Skip to main content

The Role of Autophagy in Drug Resistance and Potential for Therapeutic Targeting

  • Chapter
  • First Online:
Cell Death Signaling in Cancer Biology and Treatment

Part of the book series: Cell Death in Biology and Diseases ((CELLDEATH))

  • 2262 Accesses

Abstract

Autophagy is a cellular survival mechanism influenced by a wide variety of intracellular and extracellular stresses including energy and oxygen deprivation, signaling aberrancies, ER stress, DNA damage, systemic cancer therapies, and radiotherapies. There is growing evidence that it may potentiate cancer survival. A number of clinical trials have been launched using autophagy inhibition in combination with standard cancer therapeutics. The information gleaned from these as well as ongoing in vitro and in vivo studies will allow us to better understand the role of autophagy in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashford TP, Porter KR (1962) Cytoplasmic components in hepatic cell lysosomes. J Cell Biol 12:198–202

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Watanabe E et al (2009) Sepsis induces extensive autophagic vacuolization in hepatocytes: a clinical and laboratory-based study. Lab Invest 89(5):549–561

    PubMed  Google Scholar 

  3. Amaravadi RK et al (2007) Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 117(2):326–336

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Klionsky DJ (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8(11):931–937

    CAS  PubMed  Google Scholar 

  5. Kroemer G, Jaattela M (2005) Lysosomes and autophagy in cell death control. Nat Rev Cancer 5(11):886–897

    CAS  PubMed  Google Scholar 

  6. Levine B, Deretic V (2007) Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol 7(10):767–777

    CAS  PubMed  Google Scholar 

  7. Muller O et al (2000) Autophagic tubes: vacuolar invaginations involved in lateral membrane sorting and inverse vesicle budding. J Cell Biol 151(3):519–528

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Bandyopadhyay U et al (2008) The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Mol Cell Biol 28(18):5747–5763

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Chen HY, White E (2011) Role of autophagy in cancer prevention. Cancer Prev Res (Phila) 4(7):973–983

    CAS  Google Scholar 

  10. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Gu Y, Wang C, Cohen A (2004) Effect of IGF-1 on the balance between autophagy of dysfunctional mitochondria and apoptosis. FEBS Lett 577(3):357–360

    CAS  PubMed  Google Scholar 

  12. Bjorkoy G et al (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171(4):603–614

    PubMed Central  PubMed  Google Scholar 

  13. Wild P, Dikic I (2010) Mitochondria get a Parkin’ ticket. Nat Cell Biol 12(2):104–106

    CAS  PubMed  Google Scholar 

  14. Di Bartolomeo S, Nazio F, Cecconi F (2010) The role of autophagy during development in higher eukaryotes. Traffic 11(10):1280–1289

    PubMed  Google Scholar 

  15. Mizushima N et al (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Wang CW, Klionsky DJ (2003) The molecular mechanism of autophagy. Mol Med 9(3–4):65–76

    PubMed Central  PubMed  Google Scholar 

  17. Kovacs AL, Zhang H (2010) Role of autophagy in Caenorhabditis elegans. FEBS Lett 584(7):1335–1341

    CAS  PubMed  Google Scholar 

  18. Chang YY, Neufeld TP (2010) Autophagy takes flight in drosophila. FEBS Lett 584(7):1342–1349

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Rong Y et al (2011) Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation. Proc Natl Acad Sci USA 108(19):7826–7831

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Teter SA et al (2001) Degradation of lipid vesicles in the yeast vacuole requires function of Cvt17, a putative lipase. J Biol Chem 276(3):2083–2087

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Epple UD et al (2001) Aut5/Cvt17p, a putative lipase essential for disintegration of autophagic bodies inside the vacuole. J Bacteriol 183(20):5942–5955

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Yang Z et al (2006) Atg22 recycles amino acids to link the degradative and recycling functions of autophagy. Mol Biol Cell 17(12):5094–5104

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Kabeya Y et al (2005) Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Mol Biol Cell 16(5):2544–2553

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Jung CH et al (2009) ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 20(7):1992–2003

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Mizushima N (2010) The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 22(2):132–9

    Google Scholar 

  26. Cheong H et al (2011) Ammonia-induced autophagy is independent of ULK1/ULK2 kinases. Proc Natl Acad Sci USA 108(27):11121–11126

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Hailey DW et al (2010) Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141(4):656–667

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Ravikumar B et al (2010) Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol 12(8):747–757

    CAS  PubMed Central  PubMed  Google Scholar 

  29. English L et al (2009) Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection. Nat Immunol 10(5):480–487

    CAS  PubMed  Google Scholar 

  30. Webber JL, Tooze SA (2010) New insights into the function of Atg9. FEBS Lett 584(7):1319–1326

    CAS  PubMed  Google Scholar 

  31. Hayashi-Nishino M et al (2009) A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 11(12):1433–1437

    CAS  PubMed  Google Scholar 

  32. Yla-Anttila P et al (2009) 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 5(8):1180–1185

    PubMed  Google Scholar 

  33. Funderburk SF, Wang QJ, Yue Z (2010) The Beclin 1-VPS34 complex–at the crossroads of autophagy and beyond. Trends Cell Biol 20(6):355–2

    Google Scholar 

  34. Itakura E et al (2008) Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell 19(12):5360–5372

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Matsunaga K et al (2009) Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 11(4):385–396

    CAS  PubMed  Google Scholar 

  36. Kabeya Y et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19(21):5720–5728

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Ichimura Y et al (2000) A ubiquitin-like system mediates protein lipidation. Nature 408(6811):488–492

    CAS  PubMed  Google Scholar 

  38. Yoshimura K et al (2006) Effects of RNA interference of Atg4B on the limited proteolysis of LC3 in PC12 cells and expression of Atg4B in various rat tissues. Autophagy 2(3):200–208

    CAS  PubMed  Google Scholar 

  39. Satoo K et al (2009) The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy. EMBO J 28(9):1341–1350

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Tanida I et al (2002) Human Apg3p/Aut1p homologue is an authentic E2 enzyme for multiple substrates, GATE-16, GABARAP, and MAP-LC3, and facilitates the conjugation of hApg12p to hApg5p. J Biol Chem 277(16):13739–13744

    CAS  PubMed  Google Scholar 

  41. Tanida I et al (2001) The human homolog of Saccharomyces cerevisiae Apg7p is a protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3. J Biol Chem 276(3):1701–1706

    CAS  PubMed  Google Scholar 

  42. Nair U et al (2011) SNARE proteins are required for macroautophagy. Cell 146(2):290–302

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Pankiv S et al (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282(33):24131–24145

    CAS  PubMed  Google Scholar 

  44. Schweers RL et al (2007) NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci USA 104(49):19500–19505

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Kim PK et al (2008) Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc Natl Acad Sci USA 105(52):20567–20574

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Novak I et al (2010) Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 11(1):45–51

    Google Scholar 

  47. Sandoval H et al (2008) Essential role for nix in autophagic maturation of erythroid cells. Nature 454(7201):232–235

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Jager S et al (2004) Role for Rab7 in maturation of late autophagic vacuoles. J Cell Sci 117(Pt 20):4837–4848

    PubMed  Google Scholar 

  49. Djeddi A et al (2012) Induction of autophagy in ESCRT mutants is an adaptive response for cell survival in C. elegans. J Cell Sci 125(Pt 3):685–694

    CAS  PubMed  Google Scholar 

  50. Fader CM, Colombo MI (2009) Autophagy and multivesicular bodies: two closely related partners. Cell Death Differ 16(1):70–78

    CAS  PubMed  Google Scholar 

  51. Young AR et al (2006) Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J Cell Sci 119(Pt 18):3888–3900

    CAS  PubMed  Google Scholar 

  52. Manjithaya R et al (2010) Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation. J Cell Biol 188(4):537–46

    Google Scholar 

  53. Kabeya Y et al (2004) LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 117(Pt 13):2805–2812

    CAS  PubMed  Google Scholar 

  54. Tanida I et al (2003) GATE-16 and GABARAP are authentic modifiers mediated by Apg7 and Apg3. Biochem Biophys Res Commun 300(3):637–644

    CAS  PubMed  Google Scholar 

  55. Tanida I, Ueno T, Kominami E (2004) LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol 36(12):2503–2518

    CAS  PubMed  Google Scholar 

  56. Weidberg H et al (2010) LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J 29(11):1792–1802

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Marino G et al (2003) Human autophagins, a family of cysteine proteinases potentially implicated in cell degradation by autophagy. J Biol Chem 278(6):3671–3678

    CAS  PubMed  Google Scholar 

  58. Behrends C et al (2010) Network organization of the human autophagy system. Nature 466(7302):68–76

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Lee SJ et al (2011) Beclin 1 deficiency is associated with increased hypoxia-induced angiogenesis. Autophagy 7(8):829–839

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Wirawan E et al (2012) Beclin1: a role in membrane dynamics and beyond. Autophagy 8(1):6–17

    CAS  PubMed  Google Scholar 

  61. Nishida Y et al (2009) Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 461(7264):654–658

    CAS  PubMed  Google Scholar 

  62. Klionsky DJ et al (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4(2):151–175

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Tanida I et al (2005) Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy 1(2):84–91

    CAS  PubMed  Google Scholar 

  64. Ciechomska IA, Tolkovsky AM (2007) Non-autophagic GFP-LC3 puncta induced by saponin and other detergents. Autophagy 3(6):586–590

    CAS  PubMed  Google Scholar 

  65. Kuma A, Matsui M, Mizushima N (2007) LC3, an autophagosome marker, can be incorporated into protein aggregates independent of autophagy: caution in the interpretation of LC3 localization. Autophagy 3(4):323–328

    CAS  PubMed  Google Scholar 

  66. Kimura S, Noda T, Yoshimori T (2007) Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3(5):452–460

    CAS  PubMed  Google Scholar 

  67. Sou YS et al (2008) The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol Biol Cell 19(11):4762–4775

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Mathew R et al (2009) Autophagy suppresses tumorigenesis through elimination of p62. Cell 137(6):1062–1075

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Ma X et al (2011) Measurements of tumor cell autophagy predict invasiveness, resistance to chemotherapy, and survival in melanoma. Clin Cancer Res 17(10):3478–3489

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Mendoza MC, Er EE, Blenis J (2011) The Ras-ERK and PI3 K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci 36(6):320–328

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Steelman LS et al (2011) Roles of the Raf/MEK/ERK and PI3 K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging (Albany NY) 3(3):192–222

    CAS  Google Scholar 

  72. Blommaart EF et al (1995) Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J Biol Chem 270(5):2320–2326

    CAS  PubMed  Google Scholar 

  73. Hosokawa N et al (2009) Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20(7):1981–1991

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Sancak Y et al (2010) Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141(2):290–303

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Arico S et al (2001) The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem 276(38):35243–35246

    CAS  PubMed  Google Scholar 

  76. Ueno T et al (2008) Loss of Pten, a tumor suppressor, causes the strong inhibition of autophagy without affecting LC3 lipidation. Autophagy 4(5):692–700

    CAS  PubMed  Google Scholar 

  77. Laane E et al (2009) Cell death induced by dexamethasone in lymphoid leukemia is mediated through initiation of autophagy. Cell Death Differ 16(7):1018–1029

    CAS  PubMed  Google Scholar 

  78. Kuo HP et al (2010) ARD1 stabilization of TSC2 suppresses tumorigenesis through the mTOR signaling pathway. Sci Signal 3(108):ra9

    PubMed Central  PubMed  Google Scholar 

  79. Zeng X, Kinsella TJ (2008) Mammalian target of rapamycin and S6 kinase 1 positively regulate 6-thioguanine-induced autophagy. Cancer Res 68(7):2384–2390

    CAS  PubMed  Google Scholar 

  80. Yaswen P, Campisi J (2007) Oncogene-induced senescence pathways weave an intricate tapestry. Cell 128(2):233–234

    CAS  PubMed  Google Scholar 

  81. Serrano M et al (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88(5):593–602

    CAS  PubMed  Google Scholar 

  82. Elgendy M et al (2011) Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival. Mol Cell 42(1):23–35

    CAS  PubMed  Google Scholar 

  83. Wu SY et al (2011) Ras-related tumorigenesis is suppressed by BNIP3-mediated autophagy through inhibition of cell proliferation. Neoplasia 13(12):1171–1182

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Guo JY et al (2011) Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 25(5):460–470

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Yang S et al (2011) Pancreatic cancers require autophagy for tumor growth. Genes Dev 25(7):717–729

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Maddodi N et al (2010) Induction of autophagy and inhibition of melanoma growth in vitro and in vivo by hyperactivation of oncogenic BRAF. J Invest Dermatol 130(6):1657–1667

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Zhou W et al (2011) Small interfering RNA targeting mcl-1 enhances proteasome inhibitor-induced apoptosis in various solid malignant tumors. BMC Cancer 11:485

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Pattingre S et al (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122(6):927–939

    CAS  PubMed  Google Scholar 

  89. Ku B et al (2008) An insight into the mechanistic role of Beclin 1 and its inhibition by prosurvival Bcl-2 family proteins. Autophagy 4(4):519–520

    CAS  PubMed  Google Scholar 

  90. Hoyer-Hansen M, Jaattela M (2007) AMP-activated protein kinase: a universal regulator of autophagy? Autophagy 3(4):381–383

    PubMed  Google Scholar 

  91. Liang J et al (2007) The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 9(2):218–224

    CAS  PubMed  Google Scholar 

  92. Egan D et al (2011) The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 7(6):643–644

    PubMed  Google Scholar 

  93. Kim J, Guan KL (2011) Regulation of the autophagy initiating kinase ULK1 by nutrients: Roles of mTORC1 and AMPK. Cell Cycle 10(9):1337–1338

    Google Scholar 

  94. Alexander A, Walker CL (2010) Differential localization of ATM is correlated with activation of distinct downstream signaling pathways. Cell Cycle 9(18):3685–3686

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Herrero-Martin G et al (2009) TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J 28(6):677–685

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Tzatsos A, Tsichlis PN (2007) Energy depletion inhibits phosphatidylinositol 3-kinase/Akt signaling and induces apoptosis via AMP-activated protein kinase-dependent phosphorylation of IRS-1 at Ser-794. J Biol Chem 282(25):18069–18082

    CAS  PubMed  Google Scholar 

  97. Xu J et al (2012) MicroRNAs in autophagy and their emerging roles in crosstalk with apoptosis. Autophagy 8(6):873–882

    Google Scholar 

  98. Baldwin AS (2012) Regulation of cell death and autophagy by IKK and NF-kappaB: critical mechanisms in immune function and cancer. Immunol Rev 246(1):327–345

    PubMed  Google Scholar 

  99. Jin Y et al (2012) Autophagic proteins: New facets of the oxygen paradox. Autophagy 8(3):426–428

    Google Scholar 

  100. Wang RC, Levine B (2010) Autophagy in cellular growth control. FEBS Lett 584(7):1417–1426

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Chaturvedi A, Pierce SK (2009) Autophagy in immune cell regulation and dysregulation. Curr Allergy Asthma Rep 9(5):341–346

    CAS  PubMed  Google Scholar 

  102. Wang L et al (2012) The roles of integrin beta4 in vascular endothelial cells. J Cell Physiol 227(2):474–478

    CAS  PubMed  Google Scholar 

  103. Lee J, Giordano S, Zhang J (2012) Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J 441(2):523–540

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12(9):814–822

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Invest 115(10):2679–2688

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Platini F et al (2010) Understanding autophagy in cell death control. Curr Pharm Des 16(1):101–113

    CAS  PubMed  Google Scholar 

  107. Maiuri MC et al (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8(9):741–752

    CAS  PubMed  Google Scholar 

  108. Chen Y, Azad MB, Gibson SB (2010) Methods for detecting autophagy and determining autophagy-induced cell death. Can J Physiol Pharmacol 88(3):285–295

    CAS  PubMed  Google Scholar 

  109. Malhotra JD, Kaufman RJ (2007) The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol 18(6):716–731

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7):519–529

    CAS  PubMed  Google Scholar 

  111. Bertolotti A et al (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded- protein response. Nat Cell Biol 2(6):326–332

    CAS  PubMed  Google Scholar 

  112. Bernales S, Schuck S, Walter P (2007) ER-phagy: selective autophagy of the endoplasmic reticulum. Autophagy 3(3):285–287

    PubMed  Google Scholar 

  113. Yorimitsu T et al (2006) Endoplasmic reticulum stress triggers autophagy. J Biol Chem 281(40):30299–30304

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Kruse KB, Brodsky JL, McCracken AA (2006) Autophagy: an ER protein quality control process. Autophagy 2(2):135–137

    CAS  PubMed  Google Scholar 

  115. Younce CW, Kolattukudy PE (2010) MCP-1 causes cardiomyoblast death via autophagy resulting from ER stress caused by oxidative stress generated by inducing a novel zinc-finger protein, MCPIP. Biochem J 426(1):43–53

    CAS  PubMed  Google Scholar 

  116. Rodriguez-Rocha H et al (2011) DNA damage and autophagy. Mutat Res 711(1–2):158–166

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Rieber M, Rieber MS (2008) Sensitization to radiation-induced DNA damage accelerates loss of bcl-2 and increases apoptosis and autophagy. Cancer Biol Ther 7(10):1561–1566

    CAS  PubMed  Google Scholar 

  118. Feng Z et al (2005) The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci USA 102(23):8204–8209

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Malzer E et al (2010) Impaired tissue growth is mediated by checkpoint kinase 1 (CHK1) in the integrated stress response. J Cell Sci 123(Pt 17):2892–2900

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Crighton D et al (2006) DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126(1):121–134

    CAS  PubMed  Google Scholar 

  121. Lorin S et al (2010) Evidence for the interplay between JNK and p53-DRAM signalling pathways in the regulation of autophagy. Autophagy 6(1):153–154

    PubMed  Google Scholar 

  122. Feng Z, Levine AJ (2010) The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein. Trends Cell Biol 20(7):427–434

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Wu H et al (2011) Central role of lactic acidosis in cancer cell resistance to glucose deprivation-induced cell death. J Pathol 227(2):189–199

    Google Scholar 

  124. Takagi H et al (2007) AMPK mediates autophagy during myocardial ischemia in vivo. Autophagy 3(4):405–407

    CAS  PubMed  Google Scholar 

  125. Mihaylova MM, Shaw RJ (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13(9):1016–1023

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Egan DF et al (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331(6016):456–461

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Persons DA et al (1989) Increased expression of glycolysis-associated genes in oncogene-transformed and growth-accelerated states. Mol Carcinog 2(2):88–94

    CAS  PubMed  Google Scholar 

  128. Kawauchi K et al (2008) p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol 10(5):611–618

    CAS  PubMed  Google Scholar 

  129. Kondoh H et al (2005) Glycolytic enzymes can modulate cellular life span. Cancer Res 65(1):177–185

    CAS  PubMed  Google Scholar 

  130. Matoba S et al (2006) p53 regulates mitochondrial respiration. Science 312(5780):1650–1653

    CAS  PubMed  Google Scholar 

  131. Noman MZ et al (2011) Blocking hypoxia-induced autophagy in tumors restores cytotoxic T-cell activity and promotes regression. Cancer Res 71(18):5976–5986

    CAS  PubMed  Google Scholar 

  132. Rouschop KM et al (2010) The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J Clin Invest 120(1):127–141

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Semenza GL (2011) Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochim Biophys Acta 1813(7):1263–1268

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Djavaheri-Mergny M et al (2006) NF-kappaB activation represses tumor necrosis factor-alpha-induced autophagy. J Biol Chem 281(41):30373–30382

    CAS  PubMed  Google Scholar 

  135. Chen JL et al (2008) Novel roles for protein kinase Cdelta-dependent signaling pathways in acute hypoxic stress-induced autophagy. J Biol Chem 283(49):34432–34444

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Huang J, Brumell JH (2009) NADPH oxidases contribute to autophagy regulation. Autophagy 5(6):887–889

    CAS  PubMed  Google Scholar 

  137. Mortimore GE, Schworer CM (1977) Induction of autophagy by amino-acid deprivation in perfused rat liver. Nature 270(5633):174–176

    CAS  PubMed  Google Scholar 

  138. Dodd KM, Tee AR (2012) Leucine and mTORC1: a complex relationship. Am J Physiol Endocrinol Metab 302(11):E1329–1342

    Google Scholar 

  139. Liu XM et al (2004) Platelet-derived growth factor stimulates LAT1 gene expression in vascular smooth muscle: role in cell growth. FASEB J 18(6):768–770

    CAS  PubMed  Google Scholar 

  140. Kashiwagi H et al (2009) Regulatory mechanisms of SNAT2, an amino acid transporter, in L6 rat skeletal muscle cells by insulin, osmotic shock and amino acid deprivation. Amino Acids 36(2):219–230

    CAS  PubMed  Google Scholar 

  141. Williams GS, Molinelli EJ, Smith GD (2008) Modeling local and global intracellular calcium responses mediated by diffusely distributed inositol 1,4,5-trisphosphate receptors. J Theor Biol 253(1):170–188

    CAS  PubMed  Google Scholar 

  142. Eng CH et al (2010) Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Sci Signal 3(119):ra31

    Google Scholar 

  143. Kanzawa T et al (2004) Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ 11(4):448–457

    CAS  PubMed  Google Scholar 

  144. Repnik U, Turk B (2010) Lysosomal-mitochondrial cross-talk during cell death. Mitochondrion 10(6):662–669

    CAS  PubMed  Google Scholar 

  145. Resau JH et al (1985) Studies on the mechanisms of altered exocrine acinar cell differentiation and ductal metaplasia following nitrosamine exposure using hamster pancreatic explant organ culture. Carcinogenesis 6(1):29–35

    CAS  PubMed  Google Scholar 

  146. Bae H, Guan JL (2011) Suppression of autophagy by FIP200 deletion impairs DNA damage repair and increases cell death upon treatments with anticancer agents. Mol Cancer Res 9(9):1232–1241

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Gonzalez-Malerva L et al (2011) High-throughput ectopic expression screen for tamoxifen resistance identifies an atypical kinase that blocks autophagy. Proc Natl Acad Sci USA 108(5):2058–2063

    PubMed Central  PubMed  Google Scholar 

  148. de Medina P, Silvente-Poirot S, Poirot M (2009) Tamoxifen and AEBS ligands induced apoptosis and autophagy in breast cancer cells through the stimulation of sterol accumulation. Autophagy 5(7):1066–1067

    PubMed  Google Scholar 

  149. Wu WK et al (2010) Macroautophagy modulates cellular response to proteasome inhibitors in cancer therapy. Drug Resist Updat 13(3):87–92

    CAS  PubMed  Google Scholar 

  150. Ropero S, Esteller M (2007) The role of histone deacetylases (HDACs) in human cancer. Mol Oncol 1(1):19–25

    CAS  PubMed  Google Scholar 

  151. Carew JS et al (2007) Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood 110(1):313–322

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Park JH et al (2011) A new synthetic HDAC inhibitor, MHY218, induces apoptosis or autophagy-related cell death in tamoxifen-resistant MCF-7 breast cancer cells. Invest New Drugs 30(5):1887–1898

    Google Scholar 

  153. Yamamoto S et al (2008) Suberoylanilide hydroxamic acid (SAHA) induces apoptosis or autophagy-associated cell death in chondrosarcoma cell lines. Anticancer Res 28(3A)1585–91

    Google Scholar 

  154. Hrzenjak A et al (2008) SAHA induces caspase-independent, autophagic cell death of endometrial stromal sarcoma cells by influencing the mTOR pathway. J Pathol 216(4):495–504

    CAS  PubMed  Google Scholar 

  155. Saitoh T, Akira S (2010) Regulation of innate immune responses by autophagy-related proteins. J Cell Biol 189(6):925–935

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Zhao Z et al (2008) Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens. Cell Host Microbe 4(5):458–469

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Dreux M, Chisari FV (2010) Viruses and the autophagy machinery. Cell Cycle 9(7):1295–1307

    CAS  PubMed  Google Scholar 

  158. Amaravadi RK et al (2011) Principles and current strategies for targeting autophagy for cancer treatment. Clin Cancer Res 17(4):654–666

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Michaud M et al (2011) Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334(6062):1573–1577

    CAS  PubMed  Google Scholar 

  160. Liang XH et al (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402(6762):672–676

    CAS  PubMed  Google Scholar 

  161. Aita VM et al (1999) Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics 59(1):59–65

    CAS  PubMed  Google Scholar 

  162. Qu X et al (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112(12):1809–1820

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Yue Z et al (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 100(25):15077–15082

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Takamura A et al (2011) Autophagy-deficient mice develop multiple liver tumors. Genes Dev 25(8):795–800

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Degenhardt K et al (2006) Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10(1):51–64

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Karantza-Wadsworth V et al (2007) Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev 21(13):1621–1635

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Mathew R, White E (2007) Why sick cells produce tumors: the protective role of autophagy. Autophagy 3(5):502–505

    CAS  PubMed Central  PubMed  Google Scholar 

  168. Komatsu M et al (2010) The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 12(3):213–223

    CAS  PubMed  Google Scholar 

  169. Lau A et al (2010) A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Mol Cell Biol 30(13):3275–3285

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Inami Y et al (2011) Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol 193(2):275–284

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Young AR et al (2009) Autophagy mediates the mitotic senescence transition. Genes Dev 23(7):798–803

    CAS  PubMed Central  PubMed  Google Scholar 

  172. Sinha S, Levine B (2008) The autophagy effector Beclin 1: a novel BH3-only protein. Oncogene 27(Suppl 1):S137–S148

    CAS  PubMed Central  PubMed  Google Scholar 

  173. Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12(1):9–22

    CAS  PubMed  Google Scholar 

  174. Diaz-Troya S et al (2008) The role of TOR in autophagy regulation from yeast to plants and mammals. Autophagy 4(7):851–865

    CAS  PubMed  Google Scholar 

  175. Maiuri MC et al (2007) BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-X(L). Autophagy 3(4):374–376

    CAS  PubMed  Google Scholar 

  176. Liu J et al (2011) Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13. Cell 147(1):223–234

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Wei H et al (2011) Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev 25(14):1510–1527

    CAS  PubMed Central  PubMed  Google Scholar 

  178. Zhang HF et al (2009) ATG16L1 T300A polymorphism and Crohn’s disease susceptibility: evidence from 13,022 cases and 17,532 controls. Hum Genet 125(5–6):627–631

    CAS  PubMed  Google Scholar 

  179. Kang C, Avery L (2008) To be or not to be, the level of autophagy is the question: dual roles of autophagy in the survival response to starvation. Autophagy 4(1):82–84

    PubMed  Google Scholar 

  180. Park MA et al (2008) PERK-dependent regulation of HSP70 expression and the regulation of autophagy. Autophagy 4(3):364–367

    CAS  PubMed  Google Scholar 

  181. Hsu KF et al (2009) Cathepsin L mediates resveratrol-induced autophagy and apoptotic cell death in cervical cancer cells. Autophagy 5(4):451–460

    CAS  PubMed  Google Scholar 

  182. Bhoopathi P et al (2010) Cathepsin B facilitates autophagy-mediated apoptosis in SPARC overexpressed primitive neuroectodermal tumor cells. Cell Death Differ 17(10):1529–1539

    CAS  PubMed Central  PubMed  Google Scholar 

  183. Mathieu V et al (2007) Galectin-1 knockdown increases sensitivity to temozolomide in a B16F10 mouse metastatic melanoma model. J Invest Dermatol 127(10):2399–2410

    CAS  PubMed  Google Scholar 

  184. Debnath J, Baehrecke EH, Kroemer G (2005) Does autophagy contribute to cell death? Autophagy 1(2):66–74

    CAS  PubMed  Google Scholar 

  185. Lu Z et al (2008) The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. J Clin Invest 118(12):3917–3929

    CAS  PubMed Central  PubMed  Google Scholar 

  186. Lum JJ et al (2005) Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120(2):237–248

    CAS  PubMed  Google Scholar 

  187. O’Neill PM et al (1998) 4-Aminoquinolines–past, present, and future: a chemical perspective. Pharmacol Ther 77(1):29–58

    PubMed  Google Scholar 

  188. Kremer JM (2001) Rational use of new and existing disease-modifying agents in rheumatoid arthritis. Ann Intern Med 134(8):695–706

    CAS  PubMed  Google Scholar 

  189. Romanelli F, Smith KM, Hoven AD (2004) Chloroquine and hydroxychloroquine as inhibitors of human immunodeficiency virus (HIV-1) activity. Curr Pharm Des 10(21):2643–2648

    CAS  PubMed  Google Scholar 

  190. Sotelo J, Briceno E, Lopez-Gonzalez MA (2006) Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial. Ann Intern Med 144(5):337–343

    CAS  PubMed  Google Scholar 

  191. Carmichael SJ, Charles B, Tett SE (2003) Population pharmacokinetics of hydroxychloroquine in patients with rheumatoid arthritis. Ther Drug Monit 25(6):671–681

    CAS  PubMed  Google Scholar 

  192. Rosenfeld MRGS, Brem S, Mikkelson T, Wang D, Piao S, Davis L, O’Dwyer PJ, Amaravadi RK (2010) Pharmacokinetic analysis and pharmacodynamic evidence of autophagy inhibition in patients with newly diagnosed glioblastoma treated on a phase I trial of hydroxychloroquine in combination with adjuvant temozolomide and radiation (ABTC 0603). J Clin Oncol 28(15s):3086

    Google Scholar 

  193. Petiot A et al (2000) Distinct classes of phosphatidylinositol 3’-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 275(2):992–998

    CAS  PubMed  Google Scholar 

  194. Wu YT et al (2010) Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem 285(14):10850–10861

    CAS  PubMed Central  PubMed  Google Scholar 

  195. Werner G et al (1984) Metabolic products of microorganisms. 224. Bafilomycins, a new group of macrolide antibiotics. Production, isolation, chemical structure and biological activity. J Antibiot (Tokyo) 37(2):110–117

    CAS  Google Scholar 

  196. Dassonneville L, Bailly C (1999) Stimulation of topoisomerase II-mediated DNA cleavage by an indazole analogue of lucanthone. Biochem Pharmacol 58(8):1307–1312

    CAS  PubMed  Google Scholar 

  197. Luo M, Kelley MR (2004) Inhibition of the human apurinic/apyrimidinic endonuclease (APE1) repair activity and sensitization of breast cancer cells to DNA alkylating agents with lucanthone. Anticancer Res 24(4):2127–2134

    CAS  PubMed  Google Scholar 

  198. Carew JS et al (2011) Lucanthone is a novel inhibitor of autophagy that induces cathepsin D-mediated apoptosis. J Biol Chem 286(8):6602–6613

    CAS  PubMed Central  PubMed  Google Scholar 

  199. Leu JI et al (2011) HSP70 inhibition by the small-molecule 2-phenylethynesulfonamide impairs protein clearance pathways in tumor cells. Mol Cancer Res 9(7):936–947

    CAS  PubMed Central  PubMed  Google Scholar 

  200. Nice DC et al (2002) Cooperative binding of the cytoplasm to vacuole targeting pathway proteins, Cvt13 and Cvt20, to phosphatidylinositol 3-phosphate at the pre-autophagosomal structure is required for selective autophagy. J Biol Chem 277(33):30198–30207

    CAS  PubMed Central  PubMed  Google Scholar 

  201. Guan J et al (2001) Cvt18/Gsa12 is required for cytoplasm-to-vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia pastoris. Mol Biol Cell 12(12):3821–3838

    CAS  PubMed Central  PubMed  Google Scholar 

  202. Stromhaug PE et al (2004) Atg21 is a phosphoinositide binding protein required for efficient lipidation and localization of Atg8 during uptake of aminopeptidase I by selective autophagy. Mol Biol Cell 15(8):3553–3566

    CAS  PubMed Central  PubMed  Google Scholar 

  203. Tanida I et al (2006) Atg8L/Apg8L is the fourth mammalian modifier of mammalian Atg8 conjugation mediated by human Atg4B, Atg7 and Atg3. FEBS J 273(11):2553–2562

    CAS  PubMed  Google Scholar 

  204. Li M et al (2011) Kinetics comparisons of mammalian Atg4 homologues indicate selective preferences toward diverse Atg8 substrates. J Biol Chem 286(9):7327–7338

    CAS  PubMed Central  PubMed  Google Scholar 

  205. Mizushima N et al (1998) A protein conjugation system essential for autophagy. Nature 395(6700):395–398

    CAS  PubMed  Google Scholar 

  206. Tanida I et al (1999) Apg7p/Cvt2p: A novel protein-activating enzyme essential for autophagy. Mol Biol Cell 10(5):1367–1379

    CAS  PubMed Central  PubMed  Google Scholar 

  207. Mizushima N, Noda T, Ohsumi Y (1999) Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway. EMBO J 18(14):3888–3896

    CAS  PubMed Central  PubMed  Google Scholar 

  208. Lynch-Day MA et al (2010) Trs85 directs a Ypt1 GEF, TRAPPIII, to the phagophore to promote autophagy. Proc Natl Acad Sci USA 107(17):7811–7816

    CAS  PubMed Central  PubMed  Google Scholar 

  209. Balderhaar HJ et al (2010) The Rab GTPase Ypt7 is linked to retromer-mediated receptor recycling and fusion at the yeast late endosome. J Cell Sci 123(Pt 23):4085–4094

    CAS  PubMed  Google Scholar 

  210. Degtyarev M et al (2008) Akt inhibition promotes autophagy and sensitizes PTEN-null tumors to lysosomotropic agents. J Cell Biol 183(1):101–116

    CAS  PubMed Central  PubMed  Google Scholar 

  211. Bellodi C et al (2009) Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells. J Clin Invest 119(5):1109–1123

    CAS  PubMed Central  PubMed  Google Scholar 

  212. Gupta A et al (2010) Autophagy inhibition and antimalarials promote cell death in gastrointestinal stromal tumor (GIST). Proc Natl Acad Sci USA 107(32):14333–14338

    CAS  PubMed Central  PubMed  Google Scholar 

  213. Ding WX et al (2009) Oncogenic transformation confers a selective susceptibility to the combined suppression of the proteasome and autophagy. Mol Cancer Ther 8(7):2036–2045

    CAS  PubMed Central  PubMed  Google Scholar 

  214. Rouschop KM et al (2009) Autophagy is required during cycling hypoxia to lower production of reactive oxygen species. Radiother Oncol 92(3):411–416

    CAS  PubMed  Google Scholar 

  215. Fan QW et al (2010) Akt and autophagy cooperate to promote survival of drug-resistant glioma. Sci Signal 3(147):81

    Google Scholar 

  216. Pan Y et al (2011) Targeting autophagy augments in vitro and in vivo antimyeloma activity of DNA-damaging chemotherapy. Clin Cancer Res 17(10):3248–3258

    CAS  PubMed  Google Scholar 

  217. Sheen JH et al (2011) Defective regulation of autophagy upon leucine deprivation reveals a targetable liability of human melanoma cells in vitro and in vivo. Cancer Cell 19(5):613–628

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Amaravadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rangwala, R., Amaravadi, R. (2013). The Role of Autophagy in Drug Resistance and Potential for Therapeutic Targeting. In: Johnson, D. (eds) Cell Death Signaling in Cancer Biology and Treatment. Cell Death in Biology and Diseases. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-5847-0_4

Download citation

Publish with us

Policies and ethics