Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 1034 Accesses

Abstract

As our universe continues to evolve, entropy will continue to increase. In this process, however, some acceptor systems, through absorbing power, can evolve toward a high-ordered level, at the expense of enhancing another donor-system’s entropy. Fortunately, the earth is an acceptor-system getting the energy from the Sun, a donor system. The sun is exporting energy in the form of light, such that materials on earth can evolve into higher levels: from inorganic compounds to organic macromolecular compounds, then to protein, the basic unit of all living beings, ultimately benefiting human and human society. In the 0.6 billion years’ evolution, solar energy has played a very important role as a driving force, and has generated most of the world’s food supply, and generated countless tons of coal, oil and gas which has been heavily over-utilized by modern technologies. Without the sun, the earth would be a frozen, silent planet with nothing but inorganic components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Chen, Civilization Bifurcation, Economic Chaos, and Evolutionary Economic Dynamics (Peking University Press, Beijing, 2004), p. 55

    Google Scholar 

  2. German Advisory Council on Global Change (WBGU), Towards Sustainable Energy Systems (Earthscan, London, 2003), p. 242

    Google Scholar 

  3. S. Guha, J. Yang, A. Banerjee, Amorphous silicon alloy photovoltaic research – present and future. Prog. Photovoltaics 8, 141–150 (2000)

    Article  Google Scholar 

  4. R. Noufi, H.W. Schock, CIGS-based solar cells for the next millennium. Prog. Photovoltaics 8, 151–160 (2000)

    Article  Google Scholar 

  5. D. Bonnet, P. Meyers, Cadmium-telluride – material for thin film solar cells. J. Mater. Res. 13, 2740–2753 (1998)

    Article  ADS  Google Scholar 

  6. R. Singh, P.C. Chou, U. Purkayastha, Recent development in gaas and other Iii-V-semiconductor solar-cells grown by metallorganic chemical vapor-deposition (Mocvd). J. Electrochem. Soc. 132, C217–C218 (1985)

    Google Scholar 

  7. M. Gratzel, Perspectives for dye-sensitized nanocrystalline solar cells. Prog. Photovoltaics 8, 171–185 (2000)

    Article  Google Scholar 

  8. A.P. Alivisatos, W.U. Huynh, J.J. Dittmer, Hybrid nanorod-polymer solar cells. Science 295, 2425–2427 (2002)

    Article  ADS  Google Scholar 

  9. http://en.wikipedia.org/wiki/Sunlight

  10. ASTM Standard G173, 2003e1: Standard tables for reference solar spectral irradiances: Direct normal and hemispherical on 37° tilted surface (2003). ASTM International, West Conshohocken, PA doi: 10.1520/G0173-03E01, www.astm.org

  11. M.A. Green, Third Generation Photovoltaics: Advanced Solar Energy Conversion (Springer, Berlin/New York, 2003)

    Google Scholar 

  12. T. Trupke, M.A. Green, P. Wurfel, Improving solar cell efficiencies by down-conversion of high-energy photons. J. Appl. Phys. 92, 1668–1674 (2002)

    Article  ADS  Google Scholar 

  13. R.R. King, D.C. Law, K.M. Edmondson, C.M. Fetzer, G.S. Kinsey, H. Yoon, R.A. Sherif, N.H. Karam, 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Appl. Phys. Lett. 90(18), 183516 (2007), AIP

    Google Scholar 

  14. S.R. Cowan, A. Roy, A.J. Heeger, Recombination in polymer-fullerene bulk heterojunction solar cells. Phys. Rev. B. 82, 245207 (2010)

    Article  ADS  Google Scholar 

  15. J.K. Lee, N.E. Coates, S. Cho, N.S. Cho, D. Moses, G.C. Bazan, K. Lee, A.J. Heeger, Efficacy of TiO[sub x] optical spacer in bulk-heterojunction solar cells processed with 1,8-octanedithiol. Appl. Phys. Lett. 92, 243308 (2008)

    Article  ADS  Google Scholar 

  16. J.Y. Kim, S.H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, A.J. Heeger, New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Adv. Mater. 18, 572–576 (2006)

    Article  Google Scholar 

  17. D.W. Zhao, L. Ke, Y. Li, S.T. Tan, A.K.K. Kyaw, H.V. Demir, X.W. Sun, D.L. Carroll, G.Q. Lo, D.L. Kwong, Optimization of inverted tandem organic solar cells. Sol. Energ. Mat. Sol. C.,(Corrected Proof, 2010 in press)

    Google Scholar 

  18. A.K. Ghosh, T. Feng, Merocyanine organic solar-cells. J. Appl. Phys. 49, 5982–5989 (1978)

    Article  ADS  Google Scholar 

  19. C.W. Tang, A.C. Albrecht, Photovoltaic effects of metal-chlorophyll-a-metal sandwich cells. J. Chem. Phys. 62, 2139–2149 (1975)

    Article  ADS  Google Scholar 

  20. A.K. Ghosh, D.L. Morel, T. Feng, R.F. Shaw, C.A. Rowe, Photovoltaic and rectification properties of Al-Mg phthalocyanine-Ag Schottky-barrier cells. J. Appl. Phys. 45, 230–236 (1974)

    Article  ADS  Google Scholar 

  21. L.A.A. Pettersson, L.S. Roman, O. Inganas, Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J. Appl. Phys. 86, 487–496 (1999)

    Article  ADS  Google Scholar 

  22. D.W. Sievers, V. Shrotriya, Y. Yang, Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells. J. Appl. Phys. 100, 114509 (2006)

    Article  ADS  Google Scholar 

  23. F. Richter, M. Florian, K. Henneberger, Poynting’s theorem and energy conservation in the propagation of light in bounded media. Europhys. Lett. 81, 67005 (2008)

    Article  ADS  Google Scholar 

  24. L.J.A. Koster, E.C.P. Smits, V.D. Mihailetchi, P.W.M. Blom, Device model for the operation of polymer/fullerene bulk heterojunction solar cells. Phys. Rev. B. 72, 085205 (2005)

    Article  ADS  Google Scholar 

  25. S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer, Wien, 1984)

    Book  Google Scholar 

  26. C.L. Braun, Electric-field assisted dissociation of charge-transfer states as a mechanism of photocarrier production. J. Chem. Phys. 80, 4157–4161 (1984)

    Article  ADS  Google Scholar 

  27. H.K. Gummel, A self-consistent iterative scheme for one-dimensional steady state transistor calculations. IEEE T. Electron. Dev. 11, 455–465 (1964)

    Article  Google Scholar 

  28. P. Würfel, U. Würfel, in Physics of Solar Cells : From Basic Principles to Advanced Concepts, 2nd, updated and expanded edn. (Wiley-VCH, Weinheim, 2009)

    Google Scholar 

  29. A. Jain, A. Kapoor, A new approach to study organic solar cell using Lambert W-function. Sol. Energ. Mat. Sol. C. 86, 197–205 (2005)

    Article  Google Scholar 

  30. R.H. Bube, A.L. Fahrenbruch, Advances in Electronics and Electron Physics (Academic, New York, 1981), p. 163

    Google Scholar 

  31. A.L. Fahrenbruch, J. Aranovich, Solar Energy Conversion (Springer, New York, 1979), p. 257

    Book  Google Scholar 

  32. B.P. Rand, D.P. Burk, S.R. Forrest, Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells. Phys. Rev. B. 75, 115327 (2007)

    Article  ADS  Google Scholar 

  33. Y. Li, M. Wang, H. Huang, W. Nie, Q. Li, E.D. Peterson, R. Coffin, G. Fang, D.L. Carroll, Influence on open-circuit voltage by optical heterogeneity in three-dimensional organic photovoltaics. Phys. Rev. B. 84, 085206 (2011)

    Article  ADS  Google Scholar 

  34. G. Li, V. Shrotriya, J.S. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4, 864–868 (2005)

    Article  ADS  Google Scholar 

  35. F.A. Shirland, The history, design, fabrication and performance of CdS thin film solar cells. Adv. Energ. Convers. 6, 201–221 (1966)

    Article  Google Scholar 

  36. K.I. Ishibashi, Y. Kimura, M. Niwano, An extensively valid and stable method for derivation of all parameters of a solar cell from a single current–voltage characteristic. J. Appl. Phys. 103, 094507 (2008)

    Article  ADS  Google Scholar 

  37. A. Jain, A. Kapoor, A new method to determine the diode ideality factor of real solar cell using Lambert W-function. Sol. Energ. Mat. Sol. C. 85, 391–396 (2005)

    Article  Google Scholar 

  38. G. Williams, Advances in organic photovoltaics and methods for effective solar cell parameter extraction, http://www.eng.uwaterloo.ca/~g3willia/documents/ECE730_OSCReview.pdf

  39. K. Bouzidi, M. Chegaar, A. Bouhemadou, Solar cells parameters evaluation considering the series and shunt resistance. Sol. Energ. Mat. Sol. C. 91, 1647–1651 (2007)

    Article  Google Scholar 

  40. A. Ortiz-Conde, F.J.G. Sanchez, J. Muci, New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated I-V characteristics. Sol. Energ. Mat. Sol. C. 90, 352–361 (2006)

    Article  Google Scholar 

  41. N. Nehaoua, Y. Chergui, D.E. Mekki, Determination of organic solar cell parameters based on single or multiple pin structures. Vacuum 84, 326–329 (2009)

    Article  Google Scholar 

  42. Z. Ouennoughi, M. Chegaar, A simpler method for extracting solar cell parameters using the conductance method. Solid State Electron. 43, 1985–1988 (1999)

    Article  ADS  Google Scholar 

  43. W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510-519 (1961), AIP

    Google Scholar 

  44. J.W. Liu, M.A.G. Namboothiry, D.L. Carroll, Fiber-based architectures for organic photovoltaics. Appl. Phys. Lett. 90, 063501 (2007)

    Article  ADS  Google Scholar 

  45. Y. Li, W. Zhou, D. Xue, J.W. Liu, E.D. Peterson, W.Y. Nie, D.L. Carroll, Origins of performance in fiber-based organic photovoltaics. Appl. Phys. Lett. 95, 203503 (2009)

    Article  ADS  Google Scholar 

  46. J.W. Liu, M.A.G. Namboothiry, D.L. Carroll, Optical geometries for fiber-based organic photovoltaics. Appl. Phys. Lett. 90, 133515 (2007)

    Article  ADS  Google Scholar 

  47. O.L. Muskens, J.G. Rivas, R.E. Algra, E.P.A.M. Bakkers, A. Lagendijk, Design of light scattering in nanowire materials for photovoltaic applications. Nano Lett. 8, 2638–2642 (2008)

    Article  ADS  Google Scholar 

  48. J.H. Woodruff, J.B. Ratchford, I.A. Goldthorpe, P.C. McIntyre, C.E.D. Chidsey, Vertically oriented germanium nanowires grown from gold colloids on silicon substrates and subsequent gold removal. Nano Lett. 7, 1637–1642 (2007)

    Article  ADS  Google Scholar 

  49. H. Zhou, A. Colli, T. Butler, N. Rupesinghe, A. Mumtaz, G. Amaratunga, J.I.B. Wilson, Carbon nanotube arrays for optical design of amorphous silicon solar cells. Int. J. Mater. Form. 1, 113–116 (2008)

    Article  Google Scholar 

  50. A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, D. Salzman, Very high efficiency solar cell modules. Prog. Photovoltaics 17, 75–83 (2009)

    Article  Google Scholar 

  51. S. Curran, J. Talla, S. Dias, J. Dewald, Microconcentrator photovoltaic cell (the m-C cell): Modeling the optimum method of capturing light in an organic fiber based photovoltaic cell. J. Appl. Phys. 104, 064305 (2008)

    Article  ADS  Google Scholar 

  52. B. Myers, M. Bernardi, J.C. Grossman, Three-dimensional photovoltaics. Appl. Phys. Lett. 96, 071902 (2010)

    Article  ADS  Google Scholar 

  53. Z.X. Liu, A. Masuda, T. Nagai, T. Miyazaki, M. Takano, M. Takano, H. Yoshigahara, K. Sakai, K. Asai, M. Kondo, A concentrator module of spherical Si solar cell. Sol. Energ. Mat. Sol. C. 91, 1805–1810 (2007)

    Article  Google Scholar 

  54. X. Gong, M. Tong, Y. Xia, W. Cai, J.S. Moon, Y. Cao, G. Yu, C.-L. Shieh, B. Nilsson, A.J. Heeger, High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 325, 1665–1667 (2009)

    Article  ADS  Google Scholar 

  55. R.C. Coffin, J. Peet, J. Rogers, G.C. Bazan, Streamlined microwave-assisted preparation of narrow-bandgap conjugated polymers for high-performance bulk heterojunction solar cells. Nat. Chem. 1, 657–661 (2009)

    Article  Google Scholar 

  56. S.H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J.S. Moon, D. Moses, M. Leclerc, K. Lee, A.J. Heeger, Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat. Photonics. 3, 297–U295 (2009)

    Article  ADS  Google Scholar 

  57. H.Y. Chen, J.H. Hou, S.Q. Zhang, Y.Y. Liang, G.W. Yang, Y. Yang, L.P. Yu, Y. Wu, G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat. Photonics. 3, 649–653 (2009)

    Article  ADS  Google Scholar 

  58. L.J. Huo, J.H. Hou, H.Y. Chen, S.Q. Zhang, Y. Jiang, T.L. Chen, Y. Yang, Bandgap and molecular level control of the low-bandgap polymers based on 3,6-Dithiophen-2-yl-2,5-dihydropyrrolo [3,4-c]pyrrole-1,4-dione toward highly efficient polymer solar cells. Macromolecules 42, 6564–6571 (2009)

    Article  ADS  Google Scholar 

  59. F. Zhang, A. Vollmer, J. Zhang, Z. Xu, J.P. Rabe, N. Koch, Energy level alignment and morphology of interfaces between molecular and polymeric organic semiconductors. Org. Electron. 8, 606–614 (2007)

    Article  Google Scholar 

  60. R. Hausermann, E. Knapp, M. Moos, N.A. Reinke, T. Flatz, B. Ruhstaller, Coupled optoelectronic simulation of organic bulk-heterojunction solar cells: Parameter extraction and sensitivity analysis. J. Appl. Phys. 106, 104507 (2009)

    Article  ADS  Google Scholar 

  61. M.G. Harrison, J. Gruner, G.C.W. Spencer, Analysis of the photocurrent action spectra of MEH-PPV polymer photodiodes. Phys. Rev. B. 55, 7831–7849 (1997)

    Article  ADS  Google Scholar 

  62. S. Cho, J. Yuen, J.Y. Kim, K. Lee, A.J. Heeger, S. Lee, Multilayer bipolar field-effect transistors. Appl. Phys. Lett. 92, 063511 (2008)

    Article  ADS  Google Scholar 

  63. D.W. Zhao, P. Liu, X.W. Sun, S.T. Tan, L. Ke, A.K.K. Kyaw, An inverted organic solar cell with an ultrathin Ca electron-transporting layer and MoO3 hole-transporting layer. Appl. Phys. Lett. 95, 153304 (2009)

    Article  ADS  Google Scholar 

  64. M.W. Wanlass, K.A. Emery, T.A. Gessert, G.S. Horner, C.R. Osterwald, T.J. Coutts, Practical considerations in tandem cell modeling. Sol. Cells. 27, 191–204 (1989)

    Article  Google Scholar 

  65. F.J. Zhang, X.W. Xu, W.H. Tang, J. Zhang, Z.L. Zhuo, J. Wang, J. Wang, Z. Xu, Y.S. Wang, Recent development of the inverted configuration organic solar cells. Sol. Energ. Mat. Sol. C. 95, 1785–1799 (2011)

    Article  Google Scholar 

  66. G. Dennler, M.C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, C.J. Brabec, Design rules for donors in bulk-heterojunction tandem solar cells-towards 15% energy-conversion efficiency. Adv. Mater. 20, 579 (2008)

    Article  Google Scholar 

  67. T. Kuwabara, H. Sugiyama, M. Kuzuba, T. Yamaguchi, K. Takahashi, Inverted bulk-heterojunction organic solar cell using chemical bath deposited titanium oxide as electron collection layer. Org. Electron. 11, 1136–1140 (2010)

    Article  Google Scholar 

  68. A.K.K. Kyaw, X.W. Sun, C.Y. Jiang, G.Q. Lo, D.W. Zhao, D.L. Kwong, An inverted organic solar cell employing a sol–gel derived ZnO electron selective layer and thermal evaporated MoO(3) hole selective layer. Appl. Phys. Lett. 93, 221107 (2008)

    Article  ADS  Google Scholar 

  69. W. Mingjun, L. Yuan, H. Huihui, D.P. Eric, N. Wanyi, Z. Wei, Z. Wei, H. Wenxiao, F. Guojia, S. Nanhai, Z. Xingzhong, L.C. David, Thickness dependence of the MoO3 blocking layers on ZnO nanorod-inverted organic photovoltaic devices. Appl. Phys. Lett. 98, 103305 (2011)

    Article  Google Scholar 

  70. B. Weintraub, Y.G. Wei, Z.L. Wang, Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells. Angew. Chem. Int. Edit. 48, 8981–8985 (2009)

    Article  Google Scholar 

  71. Y. Li, E.D. Peterson, H. Huang, M. Wang, D. Xue, W. Nie, W. Zhou, D.L. Carroll, Tube-based geometries for organic photovoltaics. Appl. Phys. Lett. 96, 243505 (2010)

    Article  ADS  Google Scholar 

  72. H. Huang, Y. Li, M. Wang, W. Nie, W. Zhou, E.D. Peterson, J. Liu, G. Fang, D.L. Carroll, Photovoltaic-thermal solar energy collectors based on optical tubes. Sol. Energ. 85, 450–454 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li, Y. (2013). Introduction. In: Three Dimensional Solar Cells Based on Optical Confinement Geometries. Springer Theses. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5699-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5699-5_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5698-8

  • Online ISBN: 978-1-4614-5699-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics