Skip to main content

Chromatin Looping and Long Distance Regulation by Androgen Receptor

  • Chapter
  • First Online:
Androgen-Responsive Genes in Prostate Cancer
  • 1019 Accesses

Abstract

The importance of the androgen signaling axis to the development and progression of prostate cancer (PCa) is central to our understanding of the disease and the therapeutic strategies currently utilized against it. The androgen receptor (AR) is known to transform the hormone stimulatory signal into an oncogenic gene transcription program required for PCa initiation and progression. Bound by AR primarily at their distal enhancer elements, AR target gene transcription relies on a mechanism known as chromatin looping. Increasingly abundant evidence suggests that changing patterns in AR-mediated chromatin loop formation underlie alterations in gene expression profiles among PCa cases and throughout PCa progression. Defining the role of additional loop-facilitating activities and the impact of genome organization on the patterns of AR-mediated chromatin interactions remains an obstacle to full understanding of transcription regulation by AR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Griffin JE (1992) Androgen resistance–the clinical and molecular spectrum. N Engl J Med 326(9):611–618. doi:10.1056/NEJM199202273260906

    Article  PubMed  CAS  Google Scholar 

  2. Taplin ME (2007) Drug insight: role of the androgen receptor in the development and progression of prostate cancer. Nat Clin Pract Oncol 4(4):236–244. doi:10.1038/ncponc0765

    Article  PubMed  CAS  Google Scholar 

  3. Lonergan PE, Tindall DJ (2011) Androgen receptor signaling in prostate cancer development and progression. J Carcinogen 10:20. doi:10.4103/1477-3163.83937

    Google Scholar 

  4. Heinlein CA, Chang C (2004) Androgen receptor in prostate cancer. Endocr Rev 25(2):276–308

    Article  PubMed  CAS  Google Scholar 

  5. Debes JD, Tindall DJ (2004) Mechanisms of androgen-refractory prostate cancer. N Engl J Med 351(15):1488–1490. doi:10.1056/NEJMp048178

    Article  PubMed  CAS  Google Scholar 

  6. Wang Q, Li W, Zhang Y, Yuan X, Xu K, Yu J, Chen Z, Beroukhim R, Wang H, Lupien M, Wu T, Regan MM, Meyer CA, Carroll JS, Manrai AK, Janne OA, Balk SP, Mehra R, Han B, Chinnaiyan AM, Rubin MA, True L, Fiorentino M, Fiore C, Loda M, Kantoff PW, Liu XS, Brown M (2009) Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell 138(2):245–256. doi:10.1016/j.cell.2009.04.056

    Article  PubMed  CAS  Google Scholar 

  7. Wu D, Zhang C, Shen Y, Nephew KP, Wang Q (2011) Androgen receptor-driven chromatin looping in prostate cancer. Trends Endocrinol Metab 22(12):474–480. doi:10.1016/j.tem.2011.07.006

    Article  PubMed  CAS  Google Scholar 

  8. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60(5):277–300. doi:10.3322/caac.20073

    Article  PubMed  Google Scholar 

  9. Wang Q, Li W, Liu XS, Carroll JS, Janne OA, Keeton EK, Chinnaiyan AM, Pienta KJ, Brown M (2007) A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol Cell 27(3):380–392. doi:10.1016/j.molcel.2007.05.041

    Article  PubMed  Google Scholar 

  10. Massie CE, Adryan B, Barbosa-Morais NL, Lynch AG, Tran MG, Neal DE, Mills IG (2007) New androgen receptor genomic targets show an interaction with the ETS1 transcription factor. EMBO Rep 8(9):871–878. doi:10.1038/sj.embor.7401046

    Article  PubMed  CAS  Google Scholar 

  11. Takayama K, Kaneshiro K, Tsutsumi S, Horie-Inoue K, Ikeda K, Urano T, Ijichi N, Ouchi Y, Shirahige K, Aburatani H, Inoue S (2007) Identification of novel androgen response genes in prostate cancer cells by coupling chromatin immunoprecipitation and genomic microarray analysis. Oncogene 26(30):4453–4463. doi:10.1038/sj.onc.1210229

    Article  PubMed  CAS  Google Scholar 

  12. Jia L, Berman BP, Jariwala U, Yan X, Cogan JP, Walters A, Chen T, Buchanan G, Frenkel B, Coetzee GA (2008) Genomic androgen receptor-occupied regions with different functions, defined by histone acetylation, coregulators and transcriptional capacity. PLoS One 3(11):e3645. doi:10.1371/journal.pone.0003645

    Article  PubMed  Google Scholar 

  13. Yu J, Yu J, Mani RS, Cao Q, Brenner CJ, Cao X, Wang X, Wu L, Li J, Hu M, Gong Y, Cheng H, Laxman B, Vellaichamy A, Shankar S, Li Y, Dhanasekaran SM, Morey R, Barrette T, Lonigro RJ, Tomlins SA, Varambally S, Qin ZS, Chinnaiyan AM (2010) An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 17(5):443–454. doi:10.1016/j.ccr.2010.03.018

    Article  PubMed  CAS  Google Scholar 

  14. Massie CE, Lynch A, Ramos-Montoya A, Boren J, Stark R, Fazli L, Warren A, Scott H, Madhu B, Sharma N, Bon H, Zecchini V, Smith DM, Denicola GM, Mathews N, Osborne M, Hadfield J, Macarthur S, Adryan B, Lyons SK, Brindle KM, Griffiths J, Gleave ME, Rennie PS, Neal DE, Mills IG (2011) The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J 30(13):2719–2733. doi:10.1038/emboj.2011.158

    Article  PubMed  CAS  Google Scholar 

  15. Wang Q, Carroll JS, Brown M (2005) Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking. Mol Cell 19(5):631–642. doi:10.1016/j.molcel.2005.07.018

    Article  PubMed  CAS  Google Scholar 

  16. Chen Z, Zhang C, Wu D, Chen H, Rorick A, Zhang X, Wang Q (2011) Phospho-MED1-enhanced UBE2C locus looping drives castration-resistant prostate cancer growth. EMBO J 30(12):2405–2419. doi:10.1038/emboj.2011.154

    Article  PubMed  CAS  Google Scholar 

  17. Taslim C, Chen Z, Huang K, Huang TH, Wang Q, Lin S (2012) Integrated analysis identifies a class of androgen-responsive genes regulated by short combinatorial long-range mechanism facilitated by CTCF. Nucleic Acids Res 40(11):4754–4764. doi:10.1093/nar/gks139

    Article  PubMed  CAS  Google Scholar 

  18. Bolton EC, So AY, Chaivorapol C, Haqq CM, Li H, Yamamoto KR (2007) Cell- and gene-specific regulation of primary target genes by the androgen receptor. Genes Dev 21(16):2005–2017. doi:10.1101/gad.1564207

    Article  PubMed  CAS  Google Scholar 

  19. Bulger M, Groudine M (1999) Looping versus linking: toward a model for long-distance gene activation. Genes Dev 13(19):2465–2477

    Article  PubMed  CAS  Google Scholar 

  20. Bulger M, Groudine M (2011) Functional and mechanistic diversity of distal transcription enhancers. Cell 144(3):327–339. doi:10.1016/j.cell.2011.01.024

    Article  PubMed  CAS  Google Scholar 

  21. Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295(5558):1306–1311. doi:10.1126/science.1067799

    Article  PubMed  CAS  Google Scholar 

  22. Splinter E, Heath H, Kooren J, Palstra RJ, Klous P, Grosveld F, Galjart N, de Laat W (2006) CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. Genes Dev 20(17):2349–2354. doi:10.1101/gad.399506

    Article  PubMed  CAS  Google Scholar 

  23. Hagege H, Klous P, Braem C, Splinter E, Dekker J, Cathala G, de Laat W, Forne T (2007) Quantitative analysis of chromosome conformation capture assays (3C-qPCR). Nat Protoc 2(7):1722–1733. doi:10.1038/nprot.2007.243

    Article  PubMed  CAS  Google Scholar 

  24. Horike S, Cai S, Miyano M, Cheng JF, Kohwi-Shigematsu T (2005) Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet 37(1):31–40. doi:10.1038/ng1491

    PubMed  CAS  Google Scholar 

  25. Zhao Z, Tavoosidana G, Sjolinder M, Gondor A, Mariano P, Wang S, Kanduri C, Lezcano M, Sandhu KS, Singh U, Pant V, Tiwari V, Kurukuti S, Ohlsson R (2006) Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet 38(11):1341–1347. doi:10.1038/ng1891

    Article  PubMed  CAS  Google Scholar 

  26. Dostie J, Dekker J (2007) Mapping networks of physical interactions between genomic elements using 5C technology. Nat Protoc 2(4):988–1002. doi:10.1038/nprot.2007.116

    Article  PubMed  CAS  Google Scholar 

  27. Dostie J, Richmond TA, Arnaout RA, Selzer RR, Lee WL, Honan TA, Rubio ED, Krumm A, Lamb J, Nusbaum C, Green RD, Dekker J (2006) Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res 16(10):1299–1309. doi:10.1101/gr.5571506

    Article  PubMed  CAS  Google Scholar 

  28. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293. doi:10.1126/science.1181369

    Article  PubMed  CAS  Google Scholar 

  29. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485(7398):376–380. doi:10.1038/nature11082

    Article  PubMed  CAS  Google Scholar 

  30. Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H, Mohamed YB, Orlov YL, Velkov S, Ho A, Mei PH, Chew EG, Huang PY, Welboren WJ, Han Y, Ooi HS, Ariyaratne PN, Vega VB, Luo Y, Tan PY, Choy PY, Wansa KD, Zhao B, Lim KS, Leow SC, Yow JS, Joseph R, Li H, Desai KV, Thomsen JS, Lee YK, Karuturi RK, Herve T, Bourque G, Stunnenberg HG, Ruan X, Cacheux-Rataboul V, Sung WK, Liu ET, Wei CL, Cheung E, Ruan Y (2009) An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 462(7269):58–64. doi:10.1038/nature08497

    Article  PubMed  CAS  Google Scholar 

  31. Handoko L, Xu H, Li G, Ngan CY, Chew E, Schnapp M, Lee CW, Ye C, Ping JL, Mulawadi F, Wong E, Sheng J, Zhang Y, Poh T, Chan CS, Kunarso G, Shahab A, Bourque G, Cacheux-Rataboul V, Sung WK, Ruan Y, Wei CL (2011) CTCF-mediated functional chromatin interactome in pluripotent cells. Nat Genet 43(7):630–638. doi:10.1038/ng.857

    Article  PubMed  CAS  Google Scholar 

  32. Li G, Ruan X, Auerbach RK, Sandhu KS, Zheng M, Wang P, Poh HM, Goh Y, Lim J, Zhang J, Sim HS, Peh SQ, Mulawadi FH, Ong CT, Orlov YL, Hong S, Zhang Z, Landt S, Raha D, Euskirchen G, Wei CL, Ge W, Wang H, Davis C, Fisher-Aylor KI, Mortazavi A, Gerstein M, Gingeras T, Wold B, Sun Y, Fullwood MJ, Cheung E, Liu E, Sung WK, Snyder M, Ruan Y (2012) Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 148(1–2):84–98. doi:10.1016/j.cell.2011.12.014

    Article  PubMed  CAS  Google Scholar 

  33. Zhang X, Cowper-Sal Lari R, Bailey SD, Moore JH, Lupien M (2012) Integrative functional genomics identifies an enhancer looping to the SOX9 gene disrupted by the 17q24.3 prostate cancer risk locus. Genome Res. doi:10.1101/gr.135665.111

    Google Scholar 

  34. Wang H, McKnight NC, Zhang T, Lu ML, Balk SP, Yuan X (2007) SOX9 is expressed in normal prostate basal cells and regulates androgen receptor expression in prostate cancer cells. Cancer Res 67(2):528–536. doi:10.1158/0008-5472.CAN-06-1672

    Article  PubMed  CAS  Google Scholar 

  35. Wang H, Leav I, Ibaragi S, Wegner M, Hu GF, Lu ML, Balk SP, Yuan X (2008) SOX9 is expressed in human fetal prostate epithelium and enhances prostate cancer invasion. Cancer Res 68(6):1625–1630. doi:10.1158/0008-5472.CAN-07-5915

    Article  PubMed  CAS  Google Scholar 

  36. Thomsen MK, Ambroisine L, Wynn S, Cheah KS, Foster CS, Fisher G, Berney DM, Moller H, Reuter VE, Scardino P, Cuzick J, Ragavan N, Singh PB, Martin FL, Butler CM, Cooper CS, Swain A (2010) SOX9 elevation in the prostate promotes proliferation and cooperates with PTEN loss to drive tumor formation. Cancer Res 70(3):979–987. doi:10.1158/0008-5472.CAN-09-2370

    Article  PubMed  CAS  Google Scholar 

  37. Kaestner KH, Knochel W, Martinez DE (2000) Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev 14(2):142–146

    PubMed  CAS  Google Scholar 

  38. Cirillo LA, McPherson CE, Bossard P, Stevens K, Cherian S, Shim EY, Clark KL, Burley SK, Zaret KS (1998) Binding of the winged-helix transcription factor HNF3 to a linker histone site on the nucleosome. EMBO J 17(1):244–254. doi:10.1093/emboj/17.1.244

    Article  PubMed  CAS  Google Scholar 

  39. Cirillo LA, Lin FR, Cuesta I, Friedman D, Jarnik M, Zaret KS (2002) Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol Cell 9(2):279–289

    Article  PubMed  CAS  Google Scholar 

  40. Sahu B, Laakso M, Ovaska K, Mirtti T, Lundin J, Rannikko A, Sankila A, Turunen JP, Lundin M, Konsti J, Vesterinen T, Nordling S, Kallioniemi O, Hautaniemi S, Janne OA (2011) Dual role of FoxA1 in androgen receptor binding to chromatin, androgen signalling and prostate cancer. EMBO J 30(19):3962–3976. doi:10.1038/emboj.2011.328

    Article  PubMed  CAS  Google Scholar 

  41. Wang D, Garcia-Bassets I, Benner C, Li W, Su X, Zhou Y, Qiu J, Liu W, Kaikkonen MU, Ohgi KA, Glass CK, Rosenfeld MG, Fu XD (2011) Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474(7351):390–394. doi:10.1038/nature10006

    Article  PubMed  CAS  Google Scholar 

  42. Gruvberger S, Ringner M, Chen Y, Panavally S, Saal LH, Borg A, Ferno M, Peterson C, Meltzer PS (2001) Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. Cancer Res 61(16):5979–5984

    PubMed  CAS  Google Scholar 

  43. Lacroix M, Leclercq G (2004) About GATA3, HNF3A, and XBP1, three genes co-expressed with the oestrogen receptor-alpha gene (ESR1) in breast cancer. Mol Cell Endocrinol 219(1–2):1–7. doi:10.1016/j.mce.2004.02.021

    Article  PubMed  CAS  Google Scholar 

  44. Vakoc CR, Letting DL, Gheldof N, Sawado T, Bender MA, Groudine M, Weiss MJ, Dekker J, Blobel GA (2005) Proximity among distant regulatory elements at the beta-globin locus requires GATA-1 and FOG-1. Mol Cell 17(3):453–462. doi:10.1016/j.molcel.2004.12.028

    Article  PubMed  CAS  Google Scholar 

  45. Perissi V, Rosenfeld MG (2005) Controlling nuclear receptors: the circular logic of cofactor cycles. Nat Rev Mol Cell Biol 6(7):542–554. doi:10.1038/nrm1682

    Article  PubMed  CAS  Google Scholar 

  46. Hu Q, Kwon YS, Nunez E, Cardamone MD, Hutt KR, Ohgi KA, Garcia-Bassets I, Rose DW, Glass CK, Rosenfeld MG, Fu XD (2008) Enhancing nuclear receptor-induced transcription requires nuclear motor and LSD1-dependent gene networking in interchromatin granules. Proc Natl Acad Sci USA 105(49):19199–19204. doi:10.1073/pnas.0810634105

    Article  PubMed  CAS  Google Scholar 

  47. Kim SI, Bultman SJ, Kiefer CM, Dean A, Bresnick EH (2009) BRG1 requirement for long-range interaction of a locus control region with a downstream promoter. Proc Natl Acad Sci USA 106(7):2259–2264. doi:10.1073/pnas.0806420106

    Article  PubMed  CAS  Google Scholar 

  48. Malik S, Roeder RG (2010) The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nat Rev Genet 11(11):761–772. doi:10.1038/nrg2901

    Article  PubMed  CAS  Google Scholar 

  49. Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA, van Berkum NL, Ebmeier CC, Goossens J, Rahl PB, Levine SS, Taatjes DJ, Dekker J, Young RA (2010) Mediator and cohesin connect gene expression and chromatin architecture. Nature 467(7314):430–435. doi:10.1038/nature09380

    Article  PubMed  CAS  Google Scholar 

  50. Phillips JE, Corces VG (2009) CTCF: master weaver of the genome. Cell 137(7):1194–1211. doi:10.1016/j.cell.2009.06.001

    Article  PubMed  Google Scholar 

  51. Espinoza CA, Ren B (2011) Mapping higher order structure of chromatin domains. Nat Genet 43(7):615–616. doi:10.1038/ng.869

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Dr. Zhong Chen for his critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianben Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sunkel, B., Wang, Q. (2013). Chromatin Looping and Long Distance Regulation by Androgen Receptor. In: Wang, Z. (eds) Androgen-Responsive Genes in Prostate Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6182-1_4

Download citation

Publish with us

Policies and ethics