Skip to main content

Broadband Vibration Energy Harvesting Techniques

  • Chapter
  • First Online:
Advances in Energy Harvesting Methods

Abstract

The continuous reduction in power consumption of wireless sensing electronics has led to immense research interests in vibration energy harvesting techniques for self-powered devices. Currently, most vibration-based energy harvesters are designed as linear resonators that only work efficiently with limited bandwidth near their resonant frequencies. Unfortunately, in the vast majority of practical scenarios, ambient vibrations are frequency-varying or totally random with energy distributed over a wide frequency range. Hence, increasing the bandwidth of vibration energy harvesters has become one of the most critical issues before these harvesters can be widely deployed in practice. This chapter reviews the advances made in the past few years on this issue. The broadband vibration energy harvesting techniques, covering resonant frequency tuning, multimodal energy harvesting, and nonlinear energy harvesting configurations are summarized in detail with regard to their merits and applicability in different circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roundy S, Wright PK, Rabaey J (2003) A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun 26:1131–1144

    Article  Google Scholar 

  2. Mitcheson PD, Green TC, Yeatman EM, Holmes AS (2004) Architectures for vibration-driven micropower generators. J Microelectromech Syst 13:429–440

    Article  Google Scholar 

  3. El-Hami M, Glynne-Jones P, White NM, Beeby S, James E, Brown AD, Ross JN (2001) Design and fabrication of a new vibration-based electromechanical power generator. Sens Actuators A 92:335–342

    Article  Google Scholar 

  4. Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16:R1–R21

    Article  Google Scholar 

  5. Yang YW, Tang LH, Li HY (2009) Vibration energy harvesting using macro-fiber composites. Smart Mater Struct 18:115025

    Article  Google Scholar 

  6. Erturk A, Inman DJ (2008) A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J Vib Acoust 130:041002

    Article  Google Scholar 

  7. De Marqui C Jr, Erturk A, Inman DJ (2009) An electromechanical finite element model for piezoelectric energy harvester plates. J Sound Vib 327:9–25

    Article  Google Scholar 

  8. Yang YW, Tang LH (2009) Equivalent circuit modeling of piezoelectric energy harvesters. J Intell Mater Syst Struct 20:2223–2235

    Article  Google Scholar 

  9. Elvin NG, Elvin AA (2009) A general equivalent circuit model for piezoelectric generators. J Intell Mater Syst Struct 20:3–9

    Article  Google Scholar 

  10. Roundy S, Zhang Y (2005) Toward self-tuning adaptive vibration based micro-generators. Proc SPIE 5649:373–384

    Article  Google Scholar 

  11. Leland ES, Wright PK (2006) Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload. Smart Mater Struct 15:1413–1420

    Article  Google Scholar 

  12. Eichhorn C, Goldschmidtboeing F, Woias P (2008) A frequency tunable piezoelectric energy converter based on a cantilever beam. In: Proceedings of PowerMEMS, pp 309–312

    Google Scholar 

  13. Hu Y, Xue H, Hu H (2007) A piezoelectric power harvester with adjustable frequency through axial preloads. Smart Mater Struct 16:1961–1966

    Article  Google Scholar 

  14. Morris DJ, Youngsman JM, Anderson MJ, Bahr DF (2008) A resonant frequency tunable, extensional mode piezoelectric vibration harvesting mechanism. Smart Mater Struct 17:065021

    Article  Google Scholar 

  15. Youngsman JM, Luedeman T, Morris DJ, Andersonb MJ (2010) A model for an extensional mode resonator used as a frequency-adjustable vibration energy harvester. J Sound Vib 329:277–288

    Article  Google Scholar 

  16. Loverich J, Geiger R, Frank J (2008) Stiffness nonlinearity as a means for resonance frequency tuning and enhancing mechanical robustness of vibration power harvesters. Proc SPIE 6928:692805

    Article  Google Scholar 

  17. Wu X, Lin J, Kato S, Zhang K, Ren T, Liu L (2008) A frequency adjustable vibration energy harvester. In: Proceedings of PowerMEMS, pp 245–248

    Google Scholar 

  18. Gu L, Livermore C (2010) Passive self-tuning energy harvester for extracting energy from rotational motion. Appl Phys Lett 97:081904

    Article  Google Scholar 

  19. Jo SE, Kim MS, Kim YJ (2011) Passive-self-tunable vibrational energy harvester. In: Proceedings of 16th international solid-state sensors, actuators and microsystems conference (TRANSDUCERS), pp 691–694

    Google Scholar 

  20. Challa VR, Prasad MG, Shi Y, Fisher FT (2008) A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Mater Struct 17:015035

    Article  Google Scholar 

  21. Reissman T, Wolff EM, Garcia E (2009) Piezoelectric resonance shifting using tunable nonlinear stiffness. Proc SPIE 7288:72880G

    Article  Google Scholar 

  22. Zhu D, Roberts S, Tudor J, Beeby S (2008) Closed loop frequency tunning of A vibration-based microgenerator. In: Proceedings of PowerMEMS, pp 229–232

    Google Scholar 

  23. Ayala-Garcia IN, Zhu D, Tudor MJ, Beeby SP (2010) A tunable kinetic energy harvester with dynamic over range protection. Smart Mater Struct 19:115005

    Article  Google Scholar 

  24. Challa VR, Prasad MG, Fisher FT (2011) Towards an autonomous self-tuning vibration energy harvesting device for wireless sensor network applications. Smart Mater Struct 20:025004

    Article  Google Scholar 

  25. Wu W, Chen Y, Lee B, He J, Peng Y (2006) Tunable resonant frequency power harvesting devices. Proc SPIE 6169:61690A

    Article  Google Scholar 

  26. Peters C, Maurath D, Schock W, Mezger F, Manoli Y (2009) A closed-loop wide-range tunable mechanical resonator for energy harvesting systems. J Micromech Microeng 19:094004

    Article  Google Scholar 

  27. Lallart M, Anton SR, Inman DJ (2010) Frequency self-tuning scheme for broadband vibration energy harvesting. J Intell Mater Syst Struct 21:897–906

    Article  Google Scholar 

  28. Zhu D, Tudor J, Beeby S (2010) Strategies for increasing the operating frequency range of vibration energy harvesters: a review. Meas Sci Technol 21:022001

    Article  Google Scholar 

  29. Wischke M, Masur M, Goldschmidtboeing F, Woias P (2010) Electromagnetic vibration harvester with piezoelectrically tunable resonance frequency. J Micromech Microeng 20:035025

    Article  Google Scholar 

  30. Jang S-J, Rustighi E, Brennan MJ, Lee YP, Jung H-J (2011) Design of a 2DOF vibrational energy harvesting device. J Intell Mater Syst Struct 22:443–448

    Article  Google Scholar 

  31. Aldraihem O, Baz A (2011) Energy harvester with a dynamic magnifier. J Intell Mater Syst Struct 22:521–530

    Article  Google Scholar 

  32. Tang X, Zuo L (2011) Enhanced vibration energy harvesting using dual-mass systems. J Sound Vib 330:5199–5209

    Article  Google Scholar 

  33. Roundy S, Leland ES, Baker J, Carleton E, Reilly E, Lai E, Otis B, Rabaey JM, Wright PK, Sundararajan V (2005) Improving power output for vibration-based energy scavengers. IEEE Pervasive Comput 4:28–36

    Article  Google Scholar 

  34. Yang B, Lee C, Xiang W, Xie J, He JH, Krishna Kotlanka R, Low SP, Feng H (2009) Electromagnetic energy harvesting from vibrations of multiple frequencies. J Micromech Microeng 19:035001

    Article  Google Scholar 

  35. Tadesse Y, Zhang S, Priya S (2009) Multimodal energy harvesting system: piezoelectric and electromagnetic. J Intell Mater Syst Struct 20:625–632

    Article  Google Scholar 

  36. Ou Q, Chen X, Gutschmidt S, Wood A, Leigh N (2010) A two-mass cantilever beam model for vibration energy harvesting applications. In: Proceedings of 6th annual IEEE conference on automation science and engineering (CASE), pp 301–306

    Google Scholar 

  37. Arafa M, Akl W, Aladwani A, Aldrarihem O, Baz A (2011) Experimental implementation of a cantilevered piezoelectric energy harvester with a dynamic magnifier. Proc SPIE 7977:79770Q

    Article  Google Scholar 

  38. Erturk A, Renno JM, Inman DJ (2009) Modeling of piezoelectric energy harvesting from an L-shaped beam-mass structure with an application to UAVs. J Intell Mater Syst Struct 20: 529–544

    Article  Google Scholar 

  39. Berdy DF, Jung B, Rhoads JF, Peroulis D (2011) Increased-bandwidth, meandering vibration energy harvester. In: Proceedings of 16th international solid-state sensors, actuators and microsystems conference (TRANSDUCERS), pp 2638–2641

    Google Scholar 

  40. Wu H, Tang LH, Yang YW, Soh CK (2011) A novel 2-DOF piezoelectric energy harvester. 22nd international conference on adaptive structures and technologies (ICAST), Corfu, Greece, 10–12 October, paper no. 077

    Google Scholar 

  41. Yang Z, Yang J (2009) Connected vibrating piezoelectric bimorph beams as a wide-band piezoelectric power harvester. J Intell Mater Syst Struct 20:569–574

    Article  Google Scholar 

  42. Kim I-H, Jung H-J, Lee BM, Jang S-J (2011) Broadband energy-harvesting using a two degree-of-freedom vibrating body. Appl Phys Lett 98:214102

    Article  Google Scholar 

  43. Shahruz SM (2006) Design of mechanical band-pass filters for energy scavenging. J Sound Vib 292:987–998

    Article  Google Scholar 

  44. Xue H, Hu Y, Wang Q (2008) Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies. IEEE Trans Ultrason Ferroelectr Freq Control 55:2104–2108

    Article  Google Scholar 

  45. Ferrari M, Ferrari V, Guizzetti M, Marioli D, Taroni A (2008) Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems. Sens Actuators A 142:329–335

    Article  Google Scholar 

  46. Liu J, Fang H, Xu Z, Mao X, Shen X, Chen D, Liao H, Cai B (2008) A MEMS-based piezoelectric power generator array for vibration energy harvesting. Microelectron J 39: 802–806

    Article  Google Scholar 

  47. Sari I, Balkan T, Kulah H (2008) An electromagnetic micro power generator for wideband environmental vibrations. Sens Actuatators A 145–146:405–413

    Article  Google Scholar 

  48. Cheng S, Jin Y, Rao Y, Arnold DP (2009) A bridge voltage doubler AC/DC converter for low-voltage energy harvesting applications. In: Proceedings of PowerMEMS, pp 25–28

    Google Scholar 

  49. Ramlan R, Brennan MJ, Mace BR, Kovacic I (2010) Potential benefits of a non-linear stiffness in an energy harvesting device. Nonlinear Dyn 59:545–558

    Article  MATH  Google Scholar 

  50. Mann BP, Sims ND (2009) Energy harvesting from the nonlinear oscillations of magnetic levitation. J Sound Vib 319:515–530

    Article  Google Scholar 

  51. Stanton SC, McGehee CC, Mann BP (2009) Reversible hysteresis for broadband magnetopiezoelastic energy harvesting. Appl Phys Lett 95:174103

    Article  Google Scholar 

  52. Stanton SC, McGehee CC, Mann BP (2010) Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator. Physica D 239:640–653

    Article  MATH  Google Scholar 

  53. Erturk A, Hoffmann J, Inman DJ (2009) A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl Phys Lett 94:254102

    Article  Google Scholar 

  54. Marinkovic B, Koser H (2009) Smart sand—a wide bandwidth vibration energy harvesting platform. Appl Phys Lett 94:103505

    Article  Google Scholar 

  55. Hajati A, Kim S-G (2011) Ultra-wide bandwidth piezoelectric energy harvesting. Appl Phys Lett 99:083105

    Article  Google Scholar 

  56. Soliman MSM, Abdel-Rahman EM, El-Saadany EF, Mansour RR (2009) A design procedure for wideband micropower generators. J Microelectromech Syst 18:1288–1299

    Article  Google Scholar 

  57. Lin J, Lee B, Alphenaar B (2010) The magnetic coupling of a piezoelectric cantilever for enhanced energy harvesting efficiency. Smart Mater Struct 19:045012

    Article  Google Scholar 

  58. Triplett A, Quinn DD (2009) The effect of non-linear piezoelectric coupling on vibration-based energy harvesting. J Intell Mater Syst Struct 20:1959–1967

    Article  Google Scholar 

  59. Stanton SC, Erturk A, Mann BP, Inman DJ (2010) Nonlinear piezoelectricity in electroelastic energy harvesters: modeling and experimental identification. J Appl Phys 108:074903

    Article  Google Scholar 

  60. Erturk A, Inman DJ (2008) Issues in mathematical modeling of piezoelectric energy harvesters. Smart Mater Struct 17:065016

    Article  Google Scholar 

  61. Cottone F, Vocca H, Gammaitoni L (2009) Nonlinear energy harvesting. Phys Rev Lett 102:080601

    Article  Google Scholar 

  62. Gammaitoni L, Neri I, Vocca H (2009) Nonlinear oscillators for vibration energy harvesting. Appl Phys Lett 94:164102

    Article  Google Scholar 

  63. Soliman MSM, Abdel-Rahman EM, El-Saadany EF, Mansour RR (2008) A wideband vibration-based energy harvester. J Micromech Microeng 18:115021

    Article  Google Scholar 

  64. Blystad L-CJ, Halvorsen E, Husa S (2010) Piezoelectric MEMS energy harvesting systems driven by harmonic and random vibrations. IEEE Trans Ultrason Ferroelectr Freq Control 57:908–919

    Article  Google Scholar 

  65. Blystad L-CJ, Halvorsen E (2011) An energy harvester driven by colored noise. Smart Mater Struct 20:025011

    Article  Google Scholar 

  66. Moehlis J, DeMartini BE, Rogers JL, Turner KL (2009) Exploiting nonlinearity to provide broadband energy harvesting. In: Proceedings of ASME dynamic systems and control conference, DSCC2009-2542

    Google Scholar 

  67. Daqaq MF (2010) Response of uni-modal Duffing-type harvesters to random forced excitations. J Sound Vib 329:3621–3631

    Article  Google Scholar 

  68. Erturk A, Inman DJ (2011) Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling. J Sound Vib 330:2339–2353

    Article  Google Scholar 

  69. Ferrari M, Ferrari V, Guizzetti M, Andò B, Baglio S, Trigona C (2010) Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters. Sens Actuators A 162:425–431

    Article  Google Scholar 

  70. Lin J, Alphenaar B (2010) Enhancement of energy harvested from a random vibration source by magnetic coupling of a piezoelectric cantilever. J Intell Mater Syst Struct 21:1337–1341

    Article  Google Scholar 

  71. Andò B, Baglio S, Trigona C, Dumas N, Latorre L, Nouet P (2010) Nonlinear mechanism in MEMS devices for energy harvesting applications. J Micromech Microeng 20:125020

    Article  Google Scholar 

  72. McInnes CR, Gorman DG, Cartmell MP (2008) Enhanced vibrational energy harvesting using nonlinear stochastic resonance. J Sound Vib 318:655–662

    Article  Google Scholar 

  73. Formosa F, Büssing T, Badel A, Marteau S (2009) Energy harvesting device with enlarged frequency bandwidth based on stochastic resonance. In: Proceedings of PowerMEMS, pp 229–232

    Google Scholar 

  74. Wellens T, Shatokhin V, Buchleitner A (2004) Stochastic resonance. Rep Prog Phys 67:45–105

    Article  Google Scholar 

  75. Tang LH, Yang YW (2011) Analysis of synchronized charge extraction for piezoelectric energy harvesting. Smart Mater Struct 20:085022

    Article  Google Scholar 

  76. Shu YC, Lien IC, Wu WJ (2007) An improved analysis of the SSHI interface in piezoelectric energy harvesting. Smart Mater Struct 16:2253–2264

    Article  Google Scholar 

  77. Wickenheiser AM, Garcia E (2010) Broadband vibration-based energy harvesting improvement through frequency up-conversion by magnetic excitation. Smart Mater Struct 19:065020

    Article  Google Scholar 

  78. Renno JM, Daqaq MF, Inman DJ (2009) On the optimal energy harvesting from a vibration source. J Sound Vib 320:386–405

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaowen Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tang, L., Yang, Y., Soh, C.K. (2013). Broadband Vibration Energy Harvesting Techniques. In: Elvin, N., Erturk, A. (eds) Advances in Energy Harvesting Methods. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5705-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5705-3_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5704-6

  • Online ISBN: 978-1-4614-5705-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics