Skip to main content

Androgen Receptor-Regulated Genes in Prostate Cancer Initiation Versus Metastasis

  • Chapter
  • First Online:
Androgen-Responsive Genes in Prostate Cancer
  • 991 Accesses

Abstract

Despite extensive attempts to reveal downstream genes of androgen recepter (AR) signaling in each stage of prostate cancer (PCa), the critical switches that trigger PCa leading to castration resistant PCa (CRPC) and metastasis still remain unclear. Compared to the normal prostate, proliferation/cell cycle/apoptosis related genes are upregulated, but genes related to differentiation and secretory functions are downregulated by androgen/AR in PCa. After the androgen deprivation therapy (ADT), AR becomes less sensitive to androgens, but may be able to be activated via multiple ways, such as androgen-independent AR activation, non-genotropic activation of AR, chromosome rearrangement, and cofactor activation, all of these cross-talks may contribute to the progression at the castration resistant stage with metastasis.

Distinct sets of genes up- and downregulated by AR were demonstrated in the metastatic stage. More adhesion related molecules are upregulated in metastasis. Considering different functions of AR in PCa growth (promoter) versus metastasis (suppressor), understanding the exact downstream gene profiles of AR signaling in each stage of PCa is essential so that we can develop successful future therapies with better efficacy in each stage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evans WH, Bergeron JJ (1988) Nuclear receptors: a re-evaluation. Trends Biochem Sci 13:7–8

    PubMed  CAS  Google Scholar 

  2. Sadi MV, Walsh PC, Barrack ER (1991) Immunohistochemical study of androgen receptors in metastatic prostate cancer. Comparison of receptor content and response to hormonal therapy. Cancer 67:3057–3064

    PubMed  CAS  Google Scholar 

  3. Mohler JL, Chen Y, Hamil K et al (1996) Androgen and glucocorticoid receptors in the stroma and epithelium of prostatic hyperplasia and carcinoma. Clin Cancer Res 2:889–895

    PubMed  CAS  Google Scholar 

  4. Hobisch A, Culig Z, Radmayr C et al (1996) Androgen receptor status of lymph node metastases from prostate cancer. Prostate 28:129–135

    PubMed  CAS  Google Scholar 

  5. van der Kwast TH, Schalken J, Ruizeveld de Winter JA et al (1991) Androgen receptors in endocrine-therapy-resistant human prostate cancer. Int J Cancer 48:189–193

    PubMed  Google Scholar 

  6. Sweat SD, Pacelli A, Bergstralh EJ et al (1999) Androgen receptor expression in prostate cancer lymph node metastases is predictive of outcome after surgery. J Urol 161:1233–1237

    PubMed  CAS  Google Scholar 

  7. Sweat SD, Pacelli A, Bergstralh EJ et al (1999) Androgen receptor expression in prostatic ­intraepithelial neoplasia and cancer. J Urol 161:1229–1232

    PubMed  CAS  Google Scholar 

  8. Titus MA, Schell MJ, Lih FB et al (2005) Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clin Cancer Res 11:4653–4657

    PubMed  CAS  Google Scholar 

  9. Buchanan G, Irvine RA, Coetzee GA et al (2001) Contribution of the androgen receptor to prostate cancer predisposition and progression. Cancer Metastasis Rev 20:207–223

    PubMed  CAS  Google Scholar 

  10. Steinkamp MP, O’Mahony OA, Brogley M et al (2009) Treatment-dependent androgen receptor mutations in prostate cancer exploit multiple mechanisms to evade therapy. Cancer Res 69:4434–4442

    PubMed  CAS  Google Scholar 

  11. Mizokami A, Koh E, Fujita H et al (2004) The adrenal androgen androstenediol is present in prostate cancer tissue after androgen deprivation therapy and activates mutated androgen receptor. Cancer Res 64:765–771

    PubMed  CAS  Google Scholar 

  12. Li LC (2007) Epigenetics of prostate cancer. Front Biosci 12:3377–3397

    PubMed  CAS  Google Scholar 

  13. Heemers HV, Tindall DJ (2007) Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev 28:778–808

    PubMed  CAS  Google Scholar 

  14. Zhang X, Morrissey C, Sun S et al (2011) Androgen receptor variants occur frequently in castration resistant prostate cancer metastases. PLoS One 6:e27970

    PubMed  CAS  Google Scholar 

  15. Guo Z, Yang X, Sun F et al (2009) A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res 69:2305–2313

    PubMed  CAS  Google Scholar 

  16. Desai SJ, Ma AH, Tepper CG et al (2006) Inappropriate activation of the androgen receptor by nonsteroids: involvement of the Src kinase pathway and its therapeutic implications. Cancer Res 66:10449–10459

    PubMed  CAS  Google Scholar 

  17. Kung HJ, Evans CP (2009) Oncogenic activation of androgen receptor. Urol Oncol 27:48–52

    PubMed  CAS  Google Scholar 

  18. Lee SO, Chun JY, Nadiminty N et al (2007) Interleukin-6 undergoes transition from growth inhibitor associated with neuroendocrine differentiation to stimulator accompanied by androgen receptor activation during LNCaP prostate cancer cell progression. Prostate 67:764–773

    PubMed  CAS  Google Scholar 

  19. Lee SO, Lou W, Nadiminty N et al (2005) Requirement for NF-(kappa)B in interleukin-4-induced androgen receptor activation in prostate cancer cells. Prostate 64:160–167

    PubMed  CAS  Google Scholar 

  20. Chan JM, Stampfer MJ, Giovannucci E et al (1998) Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science 279:563–566

    PubMed  CAS  Google Scholar 

  21. Cai C, Chen S, Ng P et al (2011) Intratumoral de novo steroid synthesis activates androgen receptor in castration-resistant prostate cancer and is upregulated by treatment with CYP17A1 inhibitors. Cancer Res 71:6503–6513

    PubMed  CAS  Google Scholar 

  22. Unni E, Sun S, Nan B et al (2004) Changes in androgen receptor nongenotropic signaling correlate with transition of LNCaP cells to androgen independence. Cancer Res 64:7156–7168

    PubMed  CAS  Google Scholar 

  23. Cato AC, Nestl A, Mink S (2002) Rapid actions of steroid receptors in cellular signaling pathways. Sci STKE 2002:9

    Google Scholar 

  24. Memarzadeh S, Cai H, Janzen DM et al (2011) Role of autonomous androgen receptor signaling in prostate cancer initiation is dichotomous and depends on the oncogenic signal. Proc Natl Acad Sci USA 108:7962–7967

    PubMed  CAS  Google Scholar 

  25. Yang Q, Fung KM, Day WV et al (2005) Androgen receptor signaling is required for androgen-sensitive human prostate cancer cell proliferation and survival. Cancer Cell Int 5:8

    PubMed  Google Scholar 

  26. Zhu ML, Kyprianou N (2010) Role of androgens and the androgen receptor in epithelial-mesenchymal transition and invasion of prostate cancer cells. FASEB J 24:769–777

    PubMed  CAS  Google Scholar 

  27. Ngan S, Stronach EA, Photiou A et al (2009) Microarray coupled to quantitative RT-PCR analysis of androgen-regulated genes in human LNCaP prostate cancer cells. Oncogene 28:2051–2063

    PubMed  CAS  Google Scholar 

  28. Liao X, Tang S, Thrasher JB et al (2005) Small-interfering RNA-induced androgen receptor silencing leads to apoptotic cell death in prostate cancer. Mol Cancer Ther 4:505–515

    PubMed  CAS  Google Scholar 

  29. Joly-Pharaboz MO, Ruffion A, Roch A et al (2000) Inhibition of growth and induction of apoptosis by androgens of a variant of LNCaP cell line. J Steroid Biochem Mol Biol 73:237–249

    PubMed  CAS  Google Scholar 

  30. Soto AM, Lin TM, Sakabe K et al (1995) Variants of the human prostate LNCaP cell line as tools to study discrete components of the androgen-mediated proliferative response. Oncol Res 7:545–558

    PubMed  CAS  Google Scholar 

  31. Eder IE, Hoffmann J, Rogatsch H et al (2002) Inhibition of LNCaP prostate tumor growth in vivo by an antisense oligonucleotide directed against the human androgen receptor. Cancer Gene Ther 9:117–125

    PubMed  CAS  Google Scholar 

  32. Wu CT, Altuwaijri S, Ricke WA et al (2007) Increased prostate cell proliferation and loss of cell differentiation in mice lacking prostate epithelial androgen receptor. Proc Natl Acad Sci USA 104:12679–12684

    PubMed  CAS  Google Scholar 

  33. Niu Y, Altuwaijri S, Lai KP et al (2008) Androgen receptor is a tumor suppressor and proliferator in prostate cancer. Proc Natl Acad Sci USA 105:12182–12187

    PubMed  CAS  Google Scholar 

  34. Niu Y, Wang J, Shang Z et al (2011) Increased CK5/CK8-positive intermediate cells with stromal smooth muscle cell atrophy in the mice lacking prostate epithelial androgen receptor. PLoS One 6:e20202

    PubMed  CAS  Google Scholar 

  35. Lee SO, Tian J, Huang CK et al (2012) Suppressor role of androgen receptor in proliferation of prostate basal epithelial and progenitor cells. J Endocrinol 213:173–182

    PubMed  CAS  Google Scholar 

  36. Niu Y, Chang TM, Yeh S et al (2010) Differential androgen receptor signals in different cells explain why androgen-deprivation therapy of prostate cancer fails. Oncogene 29:3593–3604

    PubMed  CAS  Google Scholar 

  37. Calvo A, Xiao N, Kang J et al (2002) Alterations in gene expression profiles during prostate cancer progression: functional correlations to tumorigenicity and down-regulation of selenoprotein-P in mouse and human tumors. Cancer Res 62:5325–5335

    PubMed  CAS  Google Scholar 

  38. Fleischmann A, Rocha C, Schobinger S et al (2011) Androgen receptors are differentially expressed in Gleason patterns of prostate cancer and down-regulated in matched lymph node metastases. Prostate 71:453–460

    PubMed  CAS  Google Scholar 

  39. Attard G, Richards J, de Bono JS (2011) New strategies in metastatic prostate cancer: targeting the androgen receptor signaling pathway. Clin Cancer Res 17:1649–1657

    PubMed  CAS  Google Scholar 

  40. Massard C, Fizazi K (2011) Targeting continued androgen receptor signaling in prostate cancer. Clin Cancer Res 17:3876–3883

    PubMed  CAS  Google Scholar 

  41. Nelson KA, Witte JS (2002) Androgen receptor CAG repeats and prostate cancer. Am J Epidemiol 155:883–890

    PubMed  Google Scholar 

  42. Price DK, Chau CH, Till C et al (2010) Androgen receptor CAG repeat length and association with prostate cancer risk: results from the prostate cancer prevention trial. J Urol 184:2297–2302

    PubMed  CAS  Google Scholar 

  43. Nakayama T, Watanabe M, Suzuki H et al (2000) Epigenetic regulation of androgen receptor gene expression in human prostate cancers. Lab Invest 80:1789–1796

    PubMed  CAS  Google Scholar 

  44. Tian J et al (2012) Targeting the unique methylation pattern of androgen receptor (AR) promoter in prostate stem/progenitor cells with 5-Aza-2’-deoxycytidine (5-AZA) leads to suppressed prostate tumorigenesis. J Biol Chem 287(47):39954–39966

    PubMed  CAS  Google Scholar 

  45. Zhou LX, Li T, Huang YR et al (2010) Application of histone modification in the risk prediction of the biochemical recurrence after radical prostatectomy. Asian J Androl 12:171–179

    PubMed  CAS  Google Scholar 

  46. Metzger E, Wissmann M, Yin N et al (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437:436–439

    PubMed  CAS  Google Scholar 

  47. Wissmann M, Yin N, Muller JM et al (2007) Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat Cell Biol 9:347–353

    PubMed  CAS  Google Scholar 

  48. Yamane K, Toumazou C, Tsukada Y et al (2006) JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell 125:483–495

    PubMed  CAS  Google Scholar 

  49. Cai C, He HH, Chen S et al (2011) Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1. Cancer Cell 20:457–471

    PubMed  CAS  Google Scholar 

  50. Ellinger J, Kahl P, von der Gathen J et al (2011) Global histone H3K27 methylation levels are different in localized and metastatic prostate cancer. Cancer Invest 30:92–7

    PubMed  Google Scholar 

  51. Ellinger J, Kahl P, von der Gathen J et al (2010) Global levels of histone modifications predict prostate cancer recurrence. Prostate 70:61–69

    PubMed  CAS  Google Scholar 

  52. Welsbie DS, Xu J, Chen Y et al (2009) Histone deacetylases are required for androgen receptor function in hormone-sensitive and castrate-resistant prostate cancer. Cancer Res 69:958–966

    PubMed  CAS  Google Scholar 

  53. Trtkova K, Bouchal J, Kolar Z (2007) Histone acetylation and methylation in the signaling of steroid hormone receptors. Cell Mol Biol (Noisy-le-grand) 53(Suppl):930–942

    Google Scholar 

  54. Jia L, Berman BP, Jariwala U et al (2008) Genomic androgen receptor-occupied regions with different functions, defined by histone acetylation, coregulators and transcriptional capacity. PLoS One 3:e3645

    PubMed  Google Scholar 

  55. Carver BS, Tran J, Chen Z et al (2009) ETS rearrangements and prostate cancer initiation. Nature 457:E1

    PubMed  CAS  Google Scholar 

  56. Tomlins SA, Laxman B, Dhanasekaran SM et al (2007) Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature 448:595–599

    PubMed  CAS  Google Scholar 

  57. Mehra R, Tomlins SA, Shen R et al (2007) Comprehensive assessment of TMPRSS2 and ETS family gene aberrations in clinically localized prostate cancer. Mod Pathol 20:538–544

    PubMed  CAS  Google Scholar 

  58. Yu J, Mani RS, Cao Q et al (2010) An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 17:443–454

    PubMed  CAS  Google Scholar 

  59. Haffner MC, Aryee MJ, Toubaji A et al (2010) Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat Genet 42:668–675

    PubMed  CAS  Google Scholar 

  60. Marshall TW, Link KA, Petre-Draviam CE et al (2003) Differential requirement of SWI/SNF for androgen receptor activity. J Biol Chem 278:30605–30613

    PubMed  CAS  Google Scholar 

  61. Taplin ME, Balk SP (2004) Androgen receptor: a key molecule in the progression of prostate cancer to hormone independence. J Cell Biochem 91:483–490

    PubMed  CAS  Google Scholar 

  62. Heinlein CA, Chang C (2002) Androgen receptor (AR) coregulators: an overview. Endocr Rev 23:175–200

    PubMed  CAS  Google Scholar 

  63. Rahman M, Miyamoto H, Chang C (2004) Androgen receptor coregulators in prostate cancer: mechanisms and clinical implications. Clin Cancer Res 10:2208–2219

    PubMed  CAS  Google Scholar 

  64. Culig Z, Santer FR (2012) Androgen receptor co-activators in the regulation of cellular events in prostate cancer. World J Urol 30:297–302

    PubMed  CAS  Google Scholar 

  65. Aarnisalo P, Palvimo JJ, Janne OA (1998) CREB-binding protein in androgen receptor-­mediated signaling. Proc Natl Acad Sci USA 95:2122–2127

    PubMed  CAS  Google Scholar 

  66. Huang SM, Cheng YS (2004) Analysis of two CBP (cAMP-response-element-binding protein-binding protein) interacting sites in GRIP1 (glucocorticoid-receptor-interacting protein), and their importance for the function of GRIP1. Biochem J 382:111–119

    PubMed  CAS  Google Scholar 

  67. Debes JD, Sebo TJ, Lohse CM et al (2003) p300 in prostate cancer proliferation and progression. Cancer Res 63:7638–7640

    PubMed  CAS  Google Scholar 

  68. Ding XF, Anderson CM, Ma H et al (1998) Nuclear receptor-binding sites of coactivators glucocorticoid receptor interacting protein 1 (GRIP1) and steroid receptor coactivator 1 (SRC-1): multiple motifs with different binding specificities. Mol Endocrinol 12:302–313

    PubMed  CAS  Google Scholar 

  69. Berrevoets CA, Doesburg P, Steketee K et al (1998) Functional interactions of the AF-2 activation domain core region of the human androgen receptor with the amino-terminal domain and with the transcriptional coactivator TIF2 (transcriptional intermediary factor2). Mol Endocrinol 12:1172–1183

    PubMed  CAS  Google Scholar 

  70. Chiang S, Burch T, Van Domselaar G et al (2010) The interaction between thymine DNA glycosylase and nuclear receptor coactivator 3 is required for the transcriptional activation of nuclear hormone receptors. Mol Cell Biochem 333:221–232

    PubMed  CAS  Google Scholar 

  71. Liao G, Chen LY, Zhang A et al (2003) Regulation of androgen receptor activity by the nuclear receptor corepressor SMRT. J Biol Chem 278:5052–5061

    PubMed  CAS  Google Scholar 

  72. Ishizuka M, Kawate H, Takayanagi R et al (2005) A zinc finger protein TZF is a novel corepressor of androgen receptor. Biochem Biophys Res Commun 331:1025–1031

    PubMed  CAS  Google Scholar 

  73. Rahman MM, Miyamoto H, Lardy H et al (2003) Inactivation of androgen receptor coregulator ARA55 inhibits androgen receptor activity and agonist effect of antiandrogens in prostate cancer cells. Proc Natl Acad Sci USA 100:5124–5129

    PubMed  CAS  Google Scholar 

  74. Yeh S, Chang C (1996) Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells. Proc Natl Acad Sci USA 93:5517–5521

    PubMed  CAS  Google Scholar 

  75. Yeh S, Miyamoto H, Chang C (1997) Hydroxyflutamide may not always be a pure ­antiandrogen. Lancet 349:852–853

    PubMed  CAS  Google Scholar 

  76. Monroy MA, Schott NM, Cox L et al (2003) SNF2-related CBP activator protein (SRCAP) functions as a coactivator of steroid receptor-mediated transcription through synergistic interactions with CARM-1 and GRIP-1. Mol Endocrinol 17:2519–2528

    PubMed  CAS  Google Scholar 

  77. Slupianek A, Yerrum S, Safadi FF et al (2010) The chromatin remodeling factor SRCAP ­modulates expression of prostate specific antigen and cellular proliferation in prostate cancer cells. J Cell Physiol 224:369–375

    PubMed  CAS  Google Scholar 

  78. Onate SA, Tsai SY, Tsai MJ et al (1995) Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270:1354–1357

    PubMed  CAS  Google Scholar 

  79. Voegel JJ, Heine MJ, Zechel C et al (1996) TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J 15:3667–3675

    PubMed  CAS  Google Scholar 

  80. Nagy L, Kao HY, Chakravarti D et al (1997) Nuclear receptor repression mediated by a ­complex containing SMRT, mSin3A, and histone deacetylase. Cell 89:373–380

    PubMed  CAS  Google Scholar 

  81. Alland L, Muhle R, Hou H Jr et al (1997) Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature 387:49–55

    PubMed  CAS  Google Scholar 

  82. Yeh S, Lin HK, Kang HY et al (1999) From HER2/Neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc Natl Acad Sci USA 96:5458–5463

    PubMed  CAS  Google Scholar 

  83. Spencer TE, Jenster G, Burcin MM et al (1997) Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389:194–198

    PubMed  CAS  Google Scholar 

  84. Fu M, Wang C, Reutens AT et al (2000) p300 and p300/cAMP-response element-binding protein-associated factor acetylate the androgen receptor at sites governing ­hormone-dependent transactivation. J Biol Chem 275:20853–20860

    PubMed  CAS  Google Scholar 

  85. Petre-Draviam CE, Cook SL, Burd CJ et al (2003) Specificity of cyclin D1 for androgen receptor regulation. Cancer Res 63:4903–4913

    PubMed  CAS  Google Scholar 

  86. Gregory CW, Fei X, Ponguta LA et al (2004) Epidermal growth factor increases coactivation of the androgen receptor in recurrent prostate cancer. J Biol Chem 279:7119–7130

    PubMed  CAS  Google Scholar 

  87. Kawamura S, Sato I, Wada T et al (2012) Plasma membrane-associated sialidase (NEU3) ­regulates progression of prostate cancer to androgen-independent growth through modulation of androgen receptor signaling. Cell Death Differ 19:170–179

    PubMed  CAS  Google Scholar 

  88. Bohm M, Locke WJ, Sutherland RL et al (2009) A role for GATA-2 in transition to an aggressive phenotype in prostate cancer through modulation of key androgen-regulated genes. Oncogene 28:3847–3856

    PubMed  CAS  Google Scholar 

  89. Bryant KG, Camacho J, Jasmin JF et al (2011) Caveolin-1 overexpression enhances androgen-dependent growth and proliferation in the mouse prostate. Int J Biochem Cell Biol 43:1318–1329

    PubMed  CAS  Google Scholar 

  90. Chen RS, Song YM, Zhou ZY et al (2009) Disruption of xCT inhibits cancer cell metastasis via the caveolin-1/beta-catenin pathway. Oncogene 28:599–609

    PubMed  CAS  Google Scholar 

  91. Hoshino K, Ishiguro H, Teranishi J et al (2011) Regulation of androgen receptor expression through angiotensin II type 1 receptor in prostate cancer cells. Prostate 71:964–975

    PubMed  CAS  Google Scholar 

  92. Comstock CE, Augello MA, Schiewer MJ et al (2011) Cyclin D1 is a selective modifier of androgen-dependent signaling and androgen receptor function. J Biol Chem 286:8117–8127

    PubMed  CAS  Google Scholar 

  93. DaSilva J, Gioeli D, Weber MJ et al (2009) The neuroendocrine-derived peptide parathyroid hormone-related protein promotes prostate cancer cell growth by stabilizing the androgen receptor. Cancer Res 69:7402–7411

    PubMed  CAS  Google Scholar 

  94. Zoubeidi A, Zardan A, Beraldi E et al (2007) Cooperative interactions between androgen receptor (AR) and heat-shock protein 27 facilitate AR transcriptional activity. Cancer Res 67:10455–10465

    PubMed  CAS  Google Scholar 

  95. Zhou ZX, Lane MV, Kemppainen JA et al (1995) Specificity of ligand-dependent androgen receptor stabilization: receptor domain interactions influence ligand dissociation and receptor stability. Mol Endocrinol 9:208–218

    PubMed  CAS  Google Scholar 

  96. Wright AS, Thomas LN, Douglas RC et al (1996) Relative potency of testosterone and dihydrotestosterone in preventing atrophy and apoptosis in the prostate of the castrated rat. J Clin Invest 98:2558–2563

    PubMed  CAS  Google Scholar 

  97. Riegman PH, Vlietstra RJ, van der Korput JA et al (1989) Characterization of the ­prostate-specific antigen gene: a novel human kallikrein-like gene. Biochem Biophys Res Commun 159:95–102

    PubMed  CAS  Google Scholar 

  98. Riegman PH, Vlietstra RJ, van der Korput JA et al (1991) The promoter of the prostate-specific antigen gene contains a functional androgen responsive element. Mol Endocrinol 5:1921–1930

    PubMed  CAS  Google Scholar 

  99. Godoy A, Watts A, Sotomayor P et al (2008) Androgen receptor is causally involved in the homeostasis of the human prostate endothelial cell. Endocrinology 149:2959–2969

    PubMed  CAS  Google Scholar 

  100. Lai KP, Yamashita S, Vitkus S et al (2012) Suppressed prostate epithelial development with impaired branching morphogenesis in mice lacking stromal fibromuscular androgen receptor. Mol Endocrinol 26:52–66

    PubMed  CAS  Google Scholar 

  101. Yu S, Yeh CR, Niu Y et al (2012) Altered prostate epithelial development in mice lacking the androgen receptor in stromal fibroblasts. Prostate 72:437–449

    PubMed  CAS  Google Scholar 

  102. Simanainen U, Allan CM, Lim P et al (2007) Disruption of prostate epithelial androgen receptor impedes prostate lobe-specific growth and function. Endocrinology 148:2264–2272

    PubMed  CAS  Google Scholar 

  103. Jin F, Fondell JD (2009) A novel androgen receptor-binding element modulates Cdc6 transcription in prostate cancer cells during cell-cycle progression. Nucleic Acids Res 37:4826–4838

    PubMed  CAS  Google Scholar 

  104. Balk SP, Knudsen KE (2008) AR, the cell cycle, and prostate cancer. Nucl Recept Signal 6:e001

    PubMed  Google Scholar 

  105. Maddison LA, Sutherland BW, Barrios RJ et al (2004) Conditional deletion of Rb causes early stage prostate cancer. Cancer Res 64:6018–6025

    PubMed  CAS  Google Scholar 

  106. Fang Z, Zhang T, Dizeyi N et al (2012) Androgen receptor Enhances p27 degradation in prostate cancer cells through rapid and selective TORC2 activation. J Biol Chem 287:2090–8

    PubMed  CAS  Google Scholar 

  107. Mallik I, Davila M, Tapia T et al (2008) Androgen regulates Cdc6 transcription through interactions between androgen receptor and E2F transcription factor in prostate cancer cells. Biochim Biophys Acta 1783:1737–1744

    PubMed  CAS  Google Scholar 

  108. Lu S, Liu M, Epner DE et al (1999) Androgen regulation of the cyclin-dependent kinase inhibitor p21 gene through an androgen response element in the proximal promoter. Mol Endocrinol 13:376–384

    PubMed  CAS  Google Scholar 

  109. Sun A, Tang J, Hong Y et al (2008) Androgen receptor-dependent regulation of Bcl-xL expression: implication in prostate cancer progression. Prostate 68:453–461

    PubMed  CAS  Google Scholar 

  110. Gnanapragasam VJ, Robson CN, Neal DE et al (2002) Regulation of FGF8 expression by the androgen receptor in human prostate cancer. Oncogene 21:5069–5080

    PubMed  CAS  Google Scholar 

  111. Takayama K, Tsutsumi S, Suzuki T et al (2009) Amyloid precursor protein is a primary androgen target gene that promotes prostate cancer growth. Cancer Res 69:137–142

    PubMed  CAS  Google Scholar 

  112. Takayama K, Tsutsumi S, Katayama S et al (2011) Integration of cap analysis of gene expression and chromatin immunoprecipitation analysis on array reveals genome-wide androgen receptor signaling in prostate cancer cells. Oncogene 30:619–630

    PubMed  CAS  Google Scholar 

  113. Liu P, Ramachandran S, Ali Seyed M et al (2006) Sex-determining region Y box 4 is a transforming oncogene in human prostate cancer cells. Cancer Res 66:4011–4019

    PubMed  CAS  Google Scholar 

  114. Yu SY, Chan DW, Liu VW et al (2009) Inhibition of cervical cancer cell growth through activation of upstream kinases of AMP-activated protein kinase. Tumour Biol 30:80–85

    PubMed  CAS  Google Scholar 

  115. Zhao JC, Yu J, Runkle C et al (2011) Cooperation between polycomb and androgen receptor during oncogenic transformation. Genome Res 22:322–31

    PubMed  Google Scholar 

  116. Wang Q, Li W, Liu XS et al (2007) A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol Cell 27:380–392

    PubMed  Google Scholar 

  117. Li X, Zhu C, Tu WH et al (2011) ZMIZ1 preferably enhances the transcriptional activity of androgen receptor with short polyglutamine tract. PLoS One 6:e25040

    PubMed  CAS  Google Scholar 

  118. Pantano L, Estivill X, Marti E (2011) A non-biased framework for the annotation and classification of the non-miRNA small RNA transcriptome. Bioinformatics 27:3202–3203

    PubMed  CAS  Google Scholar 

  119. Ribas J, Ni X, Haffner M et al (2009) miR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth. Cancer Res 69:7165–7169

    PubMed  CAS  Google Scholar 

  120. Waltering KK, Porkka KP, Jalava SE et al (2011) Androgen regulation of micro-RNAs in prostate cancer. Prostate 71:604–614

    PubMed  CAS  Google Scholar 

  121. Choudhary V, Kaddour-Djebbar I, Lakshmikanthan V et al (2011) Novel role of androgens in mitochondrial fission and apoptosis. Mol Cancer Res 9:1067–1077

    PubMed  CAS  Google Scholar 

  122. Hara T, Nakamura K, Araki H et al (2003) Enhanced androgen receptor signaling correlates with the androgen-refractory growth in a newly established MDA PCa 2b-hr human prostate cancer cell subline. Cancer Res 63:5622–5628

    PubMed  CAS  Google Scholar 

  123. Zegarra-Moro OL, Schmidt LJ, Huang H et al (2002) Disruption of androgen receptor function inhibits proliferation of androgen-refractory prostate cancer cells. Cancer Res 62:1008–1013

    PubMed  CAS  Google Scholar 

  124. Chen CD, Welsbie DS, Tran C et al (2004) Molecular determinants of resistance to antiandrogen therapy. Nat Med 10:33–39

    PubMed  Google Scholar 

  125. Waltering KK, Helenius MA, Sahu B et al (2009) Increased expression of androgen receptor sensitizes prostate cancer cells to low levels of androgens. Cancer Res 69:8141–8149

    PubMed  CAS  Google Scholar 

  126. Marques RB, Dits NF, Erkens-Schulze S et al (2011) Modulation of androgen receptor signaling in hormonal therapy-resistant prostate cancer cell lines. PLoS One 6:e23144

    PubMed  CAS  Google Scholar 

  127. Gregory CW, Hamil KG, Kim D et al (1998) Androgen receptor expression in androgen-independent prostate cancer is associated with increased expression of androgen-regulated genes. Cancer Res 58:5718–5724

    PubMed  CAS  Google Scholar 

  128. Chen H, Libertini SJ, George M et al (2010) Genome-wide analysis of androgen receptor binding and gene regulation in two CWR22-derived prostate cancer cell lines. Endocr Relat Cancer 17:857–873

    PubMed  CAS  Google Scholar 

  129. Chen H, Libertini SJ, Wang Y et al (2010) ERK regulates calpain 2-induced androgen receptor proteolysis in CWR22 relapsed prostate tumor cell lines. J Biol Chem 285:2368–2374

    PubMed  CAS  Google Scholar 

  130. Wang Q, Li W, Zhang Y et al (2009) Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell 138:245–256

    PubMed  CAS  Google Scholar 

  131. Jariwala U, Prescott J, Jia L et al (2007) Identification of novel androgen receptor target genes in prostate cancer. Mol Cancer 6:39

    PubMed  Google Scholar 

  132. Ishiguro H, Akimoto K, Nagashima Y et al (2009) aPKClambda/iota promotes growth of prostate cancer cells in an autocrine manner through transcriptional activation of interleukin-6. Proc Natl Acad Sci USA 106:16369–16374

    PubMed  CAS  Google Scholar 

  133. Cabrespine A, Guy L, Chollet P et al (2004) [Molecular mechanisms involved in hormone resistance of prostate cancer]. Bull Cancer 91:747–757

    PubMed  CAS  Google Scholar 

  134. Hammacher A, Thompson EW, Williams ED (2005) Interleukin-6 is a potent inducer of S100P, which is up-regulated in androgen-refractory and metastatic prostate cancer. Int J Biochem Cell Biol 37:442–450

    PubMed  CAS  Google Scholar 

  135. Wang G, Wang J, Sadar MD (2008) Crosstalk between the androgen receptor and beta-catenin in castrate-resistant prostate cancer. Cancer Res 68:9918–9927

    PubMed  CAS  Google Scholar 

  136. Chen M, Feuerstein MA, Levina E et al (2010) Hedgehog/Gli supports androgen signaling in androgen deprived and androgen independent prostate cancer cells. Mol Cancer 9:89

    PubMed  Google Scholar 

  137. Sircar K, Yoshimoto M, Monzon FA et al (2009) PTEN genomic deletion is associated with p-Akt and AR signalling in poorer outcome, hormone refractory prostate cancer. J Pathol 218:505–513

    PubMed  CAS  Google Scholar 

  138. Lin HK, Hu YC, Yang L et al (2003) Suppression versus induction of androgen receptor functions by the phosphatidylinositol 3-kinase/Akt pathway in prostate cancer LNCaP cells with different passage numbers. J Biol Chem 278:50902–50907

    PubMed  CAS  Google Scholar 

  139. Carver BS, Chapinski C, Wongvipat J et al (2011) Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell 19:575–586

    PubMed  CAS  Google Scholar 

  140. Mulholland DJ, Tran LM, Li Y et al (2011) Cell autonomous role of PTEN in regulating castration-resistant prostate cancer growth. Cancer Cell 19:792–804

    PubMed  CAS  Google Scholar 

  141. Tamura K, Furihata M, Tsunoda T et al (2007) Molecular features of hormone-refractory prostate cancer cells by genome-wide gene expression profiles. Cancer Res 67:5117–5125

    PubMed  CAS  Google Scholar 

  142. Armstrong K, Ahmad I, Kalna G et al (2011) Upregulated FGFR1 expression is associated with the transition of hormone-naive to castrate-resistant prostate cancer. Br J Cancer 105:1362–1369

    PubMed  CAS  Google Scholar 

  143. Prescott J, Jariwala U, Jia L et al (2007) Androgen receptor-mediated repression of novel target genes. Prostate 67:1371–1383

    PubMed  CAS  Google Scholar 

  144. Chen L, Siddiqui S, Bose S et al (2010) Nrdp1-mediated regulation of ErbB3 expression by the androgen receptor in androgen-dependent but not castrate-resistant prostate cancer cells. Cancer Res 70:5994–6003

    PubMed  CAS  Google Scholar 

  145. Rajput AB, Miller MA, De Luca A et al (2007) Frequency of the TMPRSS2:ERG gene fusion is increased in moderate to poorly differentiated prostate cancers. J Clin Pathol 60:1238–1243

    PubMed  CAS  Google Scholar 

  146. Brase JC, Johannes M, Mannsperger H et al (2011) TMPRSS2-ERG-specific transcriptional modulation is associated with prostate cancer biomarkers and TGF-beta signaling. BMC Cancer 11:507

    PubMed  CAS  Google Scholar 

  147. Banach-Petrosky W, Jessen WJ, Ouyang X et al (2007) Prolonged exposure to reduced levels of androgen accelerates prostate cancer progression in Nkx3.1; Pten mutant mice. Cancer Res 67:9089–9096

    PubMed  CAS  Google Scholar 

  148. Mulholland DJ, Tran LM, Li Y et al (2011) Cell autonomous role of PTEN in regulating castration-resistant prostate cancer growth. Cancer Cell 19:792–804

    PubMed  CAS  Google Scholar 

  149. Jennbacken K, Tesan T, Wang W et al (2010) N-cadherin increases after androgen deprivation and is associated with metastasis in prostate cancer. Endocr Relat Cancer 17:469–479

    PubMed  CAS  Google Scholar 

  150. Chu K, Cheng CJ, Ye X et al (2008) Cadherin-11 promotes the metastasis of prostate cancer cells to bone. Mol Cancer Res 6:1259–1267

    PubMed  CAS  Google Scholar 

  151. Lee YC, Cheng CJ, Huang M et al (2010) Androgen depletion up-regulates cadherin-11 expression in prostate cancer. J Pathol 221:68–76

    PubMed  CAS  Google Scholar 

  152. Cher ML, Biliran HR Jr, Bhagat S et al (2003) Maspin expression inhibits osteolysis, tumor growth, and angiogenesis in a model of prostate cancer bone metastasis. Proc Natl Acad Sci USA 100:7847–7852

    PubMed  CAS  Google Scholar 

  153. Zou Z, Zhang W, Young D et al (2002) Maspin expression profile in human prostate cancer (CaP) and in vitro induction of Maspin expression by androgen ablation. Clin Cancer Res 8:1172–1177

    PubMed  CAS  Google Scholar 

  154. Kleeberger W, Bova GS, Nielsen ME et al (2007) Roles for the stem cell associated intermediate filament Nestin in prostate cancer migration and metastasis. Cancer Res 67:9199–9206

    PubMed  CAS  Google Scholar 

  155. Jennbacken K, Tesan T, Wang W et al (2010) N-cadherin increases after androgen deprivation and is associated with metastasis in prostate cancer. Endocr Relat Cancer 17:469–479

    PubMed  CAS  Google Scholar 

  156. Lee YC, Cheng CJ, Huang M et al (2010) Androgen depletion up-regulates cadherin-11 expression in prostate cancer. J Pathol 221:68–76

    PubMed  CAS  Google Scholar 

  157. Nightingale J, Chaudhary KS, Abel PD et al (2003) Ligand activation of the androgen receptor downregulates E-cadherin-mediated cell adhesion and promotes apoptosis of prostatic cancer cells. Neoplasia 5:347–361

    PubMed  CAS  Google Scholar 

  158. Odero-Marah VA, Wang R, Chu G et al (2008) Receptor activator of NF-kappaB Ligand (RANKL) expression is associated with epithelial to mesenchymal transition in human prostate cancer cells. Cell Res 18:858–870

    PubMed  CAS  Google Scholar 

  159. Chipuk JE, Cornelius SC, Pultz NJ et al (2002) The androgen receptor represses transforming growth factor-beta signaling through interaction with Smad3. J Biol Chem 277:1240–1248

    PubMed  CAS  Google Scholar 

  160. Song K, Wang H, Krebs TL et al (2010) DHT selectively reverses Smad3-mediated/TGF-beta-induced responses through transcriptional down-regulation of Smad3 in prostate epithelial cells. Mol Endocrinol 24:2019–2029

    PubMed  CAS  Google Scholar 

  161. Ding Z, Wu CJ, Chu GC et al (2011) SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature 470:269–273

    PubMed  CAS  Google Scholar 

  162. Sun Y, Wang BE, Leong KG et al (2012) Androgen deprivation causes epithelial-mesenchymal transition in the prostate: implications for androgen-deprivation therapy. Cancer Res 72:527–36

    PubMed  CAS  Google Scholar 

  163. Anose BM, Sanders MM (2011) Androgen receptor regulates transcription of the ZEB1 transcription factor. Int J Endocrinol 2011:903918

    PubMed  Google Scholar 

  164. Leshem O, Madar S, Kogan-Sakin I et al (2011) TMPRSS2/ERG promotes epithelial to mesenchymal transition through the ZEB1/ZEB2 axis in a prostate cancer model. PLoS One 6:e21650

    PubMed  CAS  Google Scholar 

  165. Yadav V, Denning MF (2011) Fyn is induced by Ras/PI3K/Akt signaling and is required for enhanced invasion/migration. Mol Carcinog 50:346–352

    PubMed  CAS  Google Scholar 

  166. Gan Y, Shi C, Inge L et al (2010) Differential roles of ERK and Akt pathways in regulation of EGFR-mediated signaling and motility in prostate cancer cells. Oncogene 29:4947–4958

    PubMed  CAS  Google Scholar 

  167. Irie HY, Pearline RV, Grueneberg D et al (2005) Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial-mesenchymal transition. J Cell Biol 171:1023–1034

    PubMed  CAS  Google Scholar 

  168. Dillon RL, Muller WJ (2010) Distinct biological roles for the akt family in mammary tumor progression. Cancer Res 70:4260–4264

    PubMed  CAS  Google Scholar 

  169. Hutchinson JN, Jin J, Cardiff RD et al (2004) Activation of Akt-1 (PKB-alpha) can accelerate ErbB-2-mediated mammary tumorigenesis but suppresses tumor invasion. Cancer Res 64:3171–3178

    PubMed  CAS  Google Scholar 

  170. Rychahou PG, Kang J, Gulhati P et al (2008) Akt2 overexpression plays a critical role in the establishment of colorectal cancer metastasis. Proc Natl Acad Sci USA 105:20315–20320

    PubMed  CAS  Google Scholar 

  171. Heron-Milhavet L, Khouya N, Fernandez A et al (2011) Akt1 and Akt2: differentiating the aktion. Histol Histopathol 26:651–662

    PubMed  CAS  Google Scholar 

  172. Miyamoto H, Rahman MM, Chang C (2004) Molecular basis for the antiandrogen withdrawal syndrome. J Cell Biochem 91:3–12

    PubMed  CAS  Google Scholar 

  173. Kaarbo M, Mikkelsen OL, Malerod L et al (2010) PI3K-AKT-mTOR pathway is dominant over androgen receptor signaling in prostate cancer cells. Cell Oncol 32:11–27

    PubMed  CAS  Google Scholar 

  174. Cai C, Hsieh CL, Omwancha J et al (2007) ETV1 is a novel androgen receptor-regulated gene that mediates prostate cancer cell invasion. Mol Endocrinol 21:1835–1846

    PubMed  CAS  Google Scholar 

  175. Kim MH, Fields J (2008) Translationally regulated C/EBP beta isoform expression upregulates metastatic genes in hormone-independent prostate cancer cells. Prostate 68:1362–1371

    PubMed  CAS  Google Scholar 

  176. Allioli N, Vincent S, Vlaeminck-Guillem V et al (2011) TM4SF1, a novel primary androgen receptor target gene over-expressed in human prostate cancer and involved in cell migration. Prostate 71:1239–50

    PubMed  CAS  Google Scholar 

  177. Wegiel B, Bjartell A, Tuomela J et al (2008) Multiple cellular mechanisms related to cyclin A1 in prostate cancer invasion and metastasis. J Natl Cancer Inst 100:1022–1036

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chawnshang Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lee, S.O., Huang, CK., Jie, L., Chang, C. (2013). Androgen Receptor-Regulated Genes in Prostate Cancer Initiation Versus Metastasis. In: Wang, Z. (eds) Androgen-Responsive Genes in Prostate Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6182-1_10

Download citation

Publish with us

Policies and ethics