Skip to main content

Radiotherapy and the Tumor Microenvironment: Mutual Influence and Clinical Implications

  • Conference paper
  • First Online:
Tumor Microenvironment and Cellular Stress

Abstract

Ionizing radiation has been employed in targeted cancer treatments for more than a century because of its cytotoxic effects on cancer cells. However, the responsiveness to radiation and the behavior of tumors in vivo may differ dramatically from observed behaviors of isolated cancer cells in vitro. While not fully understood, these discrepancies are due to a complex constellation of extracellular and intercellular factors that are together termed the tumor microenvironment. Radiation may alter or affect the components of the adjacent tumor microenvironment in significant ways, often with consequences for cancer cells beyond the direct effects of the radiation itself. Moreover, different microenvironmental states, whether induced or at baseline, can modulate or even attenuate the effects of radiation, with consequences for therapeutic efficacy. This chapter describes this bidirectional relationship in detail, exploring the role and clinical implications of the tumor microenvironment with respect to therapeutic irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdollahi A et al (2005) Inhibition of alpha(v)beta3 integrin survival signaling enhances antiangiogenic and antitumor effects of radiotherapy. Clin Cancer Res Off J Am Assoc Cancer Res 11(17):6270–6279

    CAS  Google Scholar 

  • Aguilera DG et al (2013) Prolonged survival after treatment of diffuse intrinsic pontine glioma with radiation, temozolamide, and bevacizumab: report of 2 cases. J Pediatric Hematol Oncol 35(1):e42–e46

    Google Scholar 

  • Albert JM et al (2006) Integrin alpha v beta 3 antagonist Cilengitide enhances efficacy of radiotherapy in endothelial cell and non-small-cell lung cancer models. Int J Radiat Oncol Biol Phys 65(5):1536–1543

    PubMed  CAS  Google Scholar 

  • Almeida C et al (2013) The role of alveolar epithelium in radiation-induced lung injury. PloS One 8(1):e53628

    PubMed  CAS  Google Scholar 

  • Andarawewa KL et al (2007) Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor beta induced epithelial to mesenchymal transition. Cancer Res 67(18):8662–8670

    PubMed  CAS  Google Scholar 

  • Antoniades J, Brady LW, Lightfoot DA (1977) Lymphangiographic demonstration of the abscopal effect in patients with malignant lymphomas. Int J Radiat Oncol Biol Phys 2(1–2):141–147

    PubMed  CAS  Google Scholar 

  • Apetoh L et al (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13(9):1050–1059

    PubMed  CAS  Google Scholar 

  • Arumugam T et al (2011) Trefoil factor 1 stimulates both pancreatic cancer and stellate cells and increases metastasis. Pancreas 40(6):815–822

    PubMed  CAS  Google Scholar 

  • Azzam EI, de Toledo SM, Little JB (2001) Direct evidence for the participation of gap junction-mediated intercellular communication in the transmission of damage signals from alpha -particle irradiated to nonirradiated cells. Proc Natl Acad Sci USA 98(2):473–478

    PubMed  CAS  Google Scholar 

  • Barron ES (1954) The role of free radicals and oxygen in reactions produced by ionizing radiations. Radiat Res 1(1):109–124

    PubMed  CAS  Google Scholar 

  • Belka C et al (1999) Impact of localized radiotherapy on blood immune cells counts and function in humans. Radiother Oncol J Eur Soc Ther Radiol Oncol 50(2):199–204

    CAS  Google Scholar 

  • Belyakov OV et al (2003) A proliferation-dependent bystander effect in primary porcine and human urothelial explants in response to targeted irradiation. Brit J Cancer 88(5):767–774

    PubMed  CAS  Google Scholar 

  • Belyakov OV et al (2005) Biological effects in unirradiated human tissue induced by radiation damage up to 1 mm away. Proc Natl Acad Sci USA 102(40):14203–14208

    PubMed  CAS  Google Scholar 

  • Bishayee A et al (2001) Free radical-initiated and gap junction-mediated bystander effect due to nonuniform distribution of incorporated radioactivity in a three-dimensional tissue culture model. Radiat Res 155(2):335–344

    PubMed  CAS  Google Scholar 

  • Bochet L et al (2011) Cancer-associated adipocytes promotes breast tumor radioresistance. Biochem Biophys Res Commun 411(1):102–106

    PubMed  CAS  Google Scholar 

  • Bonner JA et al (2006) Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. New Engl J Med 354(6):567–578

    PubMed  CAS  Google Scholar 

  • Brizel DM et al (1997) Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 38(2):285–289

    PubMed  CAS  Google Scholar 

  • Brown JM, Wilson WR (2004) Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 4(6):437–447

    PubMed  CAS  Google Scholar 

  • Cerniglia GJ et al (2009) Epidermal growth factor receptor inhibition modulates the microenvironment by vascular normalization to improve chemotherapy and radiotherapy efficacy. PloS one 4(8):e6539

    PubMed  Google Scholar 

  • Chakraborty M et al (2003) Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy. J Immunol 170(12):6338–6347

    PubMed  CAS  Google Scholar 

  • Chakraborty M et al (2004) External beam radiation of tumors alters phenotype of tumor cells to render them susceptible to vaccine-mediated T-cell killing. Cancer Res 64(12):4328–4337

    PubMed  CAS  Google Scholar 

  • Chen JS et al (2008) Characterization of structurally distinct, isoform-selective phosphoinositide 3′-kinase inhibitors in combination with radiation in the treatment of glioblastoma. Mol Cancer Ther 7(4):841–850

    PubMed  CAS  Google Scholar 

  • Chiba N et al (2012) Homeobox B9 induces epithelial-to-mesenchymal transition-associated radioresistance by accelerating DNA damage responses. Proc Natl Acad Sci USA 109(8):2760–2765

    PubMed  CAS  Google Scholar 

  • Cordes N et al (2006) beta1-integrin-mediated signaling essentially contributes to cell survival after radiation-induced genotoxic injury. Oncogene 25(9):1378–1390

    PubMed  CAS  Google Scholar 

  • Cummins RJ et al (1999) The effect of microcolony size, at time of irradiation, on colony forming ability. Int J Radiat Biol 75(2):225–232

    PubMed  CAS  Google Scholar 

  • Denekamp J (1993) Review article: angiogenesis, neovascular proliferation and vascular pathophysiology as targets for cancer therapy. Brit J Radiol 66(783):181–196

    PubMed  CAS  Google Scholar 

  • Dewan MZ et al (2009) Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res Off J Am Assoc Cancer Res 15(17):5379–5388

    CAS  Google Scholar 

  • Ehlers G, Fridman M (1973) Abscopal effect of radiation in papillary adenocarcinoma. Brit J Radiol 46(543):220–222

    PubMed  CAS  Google Scholar 

  • Eke I, Dickreuter E, Cordes N (2012) Enhanced radiosensitivity of head and neck squamous cell carcinoma cells by beta1 integrin inhibition. Radiother Oncol J Eur Soc Ther Radiol Oncol 104(2):235–242

    CAS  Google Scholar 

  • Eshleman JS et al (2002) Inhibition of the mammalian target of rapamycin sensitizes U87 xenografts to fractionated radiation therapy. Cancer Res 62(24):7291–7297

    PubMed  CAS  Google Scholar 

  • Fischer I et al (2008) High-grade glioma before and after treatment with radiation and Avastin: initial observations. Neuro Oncol 10(5):700–708

    PubMed  Google Scholar 

  • Folkman J (1995) Seminars in medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis. New Engl J Med 333(26):1757–1763

    PubMed  CAS  Google Scholar 

  • Formenti SC, Demaria S (2009) Systemic effects of local radiotherapy. Lancet Oncol 10(7):718–726

    PubMed  Google Scholar 

  • Fujita S et al (1995) Alteration of expression in integrin beta 1-subunit correlates with invasion and metastasis in colorectal cancer. Cancer Lett 91(1):145–149

    PubMed  CAS  Google Scholar 

  • Galon J et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795):1960–1964

    PubMed  CAS  Google Scholar 

  • Garcia-Barros M et al (2003) Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300(5622):1155–1159

    PubMed  CAS  Google Scholar 

  • Gerashchenko BI, Howell RW (2005) Bystander cell proliferation is modulated by the number of adjacent cells that were exposed to ionizing radiation. Cytom Part A J Int Soc Anal Cytol 66(1):62–70

    Google Scholar 

  • Gorski DH et al (1999) Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res 59(14):3374–3378

    PubMed  CAS  Google Scholar 

  • Graeber TG et al (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379(6560):88–91

    PubMed  CAS  Google Scholar 

  • Grugan KD et al (2010) Fibroblast-secreted hepatocyte growth factor plays a functional role in esophageal squamous cell carcinoma invasion. Proc Natl Acad Sci USA 107(24):11026–11031

    PubMed  CAS  Google Scholar 

  • Gupta AK et al (2005) HIV protease inhibitors block Akt signaling and radiosensitize tumor cells both in vitro and in vivo. Cancer Res 65(18):8256–8265

    PubMed  CAS  Google Scholar 

  • Hallahan DE et al (1989) Increased tumor necrosis factor alpha mRNA after cellular exposure to ionizing radiation. Proc Natl Acad Sci USA 86(24):10104–10107

    PubMed  CAS  Google Scholar 

  • Hanot M et al (2009) Membrane-dependent bystander effect contributes to amplification of the response to alpha-particle irradiation in targeted and nontargeted cells. Int J Radiat Oncol Biol Phys 75(4):1247–1253

    PubMed  CAS  Google Scholar 

  • Harada H et al (2009) Treatment regimen determines whether an HIF-1 inhibitor enhances or inhibits the effect of radiation therapy. Brit J Cancer 100(5):747–757

    PubMed  CAS  Google Scholar 

  • Hellevik T et al (2012) Cancer-associated fibroblasts from human NSCLC survive ablative doses of radiation but their invasive capacity is reduced. Radiat Oncol 7(1):59

    PubMed  CAS  Google Scholar 

  • Hellstrom KE et al (1978) Regression and inhibition of sarcoma growth by interference with a radiosensitive T-cell population. J Exp Med 148(3):799–804

    PubMed  CAS  Google Scholar 

  • Hess C et al (2001) Effect of VEGF receptor inhibitor PTK787/ZK222584 [correction of ZK222548] combined with ionizing radiation on endothelial cells and tumour growth. Brit J Cancer 85(12):2010–2016

    PubMed  CAS  Google Scholar 

  • Hildebrandt G et al (1998) Mechanisms of the anti-inflammatory activity of low-dose radiation therapy. Int J Radiat Biol 74(3):367–378

    PubMed  CAS  Google Scholar 

  • Hino M et al (2010) Heavy ion irradiation induces autophagy in irradiated C2C12 myoblasts and their bystander cells. J Electron Microsc 59(6):495–501

    CAS  Google Scholar 

  • Hodge JW, Sharp HJ, Gameiro SR (2012) Abscopal regression of antigen disparate tumors by antigen cascade after systemic tumor vaccination in combination with local tumor radiation. Cancer Biother Radiopharm 27(1):12–22

    PubMed  CAS  Google Scholar 

  • Hwang RF et al (2008) Cancer-associated stromal fibroblasts promote pancreatic tumor progression. Cancer Res 68(3):918–926

    PubMed  CAS  Google Scholar 

  • Ishihara H et al (1993) Induction of the expression of the interleukin-1 beta gene in mouse spleen by ionizing radiation. Radiation Res 133(3):321–326

    PubMed  CAS  Google Scholar 

  • Iyer R, Lehnert BE (2002) Alpha-particle-induced increases in the radioresistance of normal human bystander cells. Radiat Res 157(1):3–7

    PubMed  CAS  Google Scholar 

  • Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706):58–62

    PubMed  CAS  Google Scholar 

  • Jamal M et al (2012) The brain microenvironment preferentially enhances the radioresistance of CD133(+) glioblastoma stem-like cells. Neoplasia 14(2):150–158

    PubMed  CAS  Google Scholar 

  • Janssens GO et al (2012) Accelerated radiotherapy with carbogen and nicotinamide for laryngeal cancer: results of a phase III randomized trial. J Clin Oncol Off J Am Soc Clin Oncol 30(15):1777–1783

    CAS  Google Scholar 

  • Jeggo P, Lavin MF (2009) Cellular radiosensitivity: how much better do we understand it? Int J Radiat Biol 85(12):1061–1081

    PubMed  CAS  Google Scholar 

  • Jen YM, West CM, Hendry JH (1991) The lower radiosensitivity of mouse kidney cells irradiated in vivo than in vitro: a cell contact effect phenomenon. Int J Radiat Oncol Biol Phys 20(6):1243–1248

    PubMed  CAS  Google Scholar 

  • Josson S et al (2010) Tumor-stromal interactions influence radiation sensitivity in epithelial- versus mesenchymal-like prostate cancer cells. J Oncol 2010

    Google Scholar 

  • Kachikwu EL et al (2011) Radiation enhances regulatory T cell representation. Int J Radiat Oncol Biol Phys 81(4):1128–1135

    PubMed  Google Scholar 

  • Kikuta K et al (2010) Pancreatic stellate cells promote epithelial-mesenchymal transition in pancreatic cancer cells. Biochem Biophys Res Commun 403(3–4):380–384

    PubMed  CAS  Google Scholar 

  • Kis E et al (2006) Microarray analysis of radiation response genes in primary human fibroblasts. Int J Radiat Oncol Biol Phys 66(5):1506–1514

    PubMed  CAS  Google Scholar 

  • Kotera Y, Shimizu K, Mule JJ (2001) Comparative analysis of necrotic and apoptotic tumor cells as a source of antigen(s) in dendritic cell-based immunization. Cancer Res 61(22):8105–8109

    PubMed  CAS  Google Scholar 

  • Kumagai J et al (2003) Long-lived mutagenic radicals induced in mammalian cells by ionizing radiation are mainly localized to proteins. Radiat Res 160(1):95–102

    PubMed  CAS  Google Scholar 

  • Kusunoki Y et al (2010) T-cell immunosenescence and inflammatory response in atomic bomb survivors. Radiat Res 174(6):870–876

    PubMed  CAS  Google Scholar 

  • Lee Y et al (2009) Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood 114(3):589–595

    PubMed  CAS  Google Scholar 

  • Little JB et al (2003) Involvement of the nonhomologous end joining DNA repair pathway in the bystander effect for chromosomal aberrations. Radiat Res 159(2):262–267

    PubMed  CAS  Google Scholar 

  • Lugade AA et al (2005) Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol 174(12): 7516–7523

    PubMed  CAS  Google Scholar 

  • Mantoni TS et al (2011) Pancreatic stellate cells radioprotect pancreatic cancer cells through beta1-integrin signaling. Cancer Res 71(10):3453–3458

    PubMed  CAS  Google Scholar 

  • Maruyama Y, Eichten JG (1968) Radiation sensitivity of spleen cells irradiated in vitro and in vivo. Am J Roentgenol Radium Ther Nucl Med 102(1):46–52

    PubMed  CAS  Google Scholar 

  • Matsumura S et al (2008) Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J Immunol 181(5):3099–3107

    PubMed  CAS  Google Scholar 

  • Maxwell PH et al (1997) Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci USA 94(15):8104–8109

    PubMed  CAS  Google Scholar 

  • Mikkelsen T et al (2009) Radiation sensitization of glioblastoma by cilengitide has unanticipated schedule-dependency. Int J Cancer 124(11):2719–2727

    PubMed  CAS  Google Scholar 

  • Moeller BJ et al (2004) Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 5(5):429–441

    PubMed  CAS  Google Scholar 

  • Moeller BJ et al (2005) Pleiotropic effects of HIF-1 blockade on tumor radiosensitivity. Cancer Cell 8(2):99–110

    PubMed  CAS  Google Scholar 

  • Monnier Y et al (2008) CYR61 and alphaVbeta5 integrin cooperate to promote invasion and metastasis of tumors growing in preirradiated stroma. Cancer Res 68(18):7323–7331

    PubMed  CAS  Google Scholar 

  • Mothersill C, Seymour C (1997) Medium from irradiated human epithelial cells but not human fibroblasts reduces the clonogenic survival of unirradiated cells. Int J Radiat Biol 71(4):421–427

    PubMed  CAS  Google Scholar 

  • Mothersill C, Seymour RJ, Seymour CB (2004) Bystander effects in repair-deficient cell lines. Radiation Res 161(3):256–263

    PubMed  CAS  Google Scholar 

  • Murata R et al (2001) Interaction between combretastatin A-4 disodium phosphate and radiation in murine tumors. Radiother Oncol J Eur Soc Ther Radiol Oncol 60(2):155–161

    CAS  Google Scholar 

  • Nagasawa H, Little JB (1992) Induction of sister chromatid exchanges by extremely low doses of alpha-particles. Cancer Res 52(22):6394–6396

    PubMed  CAS  Google Scholar 

  • Nam JM et al (2010) Breast cancer cells in three-dimensional culture display an enhanced radioresponse after coordinate targeting of integrin alpha5beta1 and fibronectin. Cancer Res 70(13):5238–5248

    PubMed  CAS  Google Scholar 

  • Narayanan PK et al (1999) Alpha particles induce the production of interleukin-8 by human cells. Radiation Res 152(1):57–63

    PubMed  CAS  Google Scholar 

  • Nesslinger NJ et al (2007) Standard treatments induce antigen-specific immune responses in prostate cancer. Clin Cancer Res Off J Am Assoc Cancer Res 13(5):1493–1502

    CAS  Google Scholar 

  • North RJ (1986) Radiation-induced, immunologically mediated regression of an established tumor as an example of successful therapeutic immunomanipulation. Preferential elimination of suppressor T cells allows sustained production of effector T cells. J Exp Med 164(5):1652–1666

    PubMed  CAS  Google Scholar 

  • Ohba K et al (1998) Abscopal regression of hepatocellular carcinoma after radiotherapy for bone metastasis. Gut 43(4):575–577

    PubMed  CAS  Google Scholar 

  • Overgaard J (2007) Hypoxic radiosensitization: adored and ignored. J Clin Oncol Off J Am Soc Clin Oncol 25(26):4066–4074

    Google Scholar 

  • Palcic B, Skarsgard LD (1984) Reduced oxygen enhancement ratio at low doses of ionizing radiation. Radiat Res 100(2):328–339

    PubMed  CAS  Google Scholar 

  • Papadopoulou A, Kletsas D (2011) Human lung fibroblasts prematurely senescent after exposure to ionizing radiation enhance the growth of malignant lung epithelial cells in vitro and in vivo. Int J Oncol 39(4):989–999

    PubMed  CAS  Google Scholar 

  • Paris F et al (2001) Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293(5528):293–297

    PubMed  CAS  Google Scholar 

  • Park CC et al (2003) Ionizing radiation induces heritable disruption of epithelial cell interactions. Proc Natl Acad Sci USA 100(19):10728–10733

    PubMed  CAS  Google Scholar 

  • Park CC et al (2006) Beta1 integrin inhibitory antibody induces apoptosis of breast cancer cells, inhibits growth, and distinguishes malignant from normal phenotype in three dimensional cultures and in vivo. Cancer Res 66(3):1526–1535

    PubMed  CAS  Google Scholar 

  • Patel ZS et al (2012) Ionizing radiation enhances esophageal epithelial cell migration and invasion through a paracrine mechanism involving stromal-derived hepatocyte growth factor. Radiat Res 177(2):200–208

    PubMed  CAS  Google Scholar 

  • Pinzone MR et al (2012) Non-AIDS-defining cancers among HIV-infected people. Eur Rev Med Pharmacol Sci 16(10):1377–1388

    PubMed  CAS  Google Scholar 

  • Poglio S et al (2009) Adipose tissue sensitivity to radiation exposure. Am J Pathol 174(1):44–53

    PubMed  CAS  Google Scholar 

  • Pore N et al (2006) Nelfinavir down-regulates hypoxia-inducible factor 1alpha and VEGF expression and increases tumor oxygenation: implications for radiotherapy. Cancer Res 66(18):9252–9259

    PubMed  CAS  Google Scholar 

  • Postow MA et al (2012) Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med 366(10):925–931

    PubMed  CAS  Google Scholar 

  • Prendergast AM et al (2011) Activation of DNA damage response pathways in human mesenchymal stem cells exposed to cisplatin or gamma-irradiation. Cell Cycle 10(21):3768–3777

    PubMed  CAS  Google Scholar 

  • Puck TT, Marcus PI (1956) Action of x-rays on mammalian cells. J Exp Med 103(5):653–666

    PubMed  CAS  Google Scholar 

  • Qayum N et al (2009) Tumor vascular changes mediated by inhibition of oncogenic signaling. Cancer Res 69(15):6347–6354

    PubMed  CAS  Google Scholar 

  • Qayyum MA, Insana MF (2012) Stromal responses to fractionated radiotherapy. Int J Radiat Biol 88(5):383–392

    PubMed  CAS  Google Scholar 

  • Reiner J, Southam CM (1966) Effect of immunosuppression on first-generation isotransplantation of chemically induced tumours in mice. Nature 210(5034):429–430

    PubMed  CAS  Google Scholar 

  • Reits EA et al (2006) Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 203(5):1259–1271

    PubMed  CAS  Google Scholar 

  • Sanda MG et al (1995) Molecular characterization of defective antigen processing in human prostate cancer. J Natl Cancer Inst 87(4):280–285

    PubMed  CAS  Google Scholar 

  • Sato Y et al (2009) Cancer cells expressing toll-like receptors and the tumor microenvironment. Cancer Microenviron Off J Int Cancer Microenviron Soc 2(Suppl 1):205–214

    Google Scholar 

  • Scaringi C et al (2012) Integrin inhibitor cilengitide for the treatment of glioblastoma: a brief overview of current clinical results. Anticancer Res 32(10):4213–4223

    PubMed  CAS  Google Scholar 

  • Schaue D et al (2008) T-cell responses to survivin in cancer patients undergoing radiation therapy. Clin Cancer Res Off J Am Assoc Cancer Res 14(15):4883–4890

    CAS  Google Scholar 

  • Schaue D et al (2012) Maximizing tumor immunity with fractionated radiation. Int J Radiat Oncol Biol Phys 83(4):1306–1310

    PubMed  CAS  Google Scholar 

  • Schettino G et al (2005) Low-dose binary behavior of bystander cell killing after microbeam irradiation of a single cell with focused c(k) x rays. Radiat Res 163(3):332–336

    PubMed  CAS  Google Scholar 

  • Schwartz DL et al (2009) The selective hypoxia inducible factor-1 inhibitor PX-478 provides in vivo radiosensitization through tumor stromal effects. Mol Cancer Ther 8(4):947–958

    PubMed  CAS  Google Scholar 

  • Sedelnikova OA et al (2007) DNA double-strand breaks form in bystander cells after microbeam irradiation of three-dimensional human tissue models. Cancer Res 67(9):4295–4302

    PubMed  CAS  Google Scholar 

  • Senger DR et al (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219(4587):983–985

    PubMed  CAS  Google Scholar 

  • Seung SK et al (2012) Phase 1 study of stereotactic body radiotherapy and interleukin-2-tumor and immunological responses. Sci Transl Med 4(137):137ra74

    PubMed  CAS  Google Scholar 

  • Shaked Y et al (2006) Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science 313(5794):1785–1787

    PubMed  CAS  Google Scholar 

  • Shao C et al (2006) Calcium fluxes modulate the radiation-induced bystander responses in targeted glioma and fibroblast cells. Radiat Res 166(3):479–487

    PubMed  CAS  Google Scholar 

  • Shao C, Folkard M, Prise KM (2008) Role of TGF-beta1 and nitric oxide in the bystander response of irradiated glioma cells. Oncogene 27(4):434–440

    PubMed  CAS  Google Scholar 

  • Shi Y, Evans JE, Rock KL (2003) Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425(6957):516–521

    PubMed  CAS  Google Scholar 

  • Shinohara ET et al (2005) Enhanced radiation damage of tumor vasculature by mTOR inhibitors. Oncogene 24(35):5414–5422

    PubMed  CAS  Google Scholar 

  • Siemann DW, Rojiani AM (2002) Enhancement of radiation therapy by the novel vascular targeting agent ZD6126. Int J Radiat Oncol Biol Phys 53(1):164–171

    PubMed  CAS  Google Scholar 

  • Stamell EF et al (2012) The abscopal effect associated with a systemic anti-melanoma immune response. Int J Radiat Oncol Biol Phys 85:293–295

    PubMed  Google Scholar 

  • Thompson LH (2012) Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat Res 751(2):158–246

    PubMed  CAS  Google Scholar 

  • Tilkin AF et al (1981) Reduced tumor growth after low-dose irradiation or immunization against blastic suppressor T cells. Proc Natl Acad Sci USA 78(3):1809–1812

    PubMed  CAS  Google Scholar 

  • Tong RT et al (2004) Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 64(11):3731–3736

    PubMed  CAS  Google Scholar 

  • Vines AM et al (2009) Bystander effect induced changes in apoptosis related proteins and terminal differentiation in in vitro murine bladder cultures. Int J Radiat Biol 85(1):48–56

    PubMed  CAS  Google Scholar 

  • Wang R, Coderre JA (2005) A bystander effect in alpha-particle irradiations of human prostate tumor cells. Radiat Res 164(6):711–722

    PubMed  CAS  Google Scholar 

  • Wang GL, Semenza GL (1995) Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 270(3):1230–1237

    PubMed  CAS  Google Scholar 

  • Watson ER et al (1978) Hyperbaric oxygen and radiotherapy: a medical research council trial in carcinoma of the cervix. Brit J Radiol 51(611):879–887

    PubMed  CAS  Google Scholar 

  • Watson GE et al (2000) Chromosomal instability in unirradiated cells induced in vivo by a bystander effect of ionizing radiation. Cancer Res 60(20):5608–5611

    PubMed  CAS  Google Scholar 

  • Wersall PJ et al (2006) Regression of non-irradiated metastases after extracranial stereotactic radiotherapy in metastatic renal cell carcinoma. Acta oncol 45(4):493–497

    PubMed  Google Scholar 

  • White DE et al (2004) Targeted disruption of beta1-integrin in a transgenic mouse model of human breast cancer reveals an essential role in mammary tumor induction. Cancer Cell 6(2):159–170

    PubMed  CAS  Google Scholar 

  • Wild-Bode C et al (2001) Sublethal irradiation promotes migration and invasiveness of glioma cells: implications for radiotherapy of human glioblastoma. Cancer Res 61(6):2744–2750

    PubMed  CAS  Google Scholar 

  • Williams KJ et al (2004) ZD6474, a potent inhibitor of vascular endothelial growth factor signaling, combined with radiotherapy: schedule-dependent enhancement of antitumor activity. Clin Cancer Res Off J Am Assoc Cancer Res 10(24):8587–8593

    CAS  Google Scholar 

  • Wilson WR et al (1998) Enhancement of tumor radiation response by the antivascular agent 5,6-dimethylxanthenone-4-acetic acid. Int J Radiat Oncol Biol Phys 42(4):905–908

    PubMed  CAS  Google Scholar 

  • Winkler F et al (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6(6):553–563

    PubMed  CAS  Google Scholar 

  • Xue LY et al (2002) Bystander effect produced by radiolabeled tumor cells in vivo. Proc Natl Acad Sci USA 99(21):13765–13770

    PubMed  CAS  Google Scholar 

  • Yang G et al (2009) Mitochondrial dysfunction resulting from loss of cytochrome c impairs radiation-induced bystander effect. Brit J Cancer 100(12):1912–1916

    PubMed  CAS  Google Scholar 

  • Yao ES et al (2007) Increased beta1 integrin is associated with decreased survival in invasive breast cancer. Cancer Res 67(2):659–664

    PubMed  CAS  Google Scholar 

  • Yasui H et al (2008) Inhibition of HIF-1alpha by the anticancer drug TAS106 enhances X-ray-induced apoptosis in vitro and in vivo. Brit J Cancer 99(9):1442–1452

    PubMed  CAS  Google Scholar 

  • Zhong H et al (1999) Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res 59(22):5830–5835

    PubMed  CAS  Google Scholar 

  • Zhou H et al (2005) Mechanism of radiation-induced bystander effect: role of the cyclooxygenase-2 signaling pathway. Proc Natl Acad Sci USA 102(41):14641–14646

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reid F. Thompson M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this paper

Cite this paper

Thompson, R.F., Maity, A. (2014). Radiotherapy and the Tumor Microenvironment: Mutual Influence and Clinical Implications. In: Koumenis, C., Hammond, E., Giaccia, A. (eds) Tumor Microenvironment and Cellular Stress. Advances in Experimental Medicine and Biology, vol 772. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5915-6_7

Download citation

Publish with us

Policies and ethics