Skip to main content

Bio-Electrochemistry and Chalcogens

  • Chapter
  • First Online:
Applications of Electrochemistry in Medicine

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 56))

Abstract

The last couple of decades have witnessed the emergence of the wide and diverse field of bio-electrochemistry which nowadays provides enough research to fill several international meetings per year. As part of this research, topics such as the electrochemical analysis of biological samples, including electrochemical biosensors, and the characterization of redox properties of proteins and enzymes first come to mind. Indeed, these areas of biological electrochemistry have blossomed ever since the first pioneering studies on electrochemical biosensors in the 1980s [1]. The field has moved on considerably since then, of course, and various aspects of modern biological electrochemistry have recently formed part of a special issue of ChemPhysChem [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armstrong FA, Hill HAO, Walton NJ. Direct electrochemistry of redox proteins. Acc Chem Res. 1988;21:407–13.

    CAS  Google Scholar 

  2. Kolb DM, Amatore C, Compton RG. Modern electrochemistry: interdisciplinary research at the forefront of science. Chemphyschem. 2010;11:2655–6.

    Google Scholar 

  3. Park S, Boo H, Chung TD. Electrochemical non-enzymatic glucose sensors. Anal Chim Acta. 2006;556:46–57.

    CAS  Google Scholar 

  4. Stenken JA, Puckett DL, Lunte SM, et al. Detection of N-acetylcysteine, cysteine and their disulfides in urine by liquid chromatography with a dual-electrode amperometric detector. J Pharm Biomed Anal. 1990;8:85–9.

    CAS  Google Scholar 

  5. Adam V, Fabrik I, Kohoutkova V, et al. Automated electrochemical analyzer as a new tool for detection of thiols. Int J Electrochem Sci. 2010;5:429–47.

    CAS  Google Scholar 

  6. Stetter JR, Penrose WR, Yao S. Sensors, chemical sensors, electrochemical sensors, and ECS. J Electrochem Soc. 2003;150:11–6.

    Google Scholar 

  7. Pohanka M, Skladai P. Electrochemical biosensors—principles and applications. J Appl Biomed. 2008;6:57–64.

    CAS  Google Scholar 

  8. Feinberg BA, Lau YK. The electrochemistry of high-potential iron-sulfur proteins and their novel brdicka waves. Bioelectrochem Bioenerg. 1980;7:187–94.

    CAS  Google Scholar 

  9. Hu NF. Direct electrochemistry of redox proteins or enzymes at various film electrodes and their possible applications in monitoring some pollutants. Pure Appl Chem. 2001;73:1979–91.

    CAS  Google Scholar 

  10. Mendieta J, Rodriguez AR. Electrochemical study of the binding properties of a metallothionein I related peptide with cadmium or/and zinc. Electroanalysis. 1996;8:473–9.

    CAS  Google Scholar 

  11. Seiwert B, Karst U. Analysis of cysteine-containing proteins using precolumn derivatization with N-(2-ferroceneethyl)maleimide and liquid chromatography/electrochemistry/mass spectrometry. Anal Bioanal Chem. 2007;388:1633–42.

    CAS  Google Scholar 

  12. Krizkova S, Zitka O, Adam V, et al. Possibilities of electrochemical techniques in metallothionein and lead detection in fish tissues. Czech J Anim Sci. 2007;52:143–8.

    CAS  Google Scholar 

  13. Adam V, Baloun J, Fabrik I, et al. An electrochemical detection of metallothioneins at the zeptomole level in nanolitre volumes. Sensors. 2008; 8:2293–305.

    CAS  Google Scholar 

  14. Gerritsen M, Jansen JA, Kros A, et al. Influence of inflammatory cells and serum on the performance of implantable glucose sensors. J Biomed Mater Res. 2001;54:69–75.

    CAS  Google Scholar 

  15. Mang A, Pill J, Gretz N, et al. Biocompatibility of an electrochemical sensor for continuous glucose monitoring in subcutaneous tissue. J Diabetes Sci Technol. 2005;7:163–73.

    CAS  Google Scholar 

  16. Keenan DB, Mastrototaro JJ, Voskanyan G, et al. Delays in minimally invasive continuous glucose monitoring devices: a review of current technology. J Diabetes Sci Technol. 2009;3:1207–14.

    Google Scholar 

  17. Jacob C, Giles GL, Giles NM, et al. Sulfur and selenium: the role of oxidation state in protein structure and function. Angew Chem Int Ed Engl. 2003;42:4742–58.

    CAS  Google Scholar 

  18. Nauser T, Dockheer S, Kissner R, et al. Catalysis of electron transfer by selenocysteine. Biochemistry. 2006;45:6038–43.

    CAS  Google Scholar 

  19. Koppenol WH, Stanbury DM, Bounds PL. Electrode potentials of partially reduced oxygen species, from dioxygen to water. Free Radic Biol Med. 2010;49:317–22.

    CAS  Google Scholar 

  20. Hu R, Guille M, Arbault S, et al. In situ electrochemical monitoring of reactive oxygen and nitrogen species released by single MG63 osteosarcoma cell submitted to a mechanical stress. Phys Chem Chem Phys. 2010;12:10048–54.

    CAS  Google Scholar 

  21. Jacob C, Doering M, Burkholz T. The chemical basis of biological redox-control. In: Jacob C, Winyard PG, editors. Redox signaling and regulation in biology and medicine. Weinheim: Wiley-VCH; 2009. p. 63–122.

    Google Scholar 

  22. Doering M, Ba LA, Lilienthal N, et al. Synthesis and selective anticancer activity of organochalcogen based redox catalysts. J Med Chem. 2010; 53:6954–63.

    CAS  Google Scholar 

  23. Jacob C, Winyard P. Redox signalling and regulation in biology and medicine. Weinheim: Wiley-VCH; 2009.

    Google Scholar 

  24. Amatore C, Arbault S, Bruce D, et al. Characterization of the electrochemical oxidation of peroxynitrite: relevance to oxidative stress bursts measured at the single cell level. Chemistry. 2001;7:4171–9.

    CAS  Google Scholar 

  25. Cotgreave IA, Moldeus P, Engman L, et al. The correlation of the oxidation potentials of structurally related dibenzo[1,4]dichalcogenines to their antioxidance capacity in biological systems undergoing free radical-induced lipid peroxidation. Biochem Pharmacol. 1991;42:1481–5.

    CAS  Google Scholar 

  26. Giles GI, Tasker KM, Johnson RJK et al. (2001) Electrochemistry of chalcogen compounds: prediction of antioxidant activity. Chem Commun. 2490–2491

    Google Scholar 

  27. Anwar A, Burkholz T, Scherer C, et al. Naturally occurring reactive sulfur species, their activity against Caco-2 cells, and possible modes of biochemical action. J Sulfur Chem. 2008;29:251–68.

    CAS  Google Scholar 

  28. Hason S, Simonaho SP, Silvennoinen R, et al. Detection of phase transients in two-dimensional adlayers of adenosine at the solid amalgam electrode surfaces. J Electroanal Chem. 2004;568:65–77.

    CAS  Google Scholar 

  29. Jacob C, Anwar A. The chemistry behind redox regulation with a focus on sulphur redox systems. Physiol Plant. 2008;133:469–80.

    CAS  Google Scholar 

  30. Jacob C. Redox signalling via the cellular thiolstat. Biochem Soc Trans. 2011;39:1247–53.

    CAS  Google Scholar 

  31. Mugesh G, Panda A, Singh HB, et al. Glutathione peroxidase-like antioxidant activity of diaryl diselenides: a mechanistic study. J Am Chem Soc. 2001;123:839–50.

    CAS  Google Scholar 

  32. Giles GI, Giles NM, Collins CA et al. (2003) Electrochemical, in vitro and cell culture analysis of integrated redox catalysts: implications for cancer therapy. Chem Commun. 2030–2031

    Google Scholar 

  33. Jacob C, Knight I, Winyard PG. Aspects of the biological redox chemistry of cysteine: from simple redox responses to sophisticated signalling pathways. Biol Chem. 2006;387:1385–97.

    CAS  Google Scholar 

  34. Engman L, McNaughton M, Gajewska M, et al. Thioredoxin reductase and cancer cell growth inhibition by organogold(III) compounds. Anticancer Drugs. 2006;17:539–44.

    CAS  Google Scholar 

  35. Kumar S, Engman L. Microwave-assisted copper-catalyzed preparation of diaryl chalcogenides. J Org Chem. 2006;71:5400–3.

    CAS  Google Scholar 

  36. Engman L, Al-Maharik N, McNaughton M, et al. Thioredoxin reductase and cancer cell growth inhibition by organotellurium compounds that could be selectively incorporated into tumor cells. Bioorg Med Chem. 2003;11:5091–100.

    CAS  Google Scholar 

  37. Collins CA, Fry FH, Holme AL, et al. Towards multifunctional antioxidants: synthesis, electrochemistry, in vitro and cell culture evaluation of compounds with ligand/catalytic properties. Org Biomol Chem. 2005; 3: 1541–6.

    CAS  Google Scholar 

  38. Mecklenburg S, Collins CA, Doring M, et al. The design of multifunctional antioxidants against the damaging ingredients of oxidative stress. Phosphorus Sulfur Silicon Relat Elem. 2008;183:863–88.

    CAS  Google Scholar 

  39. Schneider T, Baldauf A, Ba LA, et al. Selective antimicrobial activity associated with sulfur nanoparticles. J Biomed Nanotechnol. 2011;7:395–405.

    CAS  Google Scholar 

  40. Ceriotti L, Ponti J, Colpo P, et al. Assessment of cytotoxicity by impedance spectroscopy. Biosens Bioelectron. 2007;22:3057–63.

    CAS  Google Scholar 

  41. Komissarova EV, Saha SK, Rossman TG. Dead or dying: the importance of time in cytotoxicity assays using arsenite as an example. Toxicol Appl Pharmacol. 2005;202:99–107.

    CAS  Google Scholar 

  42. Repetto G, del Peso A, Zurita JL. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc. 2008;3:1125–31.

    CAS  Google Scholar 

  43. Giaever I, Keese CR. Monitoring fibroblast behavior in tissue culture with an applied electric field. Proc Natl Acad Sci USA. 1984;81:3761–4.

    CAS  Google Scholar 

  44. Du D, Cai J, Ju H, et al. Construction of a biomimetic zwitterionic interface for monitoring cell proliferation and apoptosis. Langmuir. 2005;21:8394–9.

    CAS  Google Scholar 

  45. Asphahani F, Zhang M. Cellular impedance biosensors for drug screening and toxin detection. Analyst. 2007;132:835–41.

    CAS  Google Scholar 

  46. Zhu J, Wang X, Xu X, et al. Dynamic and label-free monitoring of natural killer cell cytotoxic activity using electronic cell sensor arrays. J Immunol Methods. 2006;309:25–33.

    CAS  Google Scholar 

  47. Atienza JM, Zhu J, Wang X, et al. Dynamic monitoring of cell adhesion and spreading on microelectronic sensor arrays. J Biomol Screen. 2005; 10:795–805.

    CAS  Google Scholar 

  48. Asphahani F, Thein M, Veiseh O, et al. Influence of cell adhesion and spreading on impedance characteristics of cell-based sensors. Biosens Bioelectron. 2008;23:1307–13.

    CAS  Google Scholar 

  49. Abarzua S, Drechsler S, Fischer K, et al. Online monitoring of cellular metabolism in the MCF-7 carcinoma cell line treated with phytoestrogen extracts. Anticancer Res. 2010;30:1587–92.

    CAS  Google Scholar 

  50. Ceriotti L, Kob A, Drechsler S, et al. Online monitoring of BALB/3T3 metabolism and adhesion with multiparametric chip-based system. Anal Biochem. 2007;371:92–104.

    CAS  Google Scholar 

  51. Solly K, Wang X, Xu X, et al. Application of real-time cell electronic sensing (RT-CES) technology to cell-based assays. Assay Drug Dev Technol. 2004;2:363–72.

    CAS  Google Scholar 

  52. Radke SM, Alocilja EC. A high density microelectrode array biosensor for detection of E. coli O157:H7. Biosens Bioelectron. 2005;20:1662–7.

    CAS  Google Scholar 

  53. Varshney M, Li Y. Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle-antibody conjugates for detection of Escherichia coli O157:H7 in food samples. Biosens Bioelectron. 2007;22:2408–14.

    CAS  Google Scholar 

  54. Yang L, Li Y, Griffis CL, et al. Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium. Biosens Bioelectron. 2004;19:1139–47.

    CAS  Google Scholar 

  55. Olsson L, Nielsen J. On-line and in situ monitoring of biomass in submerged cultivations. Trends Biotechnol. 1997;15:517–22.

    CAS  Google Scholar 

  56. van Leeuwen M, Li X, Krommenhoek EE, et al. Quantitative determination of glucose transfer between concurrent laminar water streams in a H-shaped microchannel. Biotechnol Prog. 2009;25:1826–32.

    Google Scholar 

  57. Wang M, Ha Y. An electrochemical approach to monitor pH change in agar media during plant tissue culture. Biosens Bioelectron. 2007; 22: 2718–23.

    CAS  Google Scholar 

  58. Brischwein M, Motrescu ER, Cabala E, et al. Functional cellular assays with multiparametric silicon sensor chips. Lab Chip. 2003;3:234–40.

    CAS  Google Scholar 

  59. Atienza JM, Yu NC, Kirstein SL, et al. Dynamic and label-free cell-based assays using the real-time cell electronic sensing system. Assay Drug Dev Technol. 2006;4:597–607.

    CAS  Google Scholar 

  60. Abassi YA, Xi B, Zhang WF, et al. Kinetic cell-based morphological screening: prediction of mechanism of compound action and off-target effects. Chem Biol. 2009;16:712–23.

    CAS  Google Scholar 

  61. Halliwell B. Oxygen and nitrogen are pro-carcinogens. Damage to DNA by reactive oxygen, chlorine and nitrogen species: measurement, mechanism and the effects of nutrition. Mutat Res. 1999;443:37–52.

    CAS  Google Scholar 

  62. Szabo KE, Gutowski N, Holley JE, et al. Redox control in human disease with a special emphasis on the peroxiredoxin-based antioxidant system. In: Jacob C, Winyard PG, editors. Redox signaling and regulation in biology and medicine. Weinheim: Wiley-VCH; 2009. p. 409.

    Google Scholar 

  63. den Hertog J. Protein tyrosine phosphatases as mediators of redox signaling. In: Jacob C, Winyard PG, editors. Redox signalling and regulation in biology and medicine. Weinheim: Wiley-VCH; 2009. p. 197.

    Google Scholar 

  64. Charlier E, Piette J, Gloire G. Redox regulation of apoptosis in immune cells. In: Jacob C, Winyard PG, editors. Redox signalling and regulation in biology and medicine. Weinheim: Wiley-VCH; 2009. p. 385.

    Google Scholar 

  65. Hansen RE, Winther JR. An introduction to methods for analyzing thiols and disulfides: reactions, reagents, and practical considerations. Anal Biochem. 2009;394:147–58.

    CAS  Google Scholar 

  66. Fox JB. Kinetics and mechanisms of the griess reaction. Anal Chem. 1979;51:1493–502.

    CAS  Google Scholar 

  67. Hamilton CJ, Saravanamuthu A, Eggleston IM, et al. Ellman’s-reagent-mediated regeneration of trypanothione in situ: substrate economical microplate and time-dependent inhibition assays for trypanothione reductase. Biochem J. 2003;369:529–37.

    CAS  Google Scholar 

  68. Woodward JJ. The effects of thiol reduction and oxidation on the inhibition of NMDA-stimulated neurotransmitter release by ethanol. Neuropharmacology. 1994;33:635–40.

    CAS  Google Scholar 

  69. Murrant CL, Reid MB. Detection of reactive oxygen and reactive nitrogen species in skeletal muscle. Microsc Res Tech. 2001;55:236–48.

    CAS  Google Scholar 

  70. Tarpey MM, Wink DA, Grisham MB. Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations. Am J Physiol Regul Integr Comp Physiol. 2004;286:R431–44.

    CAS  Google Scholar 

  71. Li L, Chen CY, Chun HK, et al. A fluorometric assay to determine antioxidant activity of both hydrophilic and lipophilic components in plant foods. J Nutr Biochem. 2009;20:219–26.

    CAS  Google Scholar 

  72. Kalivendi SV, Kotamraju S, Zhao H, et al. Doxorubicin-induced apoptosis is associated with increased transcription of endothelial nitric-oxide synthase. Effect of antiapoptotic antioxidants and calcium. J Biol Chem. 2001;276:47266–76.

    CAS  Google Scholar 

  73. Boveris A, Chance B, Oshino N. The cellular production of hydrogen-peroxide. Biochem J. 1972;128(3):617–30.

    CAS  Google Scholar 

  74. Gough DR, Cotter TG. Hydrogen peroxide: a Jekyll and Hyde signalling molecule. Cell Death Dis. 2011;2:e213.

    CAS  Google Scholar 

  75. Thomas C, Mackey MM, Diaz AA, et al. Hydroxyl radical is produced via the Fenton reaction in submitochondrial particles under oxidative stress: implications for diseases associated with iron accumulation. Redox Rep. 2009;14:102–8.

    CAS  Google Scholar 

  76. Gutteridge JMC, Halliwell B. Free radicals and antioxidants in the year 2000—A historical look to the future. Ann N Y Acad Sci. 2000;899:136–47.

    CAS  Google Scholar 

  77. Green MJ, Hill HAO, Tew DG, et al. An opsonized electrode—The direct electrochemical detection of superoxide generated by human-neutrophils. FEBS Lett. 1984;170:69–72.

    CAS  Google Scholar 

  78. Hill HAO, Tew DG, Walton NJ. An opsonized microelectrode—Observation of the respiratory burst of a single human neutrophil. FEBS Lett. 1985;191:257–63.

    CAS  Google Scholar 

  79. Tammeveski K, Tenno TT, Mashirin AA, et al. Superoxide electrode based on covalently immobilized cytochrome c: modelling studies. Free Radic Biol Med. 1998;25:973–8.

    CAS  Google Scholar 

  80. Roberts JG, Hamilton KL, Sombers LA. Comparison of electrode materials for the detection of rapid hydrogen peroxide fluctuations using background-subtracted fast scan cyclic voltammetry. Analyst. 2011;136:3550–6.

    CAS  Google Scholar 

  81. Amatore C, Arbault S, Guille M, et al. Electrochemical monitoring of single cell secretion: vesicular exocytosis and oxidative stress. Chem Rev. 2008;108:2585–621.

    CAS  Google Scholar 

  82. Cho SH, Jang A, Bishop PL, et al. Kinetics determination of electrogenerated hydrogen peroxide (H2O2) using carbon fiber microelectrode in electroenzymatic degradation of phenolic compounds. J Hazard Mater. 2010;175:253–7.

    CAS  Google Scholar 

  83. Arbault S, Pantano P, Jankowski JA, et al. Monitoring an oxidative stress mechanism at a single human fibroblast. Anal Chem. 1995;67:3382–90.

    CAS  Google Scholar 

  84. Zhu AW, Liu Y, Rui Q, et al. Selective and sensitive determination of hydroxyl radicals generated from living cells through an electrochemical impedance method. Chem Commun. 2011;47:4279–81.

    CAS  Google Scholar 

  85. Ferrer-Sueta G, Radi R. Chemical biology of peroxynitrite: kinetics, diffusion, and radicals. ACS Chem Biol. 2009;4:161–77.

    CAS  Google Scholar 

  86. Katrlik J, Zalesakova P. Nitric oxide determination by amperometric carbon fiber microelectrode. Bioelectrochemistry. 2002;56:73–6.

    CAS  Google Scholar 

  87. Santos RM, Lourenco CF, Piedade AP, et al. A comparative study of carbon fiber-based microelectrodes for the measurement of nitric oxide in brain tissue. Biosens Bioelectron. 2008;24:704–9.

    CAS  Google Scholar 

  88. Borgmann S. Electrochemical quantification of reactive oxygen and nitrogen: challenges and opportunities. Anal Bioanal Chem. 2009;394:95–105.

    CAS  Google Scholar 

  89. Kubant R, Malinski C, Burewicz A, et al. Peroxynitrite/nitric oxide balance in ischemia/reperfusion injury-nanomedical approach. Electroanalysis. 2006;18:410–6.

    CAS  Google Scholar 

  90. Miserere S, Ledru S, Ruille N, et al. Biocompatible carbon-based screen-printed electrodes for the electrochemical detection of nitric oxide. Electrochem Commun. 2006;8:238–44.

    CAS  Google Scholar 

  91. Amatore C, Arbault S, Chen Y, et al. Electrochemical detection in a microfluidic device of oxidative stress generated by macrophage cells. Lab Chip. 2007;7:233–8.

    CAS  Google Scholar 

  92. Trouillon R, O’Hare D, Chang SI. An electrochemical functional assay for the sensing of nitric oxide release induced by angiogenic factors. BMB Rep. 2011;44:699–704.

    CAS  Google Scholar 

  93. Amatore C, Arbault S, Koh AC. Simultaneous detection of reactive oxygen and nitrogen species released by a single macrophage by triple potential-step chronoamperometry. Anal Chem. 2010;82:1411–9.

    CAS  Google Scholar 

  94. Jacob C, Ba LA. Open season for hunting and trapping post-translational cysteine modifications in proteins and enzymes. Chembiochem. 2011;12:841–4.

    CAS  Google Scholar 

  95. Hidalgo J, Aschner M, Zatta P, et al. Roles of the metallothionein family of proteins in the central nervous system. Brain Res Bull. 2001;55:133–45.

    CAS  Google Scholar 

  96. Ralph TR, Hitchman ML, Millington JP, et al. The electrochemistry of L-cystine and L-cysteine.1. Thermodynamic and kinetic-studies. J Electroanal Chem. 1994;375:1–15.

    CAS  Google Scholar 

  97. Ren XL, Bjornstedt M, Shen B, et al. Mutagenesis of structural half-cystine residues in human thioredoxin and effects on the regulation of activity by selenodiglutathione. Biochemistry. 1993;32:9701–8.

    CAS  Google Scholar 

  98. Jacob C, Anwar A, Burkholz T. Perspective on recent developments on sulfur-containing agents and hydrogen sulfide signaling. Planta Med. 2008;74:1580–92.

    CAS  Google Scholar 

  99. Schneider T, Ba LA, Khairan K, et al. Interactions of polysulfanes with components of red blood cells. MedChemComm. 2011;2:196–200.

    CAS  Google Scholar 

  100. Munday R, Munday JS. Comparative haemolytic activity of bis(phenylmethyl) disulphide, bis(phenylethyl) disulphide and bis(phenylpropyl) disulphide in rats. Food Chem Toxicol. 2003;41:1609–15.

    CAS  Google Scholar 

  101. Sarakbi M-B. Natural products and related compounds as promising antioxidants and antimicrobial agents. Saarbruecken: University of Saarland; 2009.

    Google Scholar 

  102. Andersson CM, Hallberg A, Linden M, et al. Antioxidant activity of some diarylselenides in biological-systems. Free Radic Biol Med. 1994;16:17–28.

    CAS  Google Scholar 

  103. Jacob C, Lancaster JR, Giles GI. Reactive sulphur species in oxidative signal transduction. Biochem Soc Trans. 2004;32:1015–7.

    CAS  Google Scholar 

  104. Giles NM, Gutowski NJ, Giles GI, et al. Redox catalysts as sensitisers towards oxidative stress. FEBS Lett. 2003;535:179–82.

    CAS  Google Scholar 

  105. Fry FH, Jacob C. Sensor/effector drug design with potential relevance to cancer. Curr Pharm Des. 2006;12:4479–99.

    CAS  Google Scholar 

  106. Jamier V, Ba LA, Jacob C. Selenium- and tellurium-containing multifunctional redox agents as biochemical redox modulators with selective cytotoxicity. Chemistry. 2010;16:10920–8.

    CAS  Google Scholar 

  107. Giles GI, Collins CA, Stone TW, et al. Electrochemical and in vitro evaluation of the redox-properties of kynurenine species. Biochem Biophys Res Commun. 2003;300:719–24.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus Jacob .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Álvarez, E.D., Viswanathan, U.M., Burkholz, T., Khairan, K., Jacob, C. (2013). Bio-Electrochemistry and Chalcogens. In: Schlesinger, M. (eds) Applications of Electrochemistry in Medicine. Modern Aspects of Electrochemistry, vol 56. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-6148-7_7

Download citation

Publish with us

Policies and ethics