Skip to main content

Convex Calculus

  • Chapter
  • First Online:
Optimization

Part of the book series: Springer Texts in Statistics ((STS,volume 95))

  • 12k Accesses

Abstract

Two generations of mathematicians have labored to extend the machinery of differential calculus to convex functions. For many purposes it is convenient to generalize the definition of a convex function \(f(\boldsymbol{x})\) to include the possibility that \(f(\boldsymbol{x}) = \infty \). This maneuver has the advantage of allowing one to enlarge the domain of a convex function \(f(\boldsymbol{x})\) defined on a convex set C ;⊂ ;R n to all of R n by the simple device of setting \(f(\boldsymbol{x}) = \infty \) for \(\boldsymbol{x}\not\in C\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acosta E, Delgado C (1994) Fréchet versus Carathéodory. Am Math Mon 101:332–338

    Article  MATH  Google Scholar 

  2. Bertsekas DP (2009) Convex optimization theory. Athena Scientific, Belmont

    MATH  Google Scholar 

  3. Borwein JM, Lewis AS (2000) Convex analysis and nonlinear optimization: theory and examples. Springer, New York

    MATH  Google Scholar 

  4. Cai J-F, Candés EJ, Shen Z (2008) A singular value thresholding algorithm for matrix completion. SIAM J Optim 20:1956–1982

    Article  Google Scholar 

  5. Candés EJ, Tao T (2009) The power of convex relaxation: near-optimal matrix completion. IEEE Trans Inform Theor 56:2053–2080

    Article  Google Scholar 

  6. Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  7. Hiriart-Urruty J-B (1986) When is a point x satisfying ∇ f(x) = 0 a global minimum of f(x)? Am Math Mon 93:556–558

    Article  MathSciNet  MATH  Google Scholar 

  8. Hiriart-Urruty J-B, Claude Lemaréchal C (2001) Fundamentals of convex analysis. Springer, New York

    Book  MATH  Google Scholar 

  9. Hunter DR, Lange K (2000) Quantile regression via an MM algorithm. J Comput Graph Stat 9:60–77

    MathSciNet  Google Scholar 

  10. Ledoita O, Wolf M (2004) A well-conditioned estimator for large-dimensional covariance matrices. J Multivar Anal 88:365–411

    Article  Google Scholar 

  11. Mazumder R, Hastie T, Tibshirani R (2010) Spectral regularization algorithms for learning large incomplete matrices. J Mach Learn Res 11:2287–2322

    MathSciNet  MATH  Google Scholar 

  12. Romano G (1995) New results in subdifferential calculus with applications to convex analysis. Appl Math Optim 32:213–234

    Article  MathSciNet  MATH  Google Scholar 

  13. Rockafellar RT (1996) Convex analysis. Princeton University Press, Princeton

    Google Scholar 

  14. Ruszczyński A (2006) Nonlinear optimization. Princeton University Press, Princeton

    MATH  Google Scholar 

  15. Schmidt M, van den Berg E, Friedlander MP, Murphy K (2009) Optimizing costly functions with simple constraints: a limited-memory projected quasi-Newton algorithm. In: van Dyk D, Welling M (eds) Proceedings of The twelfth international conference on artificial intelligence and statistics (AISTATS), vol 5, pp 456–463

    Google Scholar 

  16. Strang G (1986) The fundamental theorem of linear algebra. Am Math Mon 100:848–855

    Article  MathSciNet  Google Scholar 

  17. Watson GA (1992) Characterization of the subdifferential of some matrix norms. Linear Algebra Appl 170:1039–1053

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lange, K. (2013). Convex Calculus. In: Optimization. Springer Texts in Statistics, vol 95. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5838-8_14

Download citation

Publish with us

Policies and ethics