Skip to main content

Modeling and Measuring Extravascular Hemoglobin: Aging Contusions

  • Chapter
  • First Online:
Applications of Electrochemistry in Medicine

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 56))

Abstract

Extravascular contusions or skin bruises are extremely common in children and adults and may be indicative of other internal injuries after trauma. They may also be hallmarks of inflicted injury. Identifying the timing and mechanisms of injury of bruised skin is therefore of great importance for directing medical care and safety interventions.

There is minimal scientific research on bruising. Clinicians’ usually determine assessments of bruises including ages, based on appearance, color, and historical correlates without the support of evidence-based standards. There are no objective criteria for assessing bruises by appearance in living subjects.

Only histopathological examinations of bruised tissue revealing the time-dependent enzymatic breakdown of the products of hemoglobin in microscopic sections used in forensic laboratories have been validated as a reliable method for dating human bruises.

Recently, researchers have reported on the promise of visible color spectroscopy of the products of hemoglobin metabolism to measure the age of bruises

Hemoglobin is one of the strongest chromophores in human tissues. Transport of hemoglobin and its breakdown products in dermis and subcutaneous tissue determines the spectrophotometric characteristics of the skin and its variations in time. Therefore, measurements of diffuse reflective spectra of the skin are one of the methods allowing noninvasive screening. Although efforts have been made in developing skin-spectroscopy-based devices, there is no clinically tested, noninvasive hemoglobin screening instrument available for physicians to determine the age of contusions yet.

The chapter reviews current potentially available transmission and diffusive reflection spectroscopy-based techniques and predictive and quantitative modeling methods assisting in efficient retrieval of the age of extravascular contusions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maguire S. Bruising as an indicator of child abuse: when should I be concerned? Paediatr Child Health. 2008;18(12):545–9.

    Article  Google Scholar 

  2. Murty OP, Jia MC, Asyraf EM, Kim YP, Chee YT. Physical injuries in fatal and non-fatal child abuse cases: a review of 16 years with hands on experience of 2 years in Malaysia. Int J Med Toxicol Legal Med. 2006;9:33–43.

    Google Scholar 

  3. Langlois NE, Gresham GA. The aging of bruises: a review and study of the color changes with time. Forensic Sci Int. 1991;50:227–38.

    Article  CAS  Google Scholar 

  4. Munang LA, Leonard PA, Mok JYQ. Lack of agreement on colour description between clinicians examining childhood bruising. J Clin Forensic Med. 2002;9:171–4.

    Article  CAS  Google Scholar 

  5. Grossman SI, et al. Can we assess the age of bruises? An attempt to develop an objective technique. Med Sci Law. 2011;51:170–6.

    Article  Google Scholar 

  6. Bariciak ED, Plint AC, Gaboury I, Bennett S. Dating of bruises in children: an assessment of physician accuracy. Pediatrics. 2003;112:804–7.

    Article  Google Scholar 

  7. Bohnert M, Baumgartner R, Pollak S. Spectrophotometric evaluation of the color of the intra- and subcutaneous bruises. Int J Legal Med. 2000;113:343–8.

    Article  CAS  Google Scholar 

  8. Meglinski IV, Matcher SJ. Computer simulation of the skin reflectance spectra. Comput Methods Programs Biomed. 2003;70:179–86.

    Article  CAS  Google Scholar 

  9. Berg S. Grundriss der rechtsmedizin. Munchen: Muller and Steinicke; 1976.

    Google Scholar 

  10. Knight B. Forensic pathology. London: Arnold; 1996.

    Google Scholar 

  11. Randeberg LL, Larsen EP, Svaasand LO. Characterization of vascular structures and skin bruises using hyperspectral imaging, image analysis and diffusion theory. J Biophotonics. 2010;3(1–2):53–65.

    CAS  Google Scholar 

  12. Kanashima H, Yamane T, Takubo T, Kamitani T, Hino M. Evaluation of noninvasive hemoglobin monitoring for hematological disorders. J Clin Lab Anal. 2005;19:1–5.

    Article  CAS  Google Scholar 

  13. Nadeau RG, Groner W. The role of a new noninvasive imaging technology in the diagnosis of anemia. J Nutr. 2001;131:1610S–4.

    CAS  Google Scholar 

  14. Rice MJ, Sweat RH, Rioux JM, Williams WT, Routt W. Non-invasive measurement of blood components using retinal imaging. 2002; United States Patent No. US 6,477,394 B2.

    Google Scholar 

  15. McMurdy J, Jay GD, Suner S, Crawford G. Noninvasive optical, electrical, and acoustic methods of total hemoglobin determination. Clin Chem. 2008;54(2):264–72.

    Article  CAS  Google Scholar 

  16. Mimasaka S, Ohtani M, Kuroda N, Tsunenari S. Spectrophotometric evaluation of the age of bruises in children: measuring changes in bruise color as an indicator of child physical abuse. Tohoku J Exp Med. 2010;220:171–5.

    Article  Google Scholar 

  17. Westerhof W. CIE colorimetry. In: Jemec GBE, Serup J, editors. Handbook of non-invasive methods and the skin. Boca Raton: CRC; 1995. p. 385–97.

    Google Scholar 

  18. Weatherall IL, Coombs BD. Skin color measurements in terms of CIELAB color space values. J Invest Dermatol. 1992;99:468–73.

    Article  CAS  Google Scholar 

  19. Yajima Y, Funayama M. Spectrophotometric and tristimulus analysis of the colors of subcutaneous bleeding in living persons. Forensic Sci Int. 2006;156:131–7.

    Article  CAS  Google Scholar 

  20. Langlois VK, Hughes NE. Use of reflectance spectrophotometry and colorimetry in a general linear model for the determination of the age of bruises. Forensic Sci Med Pathol. 2010;6(4):275–81.

    Article  Google Scholar 

  21. Randeberg LL, Winnem AM, Larsen ELP, Haaverstad R, Haugen OA, Svaasand LO. In vivo hyperspectral imaging of traumatic skin injuries in a porcine model. Progress in biomedical optics and imaging—proceedings of SPIE. 2007;6424:642408. doi:10.1117/12.699380.

    Google Scholar 

  22. McMurdy JW, Jay GD, Suner S, Trespalacios FM, Crawford GP. Diffuse reflectance spectra of the palpebral conjunctiva and its utility as a noninvasive indicator of total hemoglobin. J Biomed Opt. 2006;11:014019-1–8.

    Article  Google Scholar 

  23. McMurdy JW, Duffy S, Crawford GP. Monitoring bruise age using visible diffuse reflectance spectroscopy. In Biomedical Optics (BiOS). International Society for Optics and Photonics. 2007;6464:643426. doi:10.1117/12.701592.

    Google Scholar 

  24. Randeberg LL, Winnem AM, Langlois NE, Larsen ELP, Haaverstad R, Skallerud B, et al. Skin changes following minor trauma. Lasers Surg Med. 2007;39(5):403–13.

    Article  Google Scholar 

  25. Gowen AA, O’Donnell CP, Cullen PJ, Downey G, Frias JM. Hyperspectral imaging—an emerging process analytical tool for food quality and safety control. Trends Food Sci Technol. 2007;18:590–8.

    Article  CAS  Google Scholar 

  26. Radosevich AJ, Bouchard MB, Burgess SA, Chen BR, Hillman EMC. Hyperspectral in vivo two-photon microscopy of intrinsic contrast. Opt Lett. 2008;33:2164–6.

    Article  CAS  Google Scholar 

  27. De Beule PA, Dunsby C, Galletly NP, Stamp GW, Chu AC, Anand U, et al. A hyperspectral fluorescence lifetime probe for skin cancer diagnosis. Rev Sci Instrum. 2007;78:123101-1–7.

    Article  Google Scholar 

  28. Payne G, Langlois N, Lennard C, Roux C. Applying visible hyperspectral (chemical) imaging to estimate the age of bruising. Med Sci Law. 2007;47:225–32.

    Article  Google Scholar 

  29. Randeberg LL, Baarstad L, Løke T, Kaspersen P, Svaasand LO. Hyperspectral imaging of bruised skin. Proceedings of SPIE. 2006;6078:60780O.doi:10.1117/12.646557.

    Google Scholar 

  30. Ellsworth ML, Pittman RN, Ellis CG. Measurement of hemoglobin oxygen saturation in capillaries. Am J Physiol. 1987;252:H1031–40.

    CAS  Google Scholar 

  31. Pittman RN, Duling BR. Measurement of percent oxyhemoglobin in the microvasculature. J Appl Physiol. 1975;38:321–7.

    CAS  Google Scholar 

  32. Liu Q, Vo-Dinh T. Spectral filtering modulation method for estimation of hemoglobin concentration and oxygenation based on a single fluorescence emission spectrum in tissue phantoms. Med Phys. 2009;36(10):4819–29.

    Article  CAS  Google Scholar 

  33. Phelps JE, Vishwanath K, Chang VTC, Ramanujam N. Rapid ratiometric determination of hemoglobin concentration using UV-VIS diffuse reflectance at isosbestic wavelengths. Opt Express. 2010;18:18779–92.

    Article  CAS  Google Scholar 

  34. Deyo DJ, Esenaliev RO, Hartrumpf O, Motamedi M, Prough DS. Continuous noninvasive optoacoustic monitoring of hemoglobin concentration. Anesthesiol Analgesia. 2001;92:139.

    Google Scholar 

  35. Esenaliev RO, Petrov YY, Hartumpf O, Deyo DJ, Prough DS. Continuous, noninvasive monitoring of total hemoglobin concentration by an optoacoustic technique. Appl Opt. 2004;43(17):3401–7.

    Article  CAS  Google Scholar 

  36. Petrova IY, Esenaliev RO, Petrov YY, Brecht HPE, Svensen CH, Olsson J, et al. Optoacoustic monitoring of blood hemoglobin concentration: a pilot clinical study. Opt Lett. 2005;30(13):1677–9.

    Article  Google Scholar 

  37. Woltman S, Jay DG, Crawford GP. Liquid-crystal materials find a new order in biomedical applications. Nature. 2007;6:929–38.

    Article  CAS  Google Scholar 

  38. Tuchin VV. Light scattering study of tissues. Phys-Uspekhi. 1997;40:495–515.

    Article  Google Scholar 

  39. Ishimaru A. Wave propagation and scattering in random media. New York: Academic; 1978.

    Google Scholar 

  40. Farrell TJ, Patterson MS, Wilson B. A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo. Med Phys. 1992;19(4):879–88.

    Article  CAS  Google Scholar 

  41. Kienle A, Patterson MS. Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium. J Opt Soc Am. 1997;14(1):246–54.

    Article  CAS  Google Scholar 

  42. Svaasand LO, Norvang LT, Fiskerstrand EJ, Stopps EKS, Berns MW, Nelson JS. Tissue parameters determining the visual appearance of normal skin and port wine stains. Lasers Med Sci. 1995;10:55–65.

    Article  Google Scholar 

  43. Randeberg LL, Roll EB, Nilsen LT, Christensen T, Svaasand LO. In vivo spectroscopy of jaundiced newborn skin reveals more than a bilirubin index. Acta Paediatr. 2005;94(1):65–71.

    Article  Google Scholar 

  44. Randeberg LL, Bonesrønning JH, Dalaker M, Nelson JS, Svaasand LO. Methemoglobin formation during laser induced photothermolysis of vascular lesions. Lasers Surg Med. 2004;34(5):414–9.

    Article  CAS  Google Scholar 

  45. Svaasand T, Spott L. Collimated light sources in the diffusion approximation. Appl Opt. 2000;39:6453–65.

    Article  Google Scholar 

  46. Maeda T, Arakawa N, Takahashi M, Aizu Y. Monte Carlo simulation of spectral reflectance using a multilayered skin tissue model. Opt Rev. 2010;17:223–9.

    Article  CAS  Google Scholar 

  47. Wang L, Jacques SL, Zheng L. MCML—Monte Carlo modeling of light transport in multi-layered tissues. Comput Methods Programs Biomed. 1995;47:131–46.

    Article  CAS  Google Scholar 

  48. Lines C, Kim O, Alber M, Crawford G. Modeling and measuring extravascular hemoglobin: aging contusions. Proceeding of SPIE. 2011;8087:80872T.doi:10.1117/12.896610.

    Google Scholar 

  49. Kim O, McMurdy J, Lines C, Duffy S, Crawford G, Alber MS. Reflectance spectrometry of normal and bruised human skins: experiments and modeling. 2012;33:159–75. doi:10.1088/0967-3334/33/2/159.

    Google Scholar 

  50. Randeberg LL, Skallerud B, Langlois NEI, Haugen OA, Svaasand LO. The optics of bruising. In: Welch AJ, van Gemert MJC, editors. Optical-thermal response of laser-irradiated tissue. 2nd ed. Berlin: Springer; 2011. p. 825–8.

    Google Scholar 

  51. Randeberg LL, Haugen OA, Haaverstad R, Svaasand LO. A novel approach to age determination of traumatic injuries by reflectance spectroscopy. Lasers Surg Med. 2006;38(4):277–89.

    Article  Google Scholar 

  52. Stam B, van Gemert MJC, van Leeuwen TG, Aalders MCG. 3D finite compartment modeling of formation and healing of bruises may identify methods for age determination of bruises. Med Biol Eng Comput. 2010;48:911–21.

    Article  Google Scholar 

Download references

Acknowledgements

Authors were partially supported by the Gerber Foundation and NSF DMS grant 0800612.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Crawford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kim, O., Lines, C., Duffy, S., Alber, M., Crawford, G. (2013). Modeling and Measuring Extravascular Hemoglobin: Aging Contusions. In: Schlesinger, M. (eds) Applications of Electrochemistry in Medicine. Modern Aspects of Electrochemistry, vol 56. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-6148-7_10

Download citation

Publish with us

Policies and ethics