Skip to main content

Neuropsychopharmacological Actions of Taurine

  • Conference paper
  • First Online:
Taurine 8

Abstract

Taurine, an endogenous amino sulfonic acid, exhibits numerous neuropsychopharmacological activities. Previous studies in our laboratory have shown that it is an effective anti-cataleptic and neuro-protective agent. Current investigations show that acute or chronic administration of psychotropic drug cocaine may increase extracellular release of endogenous taurine which may protect against deleterious effects of the substances of abuse. Taurine administration was found to prevent cocaine-induced addiction by suppressing spontaneous locomotor activity and conditioned place preference. Taurine markedly delayed tail-flick response in rats which was significantly different from that in the group of animal receiving the same volume of saline, thereby indicating that taurine is a potentially valuable analgesic agent. Both taurine and endomorphin-1 were found to suppress the delayed broad negative evoked field potentials in anterior insular cortex (upper layer 5) by partially inhibiting NMDA receptor system. Thus, taurine is a unique psychopharmacological compound with potential for a variety of therapeutic uses including as a neuro-protective, anti-cataleptic, anti-addicting, and analgesic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

NMDA:

N-Methyl-d-aspartate

GABA:

Gama-amino-butyric acid

APV:

DL-2-Amino-5-phosphonopentanoic acid

CPP:

Conditioned place preference

References

  • Agovic MS, Yablonsky-Alter E, Lidsky TI, Banerjee SP (2008) Mechanisms for metoclopramide-mediated sensitization and haloperidol-induced catalepsy in rats. Eur J Pharmacol 587:181–186

    Article  PubMed  CAS  Google Scholar 

  • Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, Kavalali ET, Monteggia LM (2011) NMDA receptor blockade at rest triggers rapid behavioral anti depressants responses. Nature 475:91–95

    Article  PubMed  CAS  Google Scholar 

  • Banerjee SP, Zuck LG, Yablonsky-Alter E, Lidsky TI (1995) Glutamate agonist activity: implications for antipsychotic drug action and schizophrenia. Neuroreport 6:2500–2504

    Article  PubMed  CAS  Google Scholar 

  • Chan CY, Sun HS, Shah SM, Agovic MS, Ho I, Friedman E, Banerjee SP (2012) Direct interaction of taurine with the NMDA glutamate receptor sub-type via multiple mechanisms. 18th annual Taurine meeting. Marrakesh, Morocco

    Google Scholar 

  • Gupta A, Devi LA, Gomes I (2011) Potentiation of μ-opioid receptor-mediated signaling by ketamine. J Neurochem 119:294–302

    Article  PubMed  CAS  Google Scholar 

  • Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 29:565–598

    Article  PubMed  CAS  Google Scholar 

  • Heilig M, Egli M (2006) Pharmacological treatment of alcohol dependence: target symptoms and target mechanisms. Pharmacol Ther 111:855–876

    Article  PubMed  CAS  Google Scholar 

  • Kauer JA, Malenka RC (2007) Synaptic plasticity and addiction. Nat Rev Neurosci 8:844–858

    Article  PubMed  CAS  Google Scholar 

  • Lidsky TI, Banerjee SP (1992) Clozapine’s mechanisms of action: non-dopaminergic activity rather than anatomical selectivity. Neurosci Lett 139:100–103

    Article  PubMed  CAS  Google Scholar 

  • Lidsky TI, Banerjee SP (1993) Acute administration of haloperidol enhances dopaminergic transmission. J Pharmacol Exp Ther 265:1193–1198

    PubMed  CAS  Google Scholar 

  • Lidsky TI, Banerjee SP (1996) Contribution of glutamatergic dysfunction to schizophrenia. Drug News & Perspectives 9:453–459

    Article  PubMed  CAS  Google Scholar 

  • Lidsky TI, Yablonsky-Alter E, Zuck LG, Banerjee SP (1993) Anti-glutamatergic effects of clozapine. Neurosci Lett 163:155–158

    Article  PubMed  CAS  Google Scholar 

  • Lidsky TI, Schneider JS, Zuck LG, Yablonsky-Alter E, Banerjee SP (1994) GM1 ganglioside attenuates changes in neurochemistry and behavior caused by repeated haloperidol administration. Neurodegeneration 3:135–140

    Article  PubMed  CAS  Google Scholar 

  • Lidsky TI, Schneider JS, Yablonsky-Alter E, Zuck LG, Banerjee SP (1995) Taurine prevents haloperidol-induced changes in striatal neurochemistry and behavior. Brain Res 686:104–106

    Article  PubMed  CAS  Google Scholar 

  • Lidsky TI, Yablonsky-Alter E, Zuck LG, Banerjee SP (1997) Antipsychotic drug effects on glutamatergic activity. Brain Res 764:46–52

    Article  PubMed  CAS  Google Scholar 

  • Luscher C (2012) Drugs of abuse. In: Katsung BG et al (eds) Basic and clinical pharmacology. The McGraw Hill Companies Inc., New York, pp 565–580

    Google Scholar 

  • Martin RP, Patel S, Swift MR (2012) Pharmacology of drugs of abuse. In: Golan DE, Tashjian HA, Armstrong JE, Armstrong WA (eds) Principles of pharmacology. Lippincott Williams & Wilkins, Philadelphia, PA, pp 284–309

    Google Scholar 

  • Martin RP, Patel S, Swift MR (2012) Pharmacology of drugs of abuse. In: Golan DE, Tashjian HA, Armstrong JE, Armstrong WA (eds) Principles of pharmacology. Lippincott Williams & Wilkins, Philadelphia, PA, pp 284–309

    Google Scholar 

  • Mathisen LC, Skjelbred P, Skoglund LA, Oye I (1995) Effect of ketamine, an NMDA receptor inhibitor, in acute and chronic orofacial pain. Pain 61:215–220

    Article  PubMed  CAS  Google Scholar 

  • Mochanova SM, Oja SS, Saransaari P (2007) Inhibitory effect of taurine on veratridine-evoked D-[3H]aspartate release from murine corticostriatal slices: involvement of chloride channels and mitochondria. Brain Res 1130:95–102

    Article  PubMed  CAS  Google Scholar 

  • Okamoto K, Kimura H, Sakai Y. (1983) Taurine-induced increase of the Cl-conductance of cerebellar Purkinje cell dendrites in vitro. Brain Res.259:319–23.

    Google Scholar 

  • Okamoto K, Kimura H, Sakai Y (1983b) Evidence for taurine as an inhibitory neurotransmitter in cerebellar stellate interneurons: selective antagonism by TAG (6-aminomethyl-3-methyl-4H,1,2,4-benzothiadiazine-1,1-dioxide). Brain Res 265:163–168

    Article  PubMed  CAS  Google Scholar 

  • Quinn MR, Miller CL (1992) Taurine allosterically modulates flunitrazepam binding to synaptic membranes. J Neurosci Res 33:136–141

    Article  PubMed  CAS  Google Scholar 

  • Ragnauth A, Znamensky V, Moroz M, Bodnar RJ (2000) Analysis of dopamine receptor antagonism upon feeding elicited by mu and delta opioid agonists in the shell region of the nucleus accumbens. Brain Res 877:65–72

    Article  PubMed  CAS  Google Scholar 

  • Ragnauth A, Schuller A, Morgan M, Chan J, Ogawa S, Pintar J, Bodnar RJ, Pfaff DW (2001) Female preproenkephalin-knockout mice display altered emotional responses. Proc Natl Acad Sci U S A 198:1958–1963

    Article  Google Scholar 

  • Ragnauth AK, Devidze N, Moy V, Finley K, Goodwillie A, Kow LM, Muglia LJ, Pfaff DW (2005) Female oxytocin gene-knockout mice, in a semi-natural environment, display exaggerated aggressive behavior. Genes Brain Behav 4:229–239

    Article  PubMed  CAS  Google Scholar 

  • Rodriguiz RM, Gadnidze K, Ragnauth A, Dorr N, Yanagisawa M, Wetsel WC, Devi LA (2008) Animals lacking endothelin-converting enzyme-2 are deficient in learning and memory. Genes Brain Behav 7:418–426

    Article  PubMed  CAS  Google Scholar 

  • Schumacher MA, Basbaum AI, Way WL (2012) Opioid analgesics and antagonists. In: Katzung BG et al (eds) Basic and clinical pharmacology. The McGraw Hill Companies Inc., New York, pp 543–564

    Google Scholar 

  • Sinner B, Graf BM (2008) Ketamine. Handb Exp Pharmacol 182:313–333

    Google Scholar 

  • Spinella M, Znamensky V, Moroz M, Ragnauth A, Bodnar RJ (1999) Actions of NMDA and cholinergic receptor antagonists in the rostral ventromedial medulla upon beta-endorphin analgesia elicited from the ventrolateral periaqueductal gray. Brain Res 829:151–159

    Article  PubMed  CAS  Google Scholar 

  • Tverskoy M, Oz Y, Isakson A, Finger J, Bradley EL Jr, Kissin I (1994) Preemptive effect of fentanyl and ketamine on postoperative pain and wound hyper-algesia. Anesth Analg 78:205–209

    Article  PubMed  CAS  Google Scholar 

  • Yablonsky-Alter E, Gashi E, Lidsky TI, Wang HY, Banerjee SP (2005) Clozapine protection against gestational cocaine-induced neurochemical abnormalities. J Pharmacol Exp Ther 312:297–302

    Article  PubMed  CAS  Google Scholar 

  • Yablonsky-Alter E, Agovic MS, Gashi E, Lidsky TI, Friedman E, Banerjee SP (2009) Cocaine challenge enhances release of neuroprotective amino acid taurine in the striatum of chronic cocaine treated rats: a micro-dialysis study. Brain Res Bull 79:215–218

    Article  PubMed  CAS  Google Scholar 

  • Yarbrough GG, Singh DK, Taylor DA (1981) Neuropharmacological characterization of a taurine antagonist. J Pharmacol Exp Ther 3:604–613

    Google Scholar 

Download references

Acknowledgments

This work was supported by DAO18055 grant from NIDA and by PSC-CUNY 41-582 grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailesh P. Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Banerjee, S.P. et al. (2013). Neuropsychopharmacological Actions of Taurine. In: El Idrissi, A., L'Amoreaux, W. (eds) Taurine 8. Advances in Experimental Medicine and Biology, vol 775. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6130-2_1

Download citation

Publish with us

Policies and ethics