Skip to main content

Decoding the Signaling Mechanism of Toll-Like Receptor 4 Pathways in Wild Type and Knockouts

  • Chapter
E-Cell System

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

The Myeloid Differentiation Primary-Response Protein 88 (MyD88)-dependent and— independent pathways induce proinflammatory cytokines when toll-like receptor 4 (TLR4) is activated through lipopolysaccharide (LPS) stimulus. Recent studies have implicated a crosstalk mechanism between the two pathways. However, the exact location and nature of this interaction is poorly understood. Using my previous ordinary differential equations-based computational model of the TLR4 pathway, I investigated the roles played by the various proposed crosstalk mechanisms by comparing in silico nuclear factor κB (NF-κB) and Mitogen-Activated Protein (MAP) kinases dynamic activity profiles with experimental results under various conditions in macrophages to LPS stimulus (MyD88 deficient, TRAF-6 deficient etc.). The model that best represents the experimental findings suggests that the pathways interact at more than one location: (i) TRIF to TRAF-6, (ii) TRIF-RIP1-IKK complex and (iii) TRIF to cRel via TBK1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O’Neill LA. TLRs: Professor Mechnikov, sit on your hat. Trends Immunol 2004; 25:687–693.

    Article  CAS  Google Scholar 

  2. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol 4(7), 499–511.

    Google Scholar 

  3. Sato S, Sugiyama M, Yamamoto M et al. Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1 and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J Immunol 2003; 171(8):4304–4310.

    PubMed  CAS  Google Scholar 

  4. Kawai T, Takeuchi O, Fujita T et al. Lipopolysaccharide Stimulates the MyD88-Independent Pathway and Results in Activation of IFN-Regulatory Factor 3 and the Expression of a Subset of Lipopolysaccharide-Inducible Genes. J Immunol 2001; 167(10):5887–5894.

    PubMed  CAS  Google Scholar 

  5. Gohda J, Matsumura T, Inoue J. Cutting edge: TNFR-associated factor (TRAF) 6 is essential for MyD88-dependent pathway but not toll/IL-1 receptor domain-containing adaptor-inducing IFN-beta (TRIF)-dependent pathway in TLR signaling. J Immunol 2004; 73(5):2913–2917.

    Google Scholar 

  6. Selvarajoo K. Discovering differential activation machinery of the Toll-like receptor 4 signaling pathways in MyD88 knockouts. FEBS Lett 2006; 580(5):1457–1464.

    Article  PubMed  CAS  Google Scholar 

  7. Covert MW, Leung TH, Gaston JE et al. Achieving stability of lipopolysaccharide-induced NF-kappaB activation. Science 2005; 309(5742):1854–1857.

    Article  PubMed  CAS  Google Scholar 

  8. Yamada S, Shiono S, Joo A et al. Control mechanism of JAK/STAT signal transduction pathway. FEBS Lett 2003; 534(1–3);190–196.

    Article  Google Scholar 

  9. Kawai T, Adachi O, Ogawa T et al. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 1999; 11(1):115–122.

    Article  PubMed  CAS  Google Scholar 

  10. Hoffmann A, Levchenko A, Scott ML et al. The IκB-NF-κB Signaling Module: Temporal Control and Selective Gene Activation. Science 2002; 298(5596):1241–1245.

    Article  PubMed  CAS  Google Scholar 

  11. Takahashi K, Ishikawa N, Sadamoto Y et al. E-Cell 2: multi-platform E-Cell simulation system. Bioinformatics 2003; 19:1727–1729.

    Article  PubMed  CAS  Google Scholar 

  12. Shim JH, Xiao C, Paschal AE et al. TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev 2005; 19(22):2668–2681.

    Article  PubMed  CAS  Google Scholar 

  13. Sato S, Sanjo H, Takeda K et al. Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol 2005; 6(11):1087–1095.

    Article  PubMed  CAS  Google Scholar 

  14. Hoebe K, Du X, Georgel P et al. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 2003; 424(6950):743–748.

    Article  PubMed  CAS  Google Scholar 

  15. McWhirter SM, Fitzgerald KA, Rosains J et al. IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proc Natl Acad Sci USA 2004; 101(1):233–238.

    Article  PubMed  CAS  Google Scholar 

  16. Fitzgerald KA, McWhirter SM, Faia KL et al. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 2003; 4(5):491–496.

    Article  PubMed  CAS  Google Scholar 

  17. Sharma S, tenOever BR, Grandvaux N et al. Triggering the interferon antiviral response through an IKK-related pathway. Science 2003, 300(5622):1148–1151.

    Article  PubMed  CAS  Google Scholar 

  18. Hacker H, Redecke V, Blagoev B et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 2005; 439(7073):204–207.

    Article  PubMed  Google Scholar 

  19. Poyet JL, Srinivasula SM, Lin JH et al. Activation of the Ikappa B kinases by RIP via IKKgamma / NEMO-mediated oligomerization. J Biol Chem 2000; 275(48):37966–37977.

    Article  PubMed  CAS  Google Scholar 

  20. Blonska M, Shambharkar PB, Kobayashi M et al. TAK1 is recruited to the tumor necrosis factor-alpha (TNF-alpha) receptor 1 complex in a receptor-interacting protein (RIP)-dependent manner and cooperates with MEKK3 leading to NF-kappaB activation. J Biol Chem 2005; 280(52):43056–43063.

    Article  PubMed  CAS  Google Scholar 

  21. Cusson-Hermance N, Khurana S, Lee TH et al. Rip1 mediates the Trif-dependent toll-like receptor 3-and 4-induced NF-{kappa}B activation but does not contribute to interferon regulatory factor 3 activation. J Biol Chem 2005; 280(44):36560–36566.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Selvarajoo, K. (2013). Decoding the Signaling Mechanism of Toll-Like Receptor 4 Pathways in Wild Type and Knockouts. In: E-Cell System. Molecular Biology Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6157-9_10

Download citation

Publish with us

Policies and ethics