Skip to main content

Chemical Behavior of Phthalates Under Abiotic Conditions in Landfills

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology Volume 224

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 224))

Abstract

Phthalates or phthalic acid esters (PAEs) are diesters of phthalic anhydride. They are synthesized from an esterification reaction between phthalic anhydride and oxo alcohols (ECOBILAN 2001). Phthalates are usually used as plasticizers to enhance the flexibility of materials and their technical properties. Mersiowsky et al. (2001) reported that the phthalates serve as plasticizers for approximately 93 % of the polyvinyl chloride (PVC) polymer that is produced. In addition, they are also used in cosmetics, in fragrances, as pesticide carriers, in insect repellants, and are found in vinyl floorings, wall coverings, cables, tubing, hoses, upholstery, films, paints, adhesives, and inks, among other products (ECPI 1994; Schierow and Lee 2008). The annual worldwide production of PAEs exceeds five million tons (Mackintosh et al. 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amend WJ (1935) Hydrogenation of alkyl phthalates. United States Patent Office. http://ip.com/patent/US2070770. Accessed 21 May 2012

  • Atkinson R (1988) Estimation of Gas-Phase hydroxyl radical rate constants for organic chemicals. Environ Toxicol Chem 7(6):435–442

    Article  CAS  Google Scholar 

  • Bauer MJ, Herrmann R, Martin A, Zellmann H (1998) Chemodynamics, transport behavior and treatment of phthalic acid esters in municipal landfill leachates. Water Sci Technol 38:185–192

    CAS  Google Scholar 

  • Chang BV, Yang CM, Cheng CH, Yuan SY (2004) Biodegradation of phthalate esters by two bacteria strains. Chemosphere 55:533–538

    Article  CAS  Google Scholar 

  • Chao WL, Cheng CY (2007) Effect of introduced phthalate-degrading bacteria on the diversity of indigenous bacterial communities during di(2-ethylhexyl)phthalate (DEHP) degradation in a soil microcosm. Chemosphere 67:482–488

    Article  CAS  Google Scholar 

  • Chatterjee S, Karlovsky P (2010) Removal of the endocrine disrupter butyl benzyl phthalate from the environment. Appl Microbiol Biotechnol 87(1):61–73

    Article  CAS  Google Scholar 

  • Chen Y, Hsieh D, Shang N (2011) Efficient mineralization of dimethyl phthalate by catalytic ozonation using TiO2/Al2O3 catalyst. J Hazard Mater 192:1017–1025

    Article  CAS  Google Scholar 

  • Christensen TH, Kjeldsen P, Bjerg PL, Jensen DL, Christensen JB, Baun A, Albrechtsen H, Heron G (2001) Biogeochemistry of landfill leachate plumes. Appl Geochem 16:659–718

    Article  CAS  Google Scholar 

  • Chung Y, Chen C (2009) Degradation of Di-(2-ethylhexyl)phthalate (DEHP) by TiO2 photocatalysis. Water Air Soil Pollut 200:191–198

    Article  CAS  Google Scholar 

  • Cousins IT, Mackay D, Parkerton TF (2003) Physical-chemical properties and evaluative fate modelling of phthalate esters. In: Charles AS (ed) The handbook of environmental chemistry, Vol. 3, Part Q. Springer, New York, pp 57–84

    Google Scholar 

  • Di Gennaro P, Collina E, Franzetti A, Lasagni M, Luridiana A, Pitea D (2005) Bioremediation of diethylhexyl phthalate contaminated soil: a feasibility study in slurry-and solid-phase reactors. Environ Sci Technol 39:325–330

    Article  Google Scholar 

  • Dohmann T (1997) Emission behaviour of pollutants. Report to the German Ministry of Research (BMBF) by Institut für Siedlungswasserwirtschaft, Rheinisch-Westfä -lische Technische Hochschule Aachen

    Google Scholar 

  • Domininghaus H (1998) Plastics and their properties. Int J ChemTech Res 2:1

    Google Scholar 

  • ECOBILAN (2001) Eco-profile of high volume commodity phthalate esters (DEHP/DINP/DIDP). European Council for Plasticisers & Intermediates (ECPI), Brussels

    Google Scholar 

  • ECPI (European Council for Plasticisers and Intermediates) (1994) Phthalate esters used in PVC—assessment of the release, occurrence and possible effects of plasticizers in the environment. ECPI, Brussels

    Google Scholar 

  • Ejlertsson J, Meyerson U, Svensson BH (1996) Anaerobic degradation of phthalic acid esters during digestion of municipal solid waste under landfilling conditions. Biodegradation 7:345–352

    Article  CAS  Google Scholar 

  • Elder DJE, Kelly DJ (1994) The bacterial degradation of benzoic-acid and benzenoid compounds under anaerobic conditions—unifying trends and new perspectives. FEMS Microbiol Rev 13:441–468

    Article  CAS  Google Scholar 

  • Fernandez MP, Ikonomou MG, Buchanan I (2007) An assessment of estrogenic organic contaminants in Canadian wastewaters. Sci Total Environ 373:250–269

    Article  CAS  Google Scholar 

  • Foster PM (2006) Disruption of reproductive development in male rat offspring following in utero exposure to phthalate esters. Int J Androl 29:140–147, discussion 181–185

    Article  CAS  Google Scholar 

  • Fromme H, Kücher T, Otto T, Pilz K, Müller J, Wenzel A (2002) Occurrence of phthalates and bisphenol A and F in the environment. Water Res 36:1429–1438

    Article  CAS  Google Scholar 

  • Furtmann K (1996) Phthalates in the aquatic environment. European Council for Plasticisers & Intermediates (ECPI), Brussels

    Google Scholar 

  • Gächter R, Müller H (1990) Handbook of plastics additives, 3rd edn. Carl Hanser, Munich. ISBN 3-446-15627-5

    Google Scholar 

  • Ghisari M, Bonefeld-Jorgensen EC (2009) Effects of plasticizers and their mixtures on estrogen receptor and thyroid hormone functions. Toxicol Lett 189:67–77

    Article  CAS  Google Scholar 

  • Gomez-Hens A, Aguilar-Caballos MP (2003) Social and economic interest in the control of phthalic acid esters. Trends Anal Chem 22:847–857

    Article  CAS  Google Scholar 

  • Gray LE, Barlow NJ, Howdeshell KL, Ostby JS, Furr JR, Gray CL (2009) Transgenerational effects of di (2-ethylhexyl) phthalate in the male CRL:CD(SD) rat: added value of assessing multiple offspring per litter. Toxicol Sci 110:411–425

    Article  CAS  Google Scholar 

  • Gültekin I, Ince NH (2007) Synthetic endocrine disruptors in the environment and water remediation by advanced oxidation processes. J Environ Manage 85(4):816–832

    Article  Google Scholar 

  • Gurol MD, Singer PC (1982) Kinetic of ozone decomposition: a dynamic approach. Environ Sci Technol 16:377–383

    Article  CAS  Google Scholar 

  • Harris JC (1982) Rate of hydrolysis. In: Lyman WJ, Reehl WF, Rosenblart DH (eds) Handbook of chemical property estimation methods, chapter 7. McGraw-Hill, New York

    Google Scholar 

  • Harris CA, Sumpter JP (2001) The endocrine disrupting potential of phthalates. In: Metzler M (ed) Endocrine disruptors, Part I, vol 3, The handbook of environmental chemistry, Part L. Springer, Heidelberg, Germany, pp 169–201

    Google Scholar 

  • Hilal SH (2006) Estimation of hydrolysis rate constants of carboxylic acid ester and phosphate ester compounds in aqueous systems from molecular structure by SPARC. U.S. Environmental Protection Agency. EPA/600/R-06/105

    Google Scholar 

  • Hilal SH, Karickhoff SW, Carreira LA (2003) Prediction of chemical reactivity parameters and physical properties of organic compounds from molecular structure using SPARC. EPA/600/R-03/030

    Google Scholar 

  • Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  • Huang PC, Kuo PL, Chou YY, Lin SJ, Lee CC (2009) Association between prenatal exposure to phthalates and the health outcome of newborns. Environ Int 35(1):14–20

    Article  Google Scholar 

  • IHCP (2008) Bis (2-ethylhexyl) Phthalate (DEHP) Summary Risk Assessment Report. Institute for Health and Consumer Protection (IHCP). European Commission. European Communities, 2008. Available: http://cerhr.niehs.nih.gov/chemicals/dehp/DEHPMonograph.pdf. Accessed Aug 2012

  • Jianlong W, Lujun C, Hanchang S, Yi Q (2000) Microbial degradation of phthalic acid esters under anaerobic digestion of sludge. Chemosphere 41:1245–1248

    Article  CAS  Google Scholar 

  • Jonsson S, Ejlertsson J, Svensson BH (2003) Behaviour of mono- and diesters of o-phthalic acid in leachates released during digestion of municipal solid waste under landfill conditions. Adv Environ Res 7:429–440

    Article  CAS  Google Scholar 

  • Juneson C, Ward OP, Singh A (2001) Biodegradation of bis(2-ethylhexyl) phthalate in a soil slurry-sequencing batch reactor. Process Biochem 37:305–313

    Article  CAS  Google Scholar 

  • Kelly TJ, Mukund R, Spicer CW, Pollack AJ (1994) Concentrations and transformations of hazardous air pollutants. Environ Sci Technol 28(8):379A–387A

    Article  Google Scholar 

  • Kirby AJ (1972) Hydrolysis and formation of esters of organic acids. In: Bamford CH, Tipper CFH (eds) Comprehensive chemical kinetics, vol 10. Elsevier, Amsterdam, pp 57–202

    Google Scholar 

  • Kleerebezem R, Pol LWH, Lettinga G (1999) Anaerobic biodegradability of phthalic acid isomers and related compounds. Biodegradation 10:63–73

    Article  CAS  Google Scholar 

  • Lertsirisopon R, Soda S, Sei K, Ike M (2009) Abiotic degradation of four phthalic acid esters in aqueous phase under natural sunlight irradiation. J Environ Sci 21:285–290

    Article  CAS  Google Scholar 

  • Liang D, Zhang T, Fang HHP, He J (2008) Phthalates biodegradation in the environment. Appl Microbiol Biotechnol 80:183–198

    Article  CAS  Google Scholar 

  • Liu SM, Chi WC (2003) Effects of the Headspace gas composition on anaerobic biotransformation of o-, m-, and p-toluic acid in sediment slurries. J Environ Sci Health A Tox Hazard Subst Environ Eng 38(6):1099–1113

    Article  Google Scholar 

  • Mabey W, Mill T (1978) Critical review of hydrolysis of organic compounds in water under environmental conditions. J Phys Chem 7(2):383–415

    CAS  Google Scholar 

  • Mabey WR, Smith JH, Podoll RT, Jonson HL, Moll T, Chou TW, Gates J, Partridge IW, Vandenberg D (1982) Aquatic fate process data for organic priority pollutants. U.S. Environmental Protection Agency Report. EPA 440/4-81-014

    Google Scholar 

  • Mackintosh CE, Maldonado JA, Ikonomou MG, Gobas FAPC (2006) Sorption of phthalate esters and PCBs in a marine ecosystem. Environ Sci Technol 40(11):3481–3488

    Article  CAS  Google Scholar 

  • Matsumoto M, Hirata-Koizumi M, Ema M (2008) Potential adverse effects of phthalic acid esters on human health: a review of recent studies on reproduction. Regul Toxicol Pharmacol 50:37–49

    Article  CAS  Google Scholar 

  • Mersiowsky I, Ejlertsson J, Stegmann R, Svensson BH (1999) Long-term behaviour of PVC products under soil-buried and landfill conditions. Report for Norsk Hydro ASA, ECVM, ECPI, ESPA and ORTEP, Hamburg, Germany

    Google Scholar 

  • Mersiowsky I, Weller M, Ejlertsson J (2001) Fate of plasticised PVC products under landfill conditions: a laboratory-scale landfill simulation reactor study. Water Res 35(13):3063–3070

    Article  CAS  Google Scholar 

  • Miller FC (1992) Composting as a process based on the control of ecologically selective factors. In: Blaine-Metting F (ed) Soil microbial ecology: applications in agriculture environment management. Marcel Dekker, New York, p 646

    Google Scholar 

  • Nagao T, Ohta R, Marumo H, Shindo T, Yoshimura S, Ono H (2000) Effect of butyl benzyl phthalate in Sprague-Dawley rats after gavage administration: a two-generation reproductive study. Reprod Toxicol 14:513–532

    Article  CAS  Google Scholar 

  • OECD (1981) Hydrolysis as a function of pH. OECD GUIDELINE FOR TESTING OF CHEMICALS. http://www.oecd.org/dataoecd. Accessed on 7 May 2012

  • Oh BS, Jung YJ, Oh YJ, Yoo YS, Kang JW (2006) Application of ozone, UV and ozone/UV processes to reduce diethyl phthalate and its estrogenic activity. Sci Total Environ 367:681–693

    Article  CAS  Google Scholar 

  • Patnaik P, Yang M, Powers E (2001) Kinetics of phthalate reactions with ammonium hydroxide in aqueous matrix. Water Res 35(6):1587–1591

    Article  CAS  Google Scholar 

  • Peterson DR, Staples CA (2003) Degradation of phthalate esters in the environment. In: Staples CA (ed) The handbook of environmental chemistry, Vol. 3, Part Q. Springer, New York, pp 85–124

    Google Scholar 

  • Sayyed HS, Mazhar FN, Gaikwad DD (2010) Kinetic and mechanistic study of oxidation of ester by KMnO4. Int J ChemTech Res 2(1):242–249

    Google Scholar 

  • Schierow L, Lee MM (2008) Congressional Research Service Report RL34572: Phthalates in Plastics and Possible Human Health Effects. Available at www.policyarchive.org/handle/10207/bitstreams/19121.pdf. Accessed Aug 2012

  • Schwartzenbach RP, Gschwend PM, Imboden DM (1992) Environmental organic chemistry. Wiley, New York

    Google Scholar 

  • Schwarzbauer J, Heim S, Brinker S, Littke R (2002) Occurrence and alteration of organic contaminants in seepage and leakage water from a waste deposit landfill. Water Res 36:2275–2287

    Article  CAS  Google Scholar 

  • Schwarzbauer J, Heim S, Krooss B, Littke R (2006) Analysis of undisturbed layers of a waste deposit landfill—insights into the transformation and transport of organic contaminants. Org Geochem 37:2026–2045

    Article  CAS  Google Scholar 

  • Sharpe RM, Shakkebaek NE (1993) Are estrogens involved in falling sperm counts and disorder of the male reproductive tract? Lancet 341:1392–1395

    Article  CAS  Google Scholar 

  • Shen OX, Du GZ, Sun H, Jiang Y, Wu W, Song L, Wang XR (2009) Comparison of in vitro hormone activities of selected phthalates using reporter gene assays. Toxicol Lett 191:9–14

    Article  CAS  Google Scholar 

  • Shibata K, Fukuwatari T, Sasak R (2007) Phthalate esters enhance quinolinate production by inhibiting amino-carboxymuconate-semialdehyde decarboxylase (ACMSD), a key enzyme of the tryptophan-niacin pathway. Int Congr Series 1304:184–194

    Article  CAS  Google Scholar 

  • Skrzypek J, Lachowska M, Kulawska M, Moroz H (2008) Synthesis Of Bis(2-Ethylhexyl) phthalate over methane sulfonic acid catalyst, kinetic investigations. React Kinet Catal Lett 93(2):281–286

    Article  CAS  Google Scholar 

  • Stanley MK, Robillard KA, Staples CA (2003) Introduction. In: Staples CA (ed) The handbook of environmental chemistry, Vol. 3, Part Q. Springer, Berlin, pp 1–7

    Google Scholar 

  • Staples CA, Peterson DR, Parkerton TF, Adams WJ (1997) The environmental fate of phthalate esters: a literature review. Chemosphere 35(4):667–749

    Article  CAS  Google Scholar 

  • Staples CA, Parkerton TF, Peterson DR (2000) A risk assessment of selected phthalate esters in North American and Western European surface waters. Chemosphere 40:885–891

    Article  CAS  Google Scholar 

  • Strac IV (2009) Migration of Di-(2-ethylhexyl) phthalate in normal saline during one year. Toxicol Lett 189:S259–S259

    Article  Google Scholar 

  • Sykes P (1975) A guidebook to mechanism in organic chemistry, 4th edn. Longman Group Ltd, London, pp 232–239

    Google Scholar 

  • US EPA (1996) Method 8061A—Phthalate esters by Gas Chromatography with Electron Capture detection (GC/ECD). Available: http://www.epa.gov/epawaste/hazard/testmethods/sw846/pdfs/8061a.pdf. Accessed Aug 2012

  • US EPA (2001) Removal of endocrine disrupter chemicals using water treatment processes. 625/R-00/015, Washington DC

    Google Scholar 

  • Wensing M, Uhde E, Salthammer T (2005) Plastics additives in the indoor environment-flame retardants and plasticizers. Sci Total Envion 339:19–40

    Article  CAS  Google Scholar 

  • Wolfe NL, Steen WC, Bums LA (1980) Phthalate ester hydrolysis: linear free energy relationships. Chemosphere 9:403–408

    Article  CAS  Google Scholar 

  • Woodward KN (1988) Phthalate esters: toxicity and metabolism, vol I. CRC, Boca Raton, FL

    Google Scholar 

  • Xu G, Li F, Wang Q (2008) Occurrence and degradation characteristics of dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) in typical agricultural soils of China. Sci Tot Environ 393:333–340

    Article  CAS  Google Scholar 

  • Yan H, Ye C, Yin C (1995) Kinetics of phthalate ester biodegradation by Chlorella pyrenoidosa. Environ Toxicol Chem 6:931–938

    Google Scholar 

  • Zeng F, Cui K, Xie Z, Wu L, Luo D, Chen L, Lin Y, Liu M, Sun G (2009) Distribution of phthalate esters in urban soils of subtropical city, Guangzhou, China. J Hazard Mater 164:1171–1178

    Article  CAS  Google Scholar 

  • Zhang W, Li Y, Wang C, Wang P (2011a) Kinetics of heterogeneous photocatalytic degradation of rhodamine B by TiO2-coated activated carbon: roles of TiO2 content and light intensity. Desalination 266:40–45

    Article  CAS  Google Scholar 

  • Zhang Z, Hu Y, Zhao L, Li J, Bai H, Zhu D, Hu J (2011b) Estrogen agonist/antagonist properties of dibenzyl phthalate (DBzP) based on in vitro and in vivo assays. Toxicol Lett 207:7–11

    Article  CAS  Google Scholar 

  • Zheng Z, He PJ, Shao LM, Lee DJ (2007) Phthalic acid esters in dissolved fractions of landfill leachates. Water Res 41:4696–4702

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We are extremely grateful to Dr. Dave Whitacre, RECT Editor, for his excellent comments and editing of the manuscript. The authors appreciate the input made by Subhankar Chatterjee and other anonymous reviewers. We would also like to thank Jennifer Abena Kwofie for her contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip N. Nkrumah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Huang, J., Nkrumah, P.N., Li, Y., Appiah-Sefah, G. (2013). Chemical Behavior of Phthalates Under Abiotic Conditions in Landfills. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology Volume 224. Reviews of Environmental Contamination and Toxicology, vol 224. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5882-1_2

Download citation

Publish with us

Policies and ethics