez-Fernandez R, Roa J, Vigo E, Pineda R, Dieguez C, Aguilar E, Pinilla L, Tena-Sempere M (2006) Expression of hypothalamic KiSS-1 system and rescue of defective gonadotropic responses by kisspeptin in streptozotocin-induced diabetic male rats. Diabetes 55:2602–2610

    Article  PubMed  CAS  Google Scholar 

  28. Sykiotis GP, Plummer L, Hughes VA, Au M, Durrani S, Nayak-Young S, Dwyer AA, Quinton R, Hall JE, Gusella JF, Seminara SB, Crowley WF Jr, Pitteloud N (2010) Oligogenic basis of isolated gonadotropin-releasing hormone deficiency. Proc Natl Acad Sci U S A 107:15140–15144

    Article  PubMed  CAS  Google Scholar 

  29. Bhagavath B, Xu N, Ozata M, Rosenfield RL, Bick DP, Sherins RJ, Layman LC (2007) KAL1 mutations are not a common cause of idiopathic hypogonadotrophic hypogonadism in humans. Mol Hum Reprod 13:165–170

    Article  PubMed  CAS  Google Scholar 

  30. Albuisson J, Pecheux C, Carel JC, Lacombe D, Leheup B, Lapuzina P, Bouchard P, Legius E, Matthijs G, Wasniewska M, Delpech M, Young J, Hardelin JP, Dode C (2005) Kallmann syndrome: 14 novel mutations in KAL1 and FGFR1 (KAL2). Hum Mutat 25:98–99

    Article  PubMed  Google Scholar 

  31. Bilban M, Ghaffari-Tabrizi N, Hintermann E, Bauer S, Molzer S, Zoratti C, Malli R, Sharabi A, Hiden U, Graier W, Knofler M, Andreae F, Wagner O, Quaranta V, Desoye G (2004) Kisspeptin-10, a KiSS-1/metastin-derived decapeptide, is a physiological invasion inhibitor of primary human trophoblasts. J Cell Sci 117:1319–1328

    Article  PubMed  CAS  Google Scholar 

  32. Roseweir AK, Katz AA, Millar RP (2012) Kisspeptin-10 inhibits cell migration in vitro via a receptor-GSK3 beta-FAK feedback loop in HTR8SVneo cells. Placenta 33:408–415

    Article  PubMed  CAS  Google Scholar 

  33. Lee JH, Welch DR (1997) Suppression of metastasis in human breast carcinoma MDA-MB-435 cells after transfection with the metastasis suppressor gene, KiSS-1. Cancer Res 57:2384–2387

    PubMed  CAS  Google Scholar 

  34. Miele ME, Robertson G, Lee JH, Coleman A, McGary CT, Fisher PB, Lugo TG, Welch DR (1996) Metastasis suppressed, but tumorigenicity and local invasiveness unaffected, in the human melanoma cell line MelJuSo after introduction of human chromosomes 1 or 6. Mol Carcinog 15:284–299

    Article  PubMed  CAS  Google Scholar 

  35. Lanfranco F, Gromoll J, von Eckardstein S, Herding EM, Nieschlag E, Simoni M (2005) Role of sequence variations of the GnRH receptor and G protein-coupled receptor 54 gene in male idiopathic hypogonadotropic hypogonadism. Eur J Endocrinol 153:845–852

    Article  PubMed  CAS  Google Scholar 

  36. Teles MG, Trarbach EB, Noel SD, Guerra-Junior G, Jorge A, Beneduzzi D, Bianco SD, Mukherjee A, Baptista MT, Costa EM, De Castro M, Mendonca BB, Kaiser UB, Latronico AC (2010) A novel homozygous splice acceptor site mutation of KISS1R in two siblings with normosmic isolated hypogonadotropic hypogonadism. Eur J Endocrinol 163:29–34

    Article  PubMed  CAS  Google Scholar 

  37. Tenenbaum-Rakover Y, Commenges-Ducos M, Iovane A, Aumas C, Admoni O, de Roux N (2007) Neuroendocrine phenotype analysis in five patients with isolated hypogonadotropic hypogonadism due to a L102P inactivating mutation of GPR54. J Clin Endocrinol Metab 92:1137–1144

    Article  PubMed  CAS  Google Scholar 

  38. Bo-Abbas Y, Acierno JS Jr, Shagoury JK, Crowley WF Jr, Seminara SB (2003) Autosomal recessive idiopathic hypogonadotropic hypogonadism: genetic analysis excludes mutations in the gonadotropin-releasing hormone (GnRH) and GnRH receptor genes. J Clin Endocrinol Metab 88:2730–2737

    Article  PubMed  CAS  Google Scholar 

  39. Pallais JC, Bo-Abbas Y, Pitteloud N, Crowley WF Jr, Seminara SB (2006) Neuroendocrine, gonadal, placental, and obstetric phenotypes in patients with IHH and mutations in the G-protein coupled receptor, GPR54. Mol Cell Endocrinol 254–255:70–77

    Article  PubMed  Google Scholar 

  40. Nimri R, Lebenthal Y, Lazar L, Chevrier L, Phillip M, Bar M, Hernandez-Mora E, de Roux N, Gat-Yablonski G (2011) A novel loss-of-function mutation in GPR54/KISS1R leads to hypogonadotropic hypogonadism in a highly consanguineous family. J Clin Endocrinol Metab 96(3):E536–E545

    Article  PubMed  CAS  Google Scholar 

  41. Semple RK, Achermann JC, Ellery J, Farooqi IS, Karet FE, Stanhope RG, O’Rahilly S, Aparicio SA (2005) Two novel missense mutations in g protein-coupled receptor 54 in a patient with hypogonadotropic hypogonadism. J Clin Endocrinol Metab 90:1849–1855

    Article  PubMed  CAS  Google Scholar 

  42. Wahab F, Quinton R, Seminara SB (2011) The kisspeptin signaling pathway and its role in human isolated GnRH deficiency. Mol Cell Endocrinol 346:29–36

    Article  PubMed  CAS  Google Scholar 

  43. Goodman RL, Lehman MN, Smith JT, Coolen LM, de Oliveira CV, Jafarzadehshirazi MR, Pereira A, Iqbal J, Caraty A, Ciofi P, Clarke IJ (2007) Kisspeptin neurons in the arcuate nucleus of the ewe express both dynorphin A and neurokinin B. Endocrinology 148:5752–5760

    Article  PubMed  CAS  Google Scholar 

  44. Rance NE (2009) Menopause and the human hypothalamus: evidence for the role of kisspeptin/neurokinin B neurons in the regulation of estrogen negative feedback. Peptides 30:111–122

    Article  PubMed  CAS  Google Scholar 

  45. Hrabovszky E, Ciofi P, Vida B, Horvath MC, Keller E, Caraty A, Bloom SR, Ghatei MA, Dhillo WS, Liposits Z, Kallo I (2010) The kisspeptin system of the human hypothalamus: sexual dimorphism and relationship with gonadotropin-releasing hormone and neurokinin B neurons. Eur J Neurosci 31:1984–1998

    Article  PubMed  CAS  Google Scholar 

  46. Topaloglu AK, Reimann F, Guclu M, Yalin AS, Kotan LD, Porter KM, Serin A, Mungan NO, Cook JR, Ozbek MN, Imamoglu S, Akalin NS, Yuksel B, O’Rahilly S, Semple RK (2009) TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for neurokinin B in the central control of reproduction. Nat Genet 41:354–358

    Article  PubMed  CAS  Google Scholar 

  47. Gianetti E, Tusset C, Noel SD, Au MG, Dwyer AA, Hughes VA, Abreu AP, Carroll J, Trarbach E, Silveira LF, Costa EM, de Mendonca BB, de Castro M, Lofrano A, Hall JE, Bolu E, Ozata M, Quinton R, Amory JK, Stewart SE, Arlt W, Cole TR, Crowley WF, Kaiser UB, Latronico AC, Seminara SB (2010) TAC3/TACR3 mutations reveal preferential activation of gonadotropin-­releasing hormone release by neurokinin B in neonatal life followed by reversal in adulthood. J Clin Endocrinol Metab 95(6):2857–2867

    Article  PubMed  CAS  Google Scholar 

  48. Yang JJ, Caligioni CS, Chan YM, Seminara SB (2012) Uncovering novel reproductive defects in neurokinin B receptor null mice: closing the gap between mice and men. Endocrinology 153:1498–1508

    Article  PubMed  CAS  Google Scholar 

  49. Pitteloud N, Boepple PA, DeCruz S, Valkenburgh SB, Crowley WF Jr, Hayes FJ (2001) The fertile eunuch variant of idiopathic hypogonadotropic hypogonadism: spontaneous reversal associated with a homozygous mutation in the gonadotropin-releasing hormone receptor. J Clin Endocrinol Metab 86:2470–2475

    Article  PubMed  CAS  Google Scholar 

  50. Dewailly D, Boucher A, Decanter C, Lagarde JP, Counis R, Kottler ML (2002) Spontaneous pregnancy in a patient who was homozygous for the Q106R mutation in the gonadotropin-­releasing hormone receptor gene. Fertil Steril 77:1288–1291

    Article  PubMed  Google Scholar 

  51. Pitteloud N, Acierno JS Jr, Meysing AU, Dwyer AA, Hayes FJ, Crowley WF Jr (2005) Reversible Kallmann syndrome, delayed puberty, and isolated anosmia occurring in a single family with a mutation in the fibroblast growth factor receptor 1 gene. J Clin Endocrinol Metab 90:1317–1322

    Article  PubMed  CAS  Google Scholar 

  52. Raivio T, Falardeau J, Dwyer A, Quinton R, Hayes FJ, Hughes VA, Cole LW, Pearce SH, Lee H, Boepple P, Crowley WF Jr, Pitteloud N (2007) Reversal of idiopathic hypogonadotropic hypogonadism. N Engl J Med 357:863–873

    Article  PubMed  CAS  Google Scholar 

  53. Ribeiro RS, Vieira TC, Abucham J (2007) Reversible Kallmann syndrome: report of the first case with a KAL1 mutation and literature review. Eur J Endocrinol 156:285–290

    Article  PubMed  CAS  Google Scholar 

  54. Sinisi AA, Asci R, Bellastella G, Maione L, Esposito D, Elefante A, De Bellis A, Bellastella A, Iolascon A (2008) Homozygous mutation in the prokineticin-receptor2 gene (Val274Asp) presenting as reversible Kallmann syndrome and persistent oligozoospermia: case report. Hum Reprod 23:2380–2384

    Article  PubMed  CAS  Google Scholar 

  55. Young J, George JT, Tello JA, Francou B, Bouligand J, Guiochon-Mantel A, Brailly-Tabard S, Anderson RA, Millar RP (2012) Kisspeptin restores pulsatile LH secretion in patients with neurokinin B signaling deficiencies: physiological, pathophysiological and therapeutic implications. Neuroendocrinology. doi:10.1159/000336376

  56. Chan YM, Broder-Fingert S, Paraschos S, Lapatto R, Au M, Hughes V, Bianco SD, Min L, Plummer L, Cerrato F, De Guillebon A, Wu IH, Wahab F, Dwyer A, Kirsch S, Quinton R, Cheetham T, Ozata M, Ten S, Chanoine JP, Pitteloud N, Martin KA, Schiffmann R, Van der Kamp HJ, Nader S, Hall JE, Kaiser UB, Seminara SB (2011) GnRH-deficient phenotypes in humans and mice with heterozygous variants in KISS1/Kiss1. J Clin Endocrinol Metab 96:E1771–E1781

    Article  PubMed  CAS  Google Scholar 

  57. Topaloglu AK, Tello JA, Kotan LD, Ozbek MN, Yilmaz MB, Erdogan S, Gurbuz F, Temiz F, Millar RP, Yuksel B (2012) Inactivating KISS1 mutation and hypogonadotropic hypogonadism. N Engl J Med 366:629–635

    Article  PubMed  CAS  Google Scholar 

  58. d’Anglemont de Tassigny X, Fagg LA, Dixon JP, Day K, Leitch HG, Hendrick AG, Zahn D, Franceschini I, Caraty A, Carlton MB, Aparicio SA, Colledge WH (2007) Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene. Proc Natl Acad Sci U S A 104:10714–10719

    Article  PubMed  Google Scholar 

  59. Lapatto R, Pallais JC, Zhang D, Chan YM, Mahan A, Cerrato F, Le WW, Hoffman GE, Seminara SB (2007) Kiss1−/− mice exhibit more variable hypogonadism than Gpr54−/− mice. Endocrinology 148:4927–4936

    Article  PubMed  CAS  Google Scholar 

  60. Mayer C, Boehm U (2011) Female reproductive maturation in the absence of kisspeptin/GPR54 signaling. Nat Neurosci 14:704–710

    Article  PubMed  CAS  Google Scholar 

  61. Gibson MJ, Krieger DT, Charlton HM, Zimmerman EA, Silverman AJ, Perlow MJ (1984) Mating and pregnancy can occur in genetically hypogonadal mice with preoptic area brain grafts. Science 225:949–951

    Article  PubMed  CAS  Google Scholar 

  62. Gibson MJ, Charlton HM, Perlow MJ, Zimmerman EA, Davies TF, Krieger DT (1984) Preoptic area brain grafts in hypogonadal (hpg) female mice abolish effects of congenital hypothalamic gonadotropin-releasing hormone (GnRH) deficiency. Endocrinology 114:1938–1940

    Article  PubMed  CAS  Google Scholar 

  63. Steiner RA (2012) How many kisses are required to change a frog into a princess? In: Presented at the 94th annual meeting of the endocrine society, United States, Houston, TX. Symposium S38-2 “New insights into the regulation of puberty”

    Google Scholar 

  64. Palmert MR, Boepple PA (2001) Variation in the timing of puberty: clinical spectrum and genetic investigation. J Clin Endocrinol Metab 86:2364–2368

    Article  PubMed  CAS  Google Scholar 

  65. Partsch CJ, Heger S, Sippell WG (2002) Management and outcome of central precocious puberty. Clin Endocrinol (Oxf) 56:129–148

    Article  Google Scholar 

  66. Brito VN, Latronico AC, Arnhold IJ, Mendonca BB (2008) Update on the etiology, diagnosis and therapeutic management of sexual precocity. Arq Bras Endocrinol Metabol 52:18–31

    Article  PubMed  Google Scholar 

  67. Kakarla N, Bradshaw KD (2003) Disorders of pubertal development: precocious puberty. Semin Reprod Med 21:339–351

    Article  PubMed  CAS  Google Scholar 

  68. Brito VN, Latronico AC, Arnhold IJ, Lo LS, Domenice S, Albano MC, Fragoso MC, Mendonca BB (1999) Treatment of gonadotropin dependent precocious puberty due to hypothalamic hamartoma with gonadotropin releasing hormone agonist depot. Arch Dis Child 80:231–234

    Article  PubMed  Google Scholar 

  69. de Vries L, Kauschansky A, Shohat M, Phillip M (2004) Familial central precocious puberty suggests autosomal dominant inheritance. J Clin Endocrinol Metab 89:1794–1800

    Article  PubMed  Google Scholar 

  70. Silveira LG, Noel SD, Silveira-Neto AP, Abreu AP, Brito VN, Santos MG, Bianco SD, Kuohung W, Xu S, Gryngarten M, Escobar ME, Arnhold IJ, Mendonca BB, Kaiser UB, Latronico AC (2010) Mutations of the KISS1 gene in disorders of puberty. J Clin Endocrinol Metab 95:2276–2280

    Article  PubMed  CAS  Google Scholar 

  71. Teles MG, Bianco SD, Brito VN, Trarbach EB, Kuohung W, Xu S, Seminara SB, Mendonca BB, Kaiser UB, Latronico AC (2008) A GPR54-activating mutation in a patient with central precocious puberty. N Engl J Med 358:709–715

    Article  PubMed  CAS  Google Scholar 

  72. Bianco SD, Vandepas L, Correa-Medina M, Gereben B, Mukherjee A, Kuohung W, Carroll R, Teles MG, Latronico AC, Kaiser UB (2011) KISS1R intracellular trafficking and degradation: effect of the Arg386Pro disease-associated mutation. Endocrinology 152:1616–1626

    Article  PubMed  CAS  Google Scholar 

  73. Ko JM, Lee HS, Hwang JS (2010) KISS1 gene analysis in Korean girls with central precocious puberty: a polymorphism, p.P110T, suggested to exert a protective effect. Endocr J 57:701–709

    Article  PubMed  CAS  Google Scholar 

  74. Tommiska J, Sorensen K, Aksglaede L, Koivu R, Puhakka L, Juul A, Raivio T (2011) LIN28B, LIN28A, KISS1, and KISS1R in idiopathic central precocious puberty. BMC Res Notes 4:363

    Article  PubMed  CAS  Google Scholar 

  75. Chan YM, Fenoglio-Simeone KA, Paraschos S, Muhammad L, Troester MM, Ng YT, Johnsonbaugh RE, Coons SW, Prenger EC, Kerrigan JF Jr, Seminara SB (2010) Central precocious puberty due to hypothalamic hamartomas correlates with anatomic features but not with expression of GnRH, TGFalpha, or KISS1. Horm Res Paediatr 73:312–319

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Seminara and some of the data referenced in this article were supported by the Eunice Kennedy Shriver NICHD/NIH through cooperative agreement [U54 HD028138] as part of the Specialized Cooperative Centers Program in Reproduction and Infertility Research, as well as R01 HD043341 and K24 HD067388.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Beth Seminara M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Silveira, L.G., Latronico, A.C., Seminara, S.B. (2013). Kisspeptin and Clinical Disorders. In: Kauffman, A., Smith, J. (eds) Kisspeptin Signaling in Reproductive Biology. Advances in Experimental Medicine and Biology, vol 784. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6199-9_9

Download citation

Publish with us

Policies and ethics