Skip to main content

Chapter 9 Several Complex Variables

  • Chapter
  • First Online:
Hidden Harmony—Geometric Fantasies

Abstract

Throughout the nineteenth century and well into the twentieth the study of complex functions of several variables posed a challenge to the experts in the function theory of a single variable. As we have seen in Chap. 6, the prospect of creating a theory of Abelian functions was one that Weierstrass continually had in mind; it was the ultimate goal of all his work. And yet a marked distinction between the theories of one and several variables persists to the present day. Almost all universities offer a mainstream course in single variable complex function theory; few, if any, present the theory of several variables as other than a specialist option. We shall see that this distinction is in the nature of the functions studied. Because this dichotomy survives in the modern syllabus, we have divided this chapter into three sections. The first is a survey of the claim that the theories of one and several variables diverge markedly. We give an indication of what was discovered about the complex function theory of several variables, but generally slight the proofs so that the section can be read by a broad audience. The second section looks at the history of the principal results about Abelian functions and theta functions which, for a long time, were the only examples known of complex functions of several variables. In the final section we reconsider the general theory, look at some of the techniques used, and seek sharpen the discussion of the opening section. The latter sections naturally place greater demands on the reader.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a clear introduction to the differences, see Krantz (1987) or Krantz (1990) and the opening chapter of Krantz (1982, 2nd ed. 1992).

  2. 2.

    We have taken this example from (Osgood 1914) which has generally been a very helpful guide to the material in this chapter.

  3. 3.

    There were investigations of multiple complex integrals by Maximilien Marie in the 1850s, but these seem to have been rather formal, superficial, and occasionally wrong as shown in Poincaré (1887a, 440–441). In the end they were without much influence, perhaps because, to quote (Coolidge 1924, 77) Marie “possessed the knack of quarrelling with his contemporaries almost to the point of genius”.

  4. 4.

    So it is particularly interesting to note Krantz’s comment (Krantz 1982, 16) that, by comparison with their comparatively modest role in the single-variable theory, when it comes to constructing functions in several complex variables the Cauchy–Riemann equations are central.

  5. 5.

    The function \(p\left (u,z\right )\) was called an algebroid function, by Poincaré in his then-unpublished thesis (1879, lii).

  6. 6.

    This account follows (Osgood 1914, 50–53).

  7. 7.

    This takes care of the examples such as \(\frac{x} {y}\) above.

  8. 8.

    One of the most gifted Italian mathematicians of his generation, in his short life—he died in 1917 at the front during WWI—in addition to function theory Levi gave substantial contributions to various fields of mathematics, including the theory of partial differential equations and the calculus of variations. See Picone’s introduction in (Levi, Opere 1, V–XV).

  9. 9.

    The generalised Laurent theorem is explained in (Osgood 1924, 68–70).

  10. 10.

    See Appell (1890) and Appell (1891).

  11. 11.

    Otto Blumenthal was the first of Hilbert’s students. He taught at the University of Aachen for many years, and became an editor of Mathematische Annalen, but when the Nazis came to power he was forced to resign because one of his grandparents was a Jew, although he himself was a practising Protestant. In 1939 he obtained a teaching position in Delft, but in 1943 he was captured, and he died in Theresienstadt in November 1944, age 68.

  12. 12.

    For an analysis of Cousin’s work and the subsequent developments in sheaf theory, see Chorlay (2010).

  13. 13.

    See Maurey, B. and J.-P. Tacchi, La genèse du théorème de recouvrement de Borel, http://www.math.jussieu.fr/~maurey/articles/GenRev.pdf, who cite “le recueil de l’association des anciens élèves de l’École Normale Supérieure” for 1934. It seems that Cousin was born in Paris on 18 March 1867 and studied mathematics at the École Normale where he wrote his doctorate in 1886. He then taught at the Lycée in Caen until 1894, when he became a maître de conférences at Grenoble, and then in 1902 he became a professor at Bordeaux. His last publication was published in Acta mathematica in 1910, he was Head of the Faculté des sciences at Bordeaux from 1924 to 1930, and he died in 1933.

  14. 14.

    Gronwall, in his (1917), observed that Osgood had noted in (1914) that Cousin’s argument is sketchy when it comes to specifying what branches are involved and gave Osgood’s modifications to make the matter precise.

  15. 15.

    Modern treatments find the Cousin problems are cohomological in nature, see Krantz (1982, Chap. 6).

  16. 16.

    Friedrich Hartogs became a Privatdozent in 1909, and an extraordinary professor at Munich in 1912, but he had to wait until 1927 to be appointed full professor there. After the Nazi party came to power in 1933 Hartogs, who was a Jew, suffered increasingly difficult times until he was forced to retire in 1935. After the Kristallnacht of 9–10 November 1938 he was imprisoned at Dachau for several weeks. Further humiliations followed his release, including a enforced divorce from his Aryan wife to protect her, and in the end he committed suicide in 1943. For biographical information on Pringsheim, Hartogs and other Jewish mathematicians at Munich University, see Bauer (1997).

  17. 17.

    Osgood commented (1914, 38) that “this theorem in its present form was first given by Fabry C.R. 134 (1902) pp. 1190, and rediscovered by Hartogs.” He also noted that a certain A. Meyer had already given a geometric interpretation of such a function in 1883: the graph of logs as a function of logr is continuous and concave downwards.

  18. 18.

    This marks the first appearance of the Levi form. See Range (2012) for an introduction to the convexity issues that arise.

  19. 19.

    See, for example, Krantz (1982) and Siu (1978).

References

  • Appell, P. 1890. Sur les fonctions de deux variables à plusieurs paires de périodes. CR 110, 181–183.

    MATH  Google Scholar 

  • Appell, P. 1891. Sur les fonctions périodiques de deux variables. J de math. (4) 7, 157–219.

    Google Scholar 

  • Baker, H.F. 1903. On functions of several variables. Proc. LMS (2) 1, 14–36.

    Google Scholar 

  • Bauer, F.L. 1997. Pringsheim, Liebmann, Hartogs - Schicksale jüdischer Mathematiker in München. Sitz. München, 1–32.

    Google Scholar 

  • Bieberbach, L. 1921a. Neuere Untersuchungen über Funktionen von komplexen Variabeln. EMW II C 4, 379–532.

    Google Scholar 

  • Cartan, H. 1934. Les problèmes de Poincaré et de Cousin pour les fonctions de plusieurs variables complexes. CR 199, 1284–1287.

    Google Scholar 

  • Chorlay, R. 2010. From problems to structures: the Cousin problems and the emergence of the sheaf concept. AHES 64, 1–73.

    Article  MathSciNet  MATH  Google Scholar 

  • Coolidge, J.L. 1924. The geometry of the complex domain. Clarendon Press, Oxford.

    MATH  Google Scholar 

  • Cousin, P. 1895. Sur les fonctions de n variables complexes. Acta 19, 1–62.

    MathSciNet  MATH  Google Scholar 

  • Gronwall, T. H. 1917. On the expressibility of a uniform function of several complex variables as the quotient of two functions of entire character. Trans. AMS 18, 50–64.

    Article  MathSciNet  MATH  Google Scholar 

  • Hartogs, F. 1905. Zur Theorie der analytischen Funktionen mehrerer unabhängiger Veränderlichen, insbesondere über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschreiten. Habilitationsschrift, München. Rep. Math. Ann. 62 (1906) 1–88.

    Google Scholar 

  • Hartogs, F. 1907. Über neuere Untersuchungen auf dem Gebiete der analytischen Funktionen mehrerer Variabeln. JDMV 16, 223–240.

    MATH  Google Scholar 

  • Hermite, Ch. 1862. Note sur la théorie des fonctions elliptiques. In (Lacroix 1862, 365–491). Rep. in Oeuvres 2, 125–238.

    Google Scholar 

  • Hurwitz, A. 1883. Beweis des Satzes, dass eine einwertige Funktion beliebig vieler Variabeln [etc]. JfM 95, 201–206 in Math. Werke 1, 147–152.

    Google Scholar 

  • Hurwitz, A. 1897. Über die Entwicklung der allgemeinen Theorie der analytischen Funktionen in neuerer Zeit. Verhandlungen der ersten internationalen Mathematiker–Kongresses, 91–112. Teubner, Leipzig in Math. Werke 1, 461–480.

    Google Scholar 

  • Igusa, J. 1982. Problems on Abelian functions at the time of Poincaré and some at present. Bull. AMS (2) 6, 161–174.

    Google Scholar 

  • Kovalevskaya, S. 1875. Zur Theorie der partiellen Differentialgleichungen. JfM 80, 1–32.

    Google Scholar 

  • Krantz, S.G. 1982. Function theory of several complex variables. Wiley, New York. 2nd. ed. Wadsworth and Brooks/Cole. Rep. of the 2nd ed. AMS Chelsea Publishing, Providence, RI 2001.

    Google Scholar 

  • Krantz, S.G. 1987. What is several complex variables? Amer. Math. Monthly 94, 236–256.

    Article  MathSciNet  MATH  Google Scholar 

  • Krantz, S.G. 1990. Complex analysis: the geometric viewpoint. Mathematics Association of America, Washington, DC. 2nd ed. Mathematics Association of America, Washington, DC. 2004.

    Google Scholar 

  • Krazer, A. and W. Wirtinger. 1920. Abelsche Funktionen und allgemeine Thetafunktionen. EMW II B 7, 609–873.

    Google Scholar 

  • Kronecker, L. 1869. Ueber Systeme von Funktionen mehrerer Variabeln. (Erste und zweite Abhandlung). Monatsberichte Berlin, 159–193; 688–698 in Werke 1, 175–212; 213–226.

    Google Scholar 

  • Levi, E.E. 1910. Studii sui punti singolari essenziali delle funzioni analitiche di due o più variabili complesse. Ann. di Mat. (3) 17, 61–87 in Opere 1, 187–213.

    Google Scholar 

  • Oka, K. 1937. Domaines d’holomorphie. Journal of Science of the Hiroshima University 7, 115–130 in Coll. Papers, 11–22.

    Google Scholar 

  • Oka, K. 1939. Deuxième problème de Cousin. Journal of Science of the Hiroshima University 9, 7–19 in Coll. Papers, 24–34.

    Google Scholar 

  • Osgood, W. F. 1899. Note über analytische Functionen mehrerer Veränderlichen. Math. Ann. 52, 462–464.

    Article  MathSciNet  MATH  Google Scholar 

  • Osgood, W.F. 1901. Allgemeine Theorie der analytischen Funktionen a) einer und b) mehrerer komplexen Grössen. EMW II B 1, 1–114. Partial French ed. as (Boutroux and Chazy 1911).

    Google Scholar 

  • Osgood, W.F. 1914. Topics in the theory of functions of several complex variables. The Madison colloquium 1913, II. AMS Colloquium Lectures, 4. Rep. Dover, New York 1966.

    Google Scholar 

  • Picard, Ch.-E. 1883. Sur une proposition concernant les fonctions uniformes d’une variable lièes par une relation algébrique. Bull. sci. math. (2) 7, 107–116 in Oeuvres 1, 99–108.

    Google Scholar 

  • Poincaré, H. 1879. Sur les propriétés des fonctions définies par les équations aux différences partielles. Thèse. Gauthier–Villars, Paris in Oeuvres 1, XLIX–CXXIX.

    Google Scholar 

  • Poincaré, H. 1883e. Sur les fonctions de deux variables. CR 96, 238–240 in Oeuvres 4, 144–6.

    Google Scholar 

  • Poincaré, H. 1883f. Sur les fonctions de deux variables. Acta 2, 97–113 in Oeuvres 4, 147–161.

    Google Scholar 

  • Poincaré, H. 1886. Sur les intégrales irrégulières des équations linéaires. Acta 8, 295–344 in Oeuvres 1, 290–332.

    Google Scholar 

  • Poincaré, H. 1887a. Sur les résidus des intégrales doubles. Acta 9, 321–380 in Oeuvres 3, 440–489.

    Google Scholar 

  • Poincaré, H. 1897. Sur les fonctions abéliennes. CR 124, 1407–141 in Oeuvres 4, 469–472.

    Google Scholar 

  • Poincaré, H. 1907b. Les fonctions analytiques de deux variables et la représentation conforme. Rend. Palermo 23, 185–220 in Oeuvres 4, 244–289.

    Google Scholar 

  • Poincaré, H. and Ch.-E. Picard. 1883. Sur un théorème de Riemann, [etc]. CR 97, 1284–1287 in Oeuvres 4, 307–310. Also in Picard Oeuvres 1, 109–112.

    Google Scholar 

  • Range, R.M. 2012. What is a pseudoconvex domain. Notices AMS 59, 301–303.

    MathSciNet  MATH  Google Scholar 

  • Reinhardt, K. 1921. Über Abbildungen durch analytische Funktionen zweier Veränderlichen. Math. Ann. 83, 211–255.

    Article  MathSciNet  MATH  Google Scholar 

  • Riemann, G.F.B. 1860. Ueber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite. Göttingen Abh. 8, 43–65 in Werke, 157–175. Engl. trl. in (Riemann 2004, 145–165).

    Google Scholar 

  • Schottky, F. 1888. Zur Theorie der Abel’schen Functionen von vier Variabeln. JfM 102, 304–352.

    MATH  Google Scholar 

  • Schottky, F. and H. Jung. 1909. Neue Sätze über Symmetralfunktionen und die Abelschen Funktionen der Riemannschen Theorie. Berlin Berichte, 282–297; 732–750.

    Google Scholar 

  • Serre, J.–P. 1953. Quelques problèmes globaux relatifs aux variétés de Stein. Colloque sur les fonctions de plusieurs variables, tenu à Bruxelles, 1953, 57–68. Georges Thone, Liège; Masson & Cie, Paris. In Oeuvres 1, 259–270.

    Google Scholar 

  • Vitushkin, A. G. 1990. Several complex variables I. Encyclopaedia of mathematical sciences, vol. 7. Springer, New York, Berlin, Heidelberg.

    Google Scholar 

  • Siu, Y.-T. 1978. Pseudoconvexity and the problem of Levi. Bull. AMS 84, 481–512.

    Article  MathSciNet  MATH  Google Scholar 

  • Weierstrass, K.T.W. 1862. Bemerkungen über die Integration der hyperelliptischen Differential–Gleichungen. Monatsberichte Berlin, 127–133 in Math. Werke 1, 267–273.

    Google Scholar 

  • Weierstrass, K.T.W. 1879. Einige auf die Theorie der analytischen Functionen mehrerer Veränderlichen sich beziehende Sätze. (lith.) Berlin. First printed in (Weierstrass 1886, 105–164). Rep. in Math. Werke 2, 135–188.

    Google Scholar 

  • Weierstrass, K.T.W. 1880a. Untersuchungen über 2r–fach periodische Funktionen. JfM 89, 1–8 in Math. Werke 2, 125–133.

    Google Scholar 

  • Weierstrass, K.T.W. 1886. Abhandlungen aus der Funktionenlehre. Springer, Berlin.

    Google Scholar 

  • Weierstrass, K.T.W. 1903. Allgemeine Untersuchungen über 2n–fach periodische Funktionen von n Veränderlichen. Ms. in Math. Werke 3, 53–114.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bottazzini, U., Gray, J. (2013). Chapter 9 Several Complex Variables. In: Hidden Harmony—Geometric Fantasies. Sources and Studies in the History of Mathematics and Physical Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5725-1_10

Download citation

Publish with us

Policies and ethics