Skip to main content

Understanding Triple-Negative Breast Cancer

  • Chapter
  • First Online:
Breast Cancer Metastasis and Drug Resistance
  • 2584 Accesses

Abstract

It is estimated that over 200,000 new cases of invasive breast cancer will be diagnosed in the United States in 2012 and approximately 40,000 women will die from their disease. Triple-negative breast cancer (TNBC), which lacks expression of the estrogen receptor (ER) and progesterone receptor (PR), and does not overexpress the human epidermal growth factor receptor-2 (HER-2) represents approximately 15 % of all breast cancers and is often associated with a more aggressive underlying biology. Patients with TNBC more often experience rapid disease progression with poorer disease-related and overall survival in the first few years after diagnosis in comparison to their hormone-receptor positive counterparts. Furthermore, this subset of breast cancers has limited therapeutic options aside from traditional cytotoxic chemotherapy agents as they do not benefit from generally well-tolerated endocrine-targeted therapies and anti-HER2 drugs. In this chapter we will review the epidemiology, risk factors, prognosis and the varied molecular and clinicopathologic features that characterize TNBC. In addition this review summarizes the available data for the use of cytotoxic chemotherapy in the treatment of TNBC and explores the ongoing development of targeted therapeutic agents for the treatment of this subgroup of breast cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics. CA: Cancer J Clin 62:10–29

    Google Scholar 

  2. Parl FF, Schmidt BP, Dupont WD, Wagner RK (1984) Prognostic significance of estrogen receptor status in breast cancer in relation to tumor stage, axillary node metastasis, and histopathologic grading. Cancer 54:2237–2242

    Article  PubMed  CAS  Google Scholar 

  3. Pichon MF, Broet P, Magdelenat H et al (1996) Prognostic value of steroid receptors after long-term follow-up of 2257 operable breast cancers. Br J Cancer 73:1545–1551

    Article  PubMed  CAS  Google Scholar 

  4. Conlin AK, Seidman AD (2008) Beyond cytotoxic chemotherapy for the first-line treatment of HER2-negative, hormone-insensitive metastatic breast cancer: current status and future opportunities. Clin Breast Cancer 8:215–223

    Article  PubMed  CAS  Google Scholar 

  5. Slamon DJ, Leyland-Jones B, Shak S et al (2009) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792

    Article  Google Scholar 

  6. Morris PG, McArthur HL, Hudis CA (2009) Therapeutic options for metastatic breast cancer. Expert Opin Pharmacother 10:967–981

    Article  PubMed  CAS  Google Scholar 

  7. Cuzick J, Sestak I, Baum M et al (2010) Effect of anastrozole and tamoxifen as adjuvant treatment for early-stage breast cancer: 10-year analysis of the ATAC trial. Lancet Oncol 11:1135–1141

    Article  PubMed  CAS  Google Scholar 

  8. Fisher B, Costantino JP, Wickerham DL et al (1998) Tamoxifen for prevention of breast cancer: report of the national surgical adjuvant breast and bowel project P-1 study. J Natl Cancer Inst 90:1371–1388

    Article  PubMed  CAS  Google Scholar 

  9. Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  PubMed  CAS  Google Scholar 

  10. Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874

    Article  PubMed  CAS  Google Scholar 

  11. Sorlie T, Tibshirani R, Parker J et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100:8418–8423

    Article  PubMed  CAS  Google Scholar 

  12. Calza S, Hall P, Auer G et al (2006) Intrinsic molecular signature of breast cancer in a population-based cohort of 412 patients. Breast Cancer Res 8:R34

    Article  PubMed  Google Scholar 

  13. Sotiriou C, Neo SY, McShane LM et al (2003) Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci USA 100:10393–10398

    Article  PubMed  CAS  Google Scholar 

  14. Yu K, Lee CH, Tan PH, Tan P (2004) Conservation of breast cancer molecular subtypes and transcriptional patterns of tumor progression across distinct ethnic populations. Clin Cancer Res 10:5508–5517

    Article  PubMed  CAS  Google Scholar 

  15. Bertucci F, Finetti P, Cervera N et al (2008) How basal are triple-negative breast cancers? Int J Cancer 123:236–240

    Article  PubMed  CAS  Google Scholar 

  16. Cleator S, Heller W, Coombes RC (2007) Triple-negative breast cancer: therapeutic options. Lancet Oncol 8:235–244

    Article  PubMed  Google Scholar 

  17. Kreike B, van Kouwenhove M, Horlings H et al (2007) Gene expression profiling and histopathological characterization of triple-negative/basal-like breast carcinomas. Breast Cancer Res 9:R65

    Article  PubMed  Google Scholar 

  18. Nielsen TO, Hsu FD, Jensen K et al (2004) Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10:5367–5374

    Article  PubMed  CAS  Google Scholar 

  19. Doane AS, Danso M, Lal P et al (2006) An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen. Oncogene 25:3994–4008

    Article  PubMed  CAS  Google Scholar 

  20. Farmer P, Bonnefoi H, Becette V et al (2005) Identification of molecular apocrine breast tumours by microarray analysis. Oncogene 24:4660–4671

    Article  PubMed  CAS  Google Scholar 

  21. Prat A, Parker JS, Karginova O et al (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12:R68

    Article  PubMed  Google Scholar 

  22. Rakha EA, Reis-Filho JS, Ellis IO (2008) Basal-like breast cancer: a critical review. J Clin Oncol 26:2568–2581

    Article  PubMed  Google Scholar 

  23. Rakha EA, Elsheikh SE, Aleskandarany MA et al (2009) Triple-negative breast cancer: distinguishing between basal and nonbasal subtypes. Clin Cancer Res 15:2302–2310

    Article  PubMed  CAS  Google Scholar 

  24. Cheang MC, Voduc D, Bajdik C et al (2008) Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res 14:1368–1376

    Article  PubMed  CAS  Google Scholar 

  25. Nofech-Mozes S, Trudeau M, Kahn HK et al (2009) Patterns of recurrence in the basal and non-basal subtypes of triple-negative breast cancers. Breast Cancer Res Treat 118:131–137

    Article  PubMed  Google Scholar 

  26. Arnes JB, Brunet JS, Stefansson I et al (2005) Placental cadherin and the basal epithelial phenotype of BRCA1-related breast cancer. Clin Cancer Res 11:4003–4011

    Article  PubMed  CAS  Google Scholar 

  27. Foulkes WD, Stefansson IM, Chappuis PO et al (2003) Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J Natl Cancer Inst 95:1482–1485

    Article  PubMed  CAS  Google Scholar 

  28. James CR, Quinn JE, Mullan PB et al (2007) BRCA1, a potential predictive biomarker in the treatment of breast cancer. Oncology 12:142–150

    Article  CAS  Google Scholar 

  29. Laakso M, Loman N, Borg A, Isola J (2005) Cytokeratin 5/14-positive breast cancer: true basal phenotype confined to BRCA1 tumors. Mod Pathol 18:1321–1328

    Article  PubMed  CAS  Google Scholar 

  30. Lakhani SR, Reis-Filho JS, Fulford L et al (2005) Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin Cancer Res 11:5175–5180

    Article  PubMed  CAS  Google Scholar 

  31. Carey LA, Perou CM, Livasy CA et al (2006) Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295:2492–2502

    Article  PubMed  CAS  Google Scholar 

  32. Dent R, Trudeau M, Pritchard KI et al (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13:4429–4434

    Article  PubMed  Google Scholar 

  33. Fulford LG, Easton DF, Reis-Filho JS et al (2006) Specific morphological features predictive for the basal phenotype in grade 3 invasive ductal carcinoma of breast. Histopathology 49:22–34

    Article  PubMed  CAS  Google Scholar 

  34. Lin NU, Vanderplas A, Hughes ME et al (2009) Clinicopathological features and sites of recurrence according to breast cancer subtype in the National Comprehensive Cancer Network (NCCN). ASCO Meet Abs 27:543

    Google Scholar 

  35. Bertucci F, Finetti P, Cervera N et al (2006) Gene expression profiling shows medullary breast cancer is a subgroup of basal breast cancers. Cancer Res 66:4636–4644

    Article  PubMed  CAS  Google Scholar 

  36. Huober JB, Gelber S, Thurlimann B et al. (2010) Prognosis of medullary breast cancer: analyses of 13 International breast cancer study group (IBCSG) trials. ASCO meet abs 28:630

    Google Scholar 

  37. Jacquemier J, Padovani L, Rabayrol L et al (2005) Typical medullary breast carcinomas have a basal/myoepithelial phenotype. J Pathol 207:260–268

    Article  PubMed  CAS  Google Scholar 

  38. McClenathan JH, de la Roza G (2002) Adenoid cystic breast cancer. Am J Surg 183:646–649

    Article  PubMed  Google Scholar 

  39. Rodriguez-Pinilla SM, Rodriguez-Gil Y, Moreno-Bueno G et al (2007) Sporadic invasive breast carcinomas with medullary features display a basal-like phenotype: an immunohistochemical and gene amplification study. Am J Surg Pathol 31:501–508

    Article  PubMed  Google Scholar 

  40. Weigelt B, Horlings HM, Kreike B et al (2008) Refinement of breast cancer classification by molecular characterization of histological special types. J Pathol 216:141–150

    Article  PubMed  CAS  Google Scholar 

  41. Anders CK, Fan C, Parker JS et al (2011) Breast carcinomas arising at a young age: unique biology or a surrogate for aggressive intrinsic subtypes? J Clin Oncol 29:e18–e20

    Article  PubMed  Google Scholar 

  42. Bauer KR, Brown M, Cress RD et al (2007) Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer registry. Cancer 109:1721–1728

    Article  PubMed  Google Scholar 

  43. Harris LN, Broadwater G, Lin NU et al (2006) Molecular subtypes of breast cancer in relation to paclitaxel response and outcomes in women with metastatic disease: results from CALGB 9342. Breast Cancer Res 8:R66

    Article  PubMed  Google Scholar 

  44. Liedtke C, Mazouni C, Hess KR et al (2008) Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol 26:1275–1281

    Article  PubMed  Google Scholar 

  45. Millikan RC, Newman B, Tse CK et al (2008) Epidemiology of basal-like breast cancer. Breast Cancer Res Treat 109:123–139

    Article  PubMed  Google Scholar 

  46. Morris GJ, Naidu S, Topham AK et al (2007) Differences in breast carcinoma characteristics in newly diagnosed African-American and Caucasian patients: a single-institution compilation compared with the National Cancer Institute’s Surveillance, epidemiology, and end results database. Cancer 110:876–884

    Article  PubMed  Google Scholar 

  47. Brown M, Tsodikov A, Bauer KR et al (2008) The role of human epidermal growth factor receptor 2 in the survival of women with estrogen and progesterone receptor-negative, invasive breast cancer: the California cancer registry, 1999–2004. Cancer 112:737–747

    Article  PubMed  Google Scholar 

  48. Dolle JM, Daling JR, White E et al (2009) Risk factors for triple-negative breast cancer in women under the age of 45 years. Cancer Epidemiol Biomark Prev 18:1157–1166

    Article  Google Scholar 

  49. Haffty BG, Yang Q, Reiss M et al (2006) Locoregional relapse and distant metastasis in conservatively managed triple negative early-stage breast cancer. J Clin Oncol 24:5652–5657

    Article  PubMed  Google Scholar 

  50. Kwan ML, Kushi LH, Weltzien E et al (2009) Epidemiology of breast cancer subtypes in two prospective cohort studies of breast cancer survivors. Breast Cancer Res 11:R31

    Article  PubMed  Google Scholar 

  51. Trivers KF, Lund MJ, Porter PL et al (2009) The epidemiology of triple-negative breast cancer, including race. Cancer Causes Control 20:1071–1082

    Article  PubMed  Google Scholar 

  52. Yang XR, Pfeiffer RM, Garcia-Closas M et al (2007) Hormonal markers in breast cancer: coexpression, relationship with pathologic characteristics, and risk factor associations in a population-based study. Cancer Res 67:10608–10617

    Article  PubMed  CAS  Google Scholar 

  53. Yang XR, Sherman ME, Rimm DL et al (2007) Differences in risk factors for breast cancer molecular subtypes in a population-based study. Cancer Epidemiol Biomark Prev 16:439–443

    Article  CAS  Google Scholar 

  54. Smid M, Wang Y, Zhang Y et al (2008) Subtypes of breast cancer show preferential site of relapse. Cancer Res 68:3108–3114

    Article  PubMed  CAS  Google Scholar 

  55. Dawood S, Broglio K, Esteva FJ et al (2009) Survival among women with triple receptor-negative breast cancer and brain metastases. Ann Oncol 20:621–627

    Article  PubMed  CAS  Google Scholar 

  56. Heitz F, Harter P, Lueck HJ et al (2009) Triple-negative and HER2-overexpressing breast cancers exhibit an elevated risk and an earlier occurrence of cerebral metastases. Eur J Cancer 45:2792–2798

    Article  PubMed  CAS  Google Scholar 

  57. Lin NU, Claus E, Sohl J et al (2008) Sites of distant recurrence and clinical outcomes in patients with metastatic triple-negative breast cancer: high incidence of central nervous system metastases. Cancer 113:2638–2645

    Article  PubMed  Google Scholar 

  58. Morris PG, Murphy CG, Patil S et al (2009) Brain metastases in a large cohort of patients (pts) with triple-negative breast cancer (TNBC): Impact of modern therapies on survival. ASCO breast cancer symposium abstract 185

    Google Scholar 

  59. Niwinska A, Murawska M, Pogoda K (2010) Breast cancer brain metastases: differences in survival depending on biological subtype, RPA RTOG prognostic class and systemic treatment after whole-brain radiotherapy (WBRT). Ann Oncol 21:942–948

    Article  PubMed  CAS  Google Scholar 

  60. Kassam F, Enright K, Dent R et al (2009) Survival outcomes for patients with metastatic triple-negative breast cancer: implications for clinical practice and trial design. Clin Breast Cancer 9:29–33

    Article  PubMed  Google Scholar 

  61. Clarke M, Coates AS, Darby SC et al (2008) Adjuvant chemotherapy in oestrogen-receptor-poor breast cancer: patient-level meta-analysis of randomised trials. Lancet 371:29–40

    Article  PubMed  CAS  Google Scholar 

  62. Citron ML, Berry DA, Cirrincione C et al (2003) Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of intergroup trial C9741/cancer and leukemia group B trial 9741. J Clin Oncol 21:1431–1439

    Article  PubMed  CAS  Google Scholar 

  63. Hayes DF, Thor AD, Dressler LG et al (2007) HER2 and response to paclitaxel in node-positive breast cancer. N Engl J Med 357:1496–1506

    Article  PubMed  CAS  Google Scholar 

  64. Berry DA, Cirrincione C, Henderson IC et al (2006) Estrogen-receptor status and outcomes of modern chemotherapy for patients with node-positive breast cancer. JAMA 295:1658–1667

    Article  PubMed  CAS  Google Scholar 

  65. Bhattacharyya A, Ear US, Koller BH et al (2000) The breast cancer susceptibility gene BRCA1 is required for subnuclear assembly of Rad51 and survival following treatment with the DNA cross-linking agent cisplatin. J Biol Chem 275:23899–23903

    Article  PubMed  CAS  Google Scholar 

  66. Evers B, Drost R, Schut E et al (2008) Selective inhibition of BRCA2-deficient mammary tumor cell growth by AZD2281 and cisplatin. Clin Cancer Res 14:3916–3925

    Article  PubMed  CAS  Google Scholar 

  67. Husain A, He G, Venkatraman ES, Spriggs DR (1998) BRCA1 up-regulation is associated with repair-mediated resistance to cis-diamminedichloroplatinum(II). Cancer Res 58:1120–1123

    PubMed  CAS  Google Scholar 

  68. Rottenberg S, Jaspers JE, Kersbergen A et al (2008) High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc Natl Acad Sci USA 105:17079–17084

    Article  PubMed  CAS  Google Scholar 

  69. Tassone P, Tagliaferri P, Perricelli A et al (2003) BRCA1 expression modulates chemosensitivity of BRCA1-defective HCC1937 human breast cancer cells. Br J Cancer 88:1285–1291

    Article  PubMed  CAS  Google Scholar 

  70. Byrski T, Gronwald J, Huzarski T et al (2010) Pathologic complete response rates in young women with BRCA1-positive breast cancers after neoadjuvant chemotherapy. J Clin Oncol 28:375–379

    Article  PubMed  CAS  Google Scholar 

  71. Isakoff SJ, Goss PE, Mayer EL et al (2011) TBCRC009: A multicenter phase II study of cisplatin or carboplatin for metastatic triple-negative breast cancer and evaluation of p63/p73 as a biomarker of response. ASCO Meet Abs 29:1025

    Google Scholar 

  72. Linderholm BK KM, Grabau D, Bendahl P, Fernö M, Per M (2009) Significantly higher expression of vascular endothelial growth factor (VEGF) and shorter survival after recurrences in premenopausal node negative patients with triple negative breast cancer. Cancer Res 69(2 Suppl):1077 (abstract)

    Google Scholar 

  73. Rydén L FM, Stal O, Linderholm B, Ostman A, Jirstrom K (2009) Vascular endothelial growth factor receptor 2 is a significant negative prognostic biomarker in triple-negative breast cancer: results from a controlled randomised trial of premenopausal breast cancer. Cancer Res 69(2 Suppl):1087 (abstract)

    Google Scholar 

  74. FDA (2009) Approval for bevacizumab http://www.cancer.gov/cancertopics/druginfo/fda-bevacizumab. Assessed 2009

  75. Miles DW, Chan A, Dirix LY et al (2010) Phase III study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol 28:3239–3247

    Article  PubMed  CAS  Google Scholar 

  76. Miller K, Wang M, Gralow J et al (2007) Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 357:2666–2676

    Article  PubMed  CAS  Google Scholar 

  77. Robert NJ, Dieras V, Glaspy J et al (2009) RIBBON-1: Randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab (B) for first-line treatment of HER2-negative locally recurrent or metastatic breast cancer (MBC). J Clin Oncol (Meeting Abstracts) 27:1005

    Article  Google Scholar 

  78. O’Shaughnessy J, Dieras V, Glaspy J et al (2010) Comparison of subgroup analyses of PFS from three Phase III studies of bevacizumab in combination with chemotherapy in patients with HER2-negative metastatic breast cancer (MBC). Cancer Res 69:207

    Article  Google Scholar 

  79. Brufsky A, Valero V, Tiangco B et al (2011) Bevacizumab (BEV) plus second-line taxane (TAX) or other chemotherapy (CT) for triple-negative breast cancer (TNBC): Subgroup analysis of RIBBON-2. ASCO Meet Abs 29:290

    Google Scholar 

  80. Brufsky AM, Hurvitz S, Perez E et al (2011) RIBBON-2: A randomized, double-blind, placebo-controlled, Phase III trial evaluating the efficacy and safety of bevacizumab in combination with chemotherapy for second-line treatment of human epidermal growth factor receptor 2–negative metastatic breast cancer. J Clin Oncol 29:4286–4293

    Article  PubMed  CAS  Google Scholar 

  81. Smith I, Pierga JY, Biganzoli L et al (2011) Final overall survival results and effect of prolonged (>/= 1 year) first-line bevacizumab-containing therapy for metastatic breast cancer in the ATHENA trial. Breast Cancer Res Treat 130:133–143

    Article  PubMed  CAS  Google Scholar 

  82. Smith IE, Pierga JY, Biganzoli L et al (2011) First-line bevacizumab plus taxane-based chemotherapy for locally recurrent or metastatic breast cancer: safety and efficacy in an open-label study in 2,251 patients. Ann Oncol 22:595–602

    Article  PubMed  CAS  Google Scholar 

  83. Thomssen C, Pierga JY, Pritchard KI et al (2012) First-line bevacizumab-containing therapy for triple-negative breast cancer: analysis of 585 patients treated in the ATHENA study. Oncology 82:218–227

    Article  PubMed  CAS  Google Scholar 

  84. Bianchi G, Loibl S, Zamagni C et al (2009) Phase II multicenter, uncontrolled trial of sorafenib in patients with metastatic breast cancer. Anticancer Drugs 20:616–624

    Article  PubMed  CAS  Google Scholar 

  85. Burstein HJ, Elias AD, Rugo HS et al (2008) Phase II study of sunitinib malate, an oral multitargeted tyrosine kinase inhibitor, in patients with metastatic breast cancer previously treated with an anthracycline and a taxane. J Clin Oncol 26:1810–1816

    Article  PubMed  CAS  Google Scholar 

  86. Moreno-Aspitia A, Morton RF, Hillman DW et al (2009) Phase II trial of sorafenib in patients with metastatic breast cancer previously exposed to anthracyclines or taxanes: north central cancer treatment group and mayo clinic trial N0336. J Clin Oncol 27:11–15

    Article  PubMed  CAS  Google Scholar 

  87. Bergh J, Greil R, Voytko N et al. (2010) Sunitinib (SU) in combination with docetaxel (D) versus D alone for the first-line treatment of advanced breast cancer (ABC). J Clin Oncol (meeting abstracts) 28:LBA1010

    Google Scholar 

  88. Crown J, Dieras V, Staroslawska E et al. (2010) Phase III trial of sunitinib (SU) in combination with capecitabine (C) versus C in previously treated advanced breast cancer (ABC). J Clin Oncol (meeting abstracts) 28: LBA1011

    Google Scholar 

  89. Tutt A, Robson M, Garber JE et al (2010) Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 376:235–244

    Article  PubMed  CAS  Google Scholar 

  90. Isakoff SJ, Overmoyer B, Tung NM et al (2010) A phase II trial of the PARP inhibitor veliparib (ABT888) and temozolomide for metastatic breast cancer. ASCO Meet Abs 28:1019

    Google Scholar 

  91. O’Shaughnessy J, Osborne C, Pippen J et al (2009) Efficacy of BSI-201, a poly (ADP-ribose) polymerase-1 (PARP1) inhibitor, in combination with gemcitabine/carboplatin (G/C) in patients with metastatic triple-negative breast cancer (TNBC): Results of a randomized phase II trial. J Clin Oncol (Meeting Abstracts) 27:3

    Article  Google Scholar 

  92. O’Shaughnessy J, Schwartzberg LS, Danso MA et al (2011) A randomized phase III study of iniparib (BSI-201) in combination with gemcitabine/carboplatin (G/C) in metastatic triple-negative breast cancer (TNBC). ASCO Meet Abs 29:1007

    Google Scholar 

  93. Ji J, Lee MP, Kadota M et al (2011) Abstract 4527: Pharmacodynamic and pathway analysis of three presumed inhibitors of poly (ADP-ribose) polymerase: ABT-888, AZD2281, and BSI201. Cancer Res 71:4527

    Article  Google Scholar 

  94. Ossovskaya V, Lim C-u, Schools G et al (2011) Abstract P5-06-09: cell cycle effects of iniparib, a PARP inhibitor, in combination with gemcitabine and carboplatin in the MDA-MB-468(−) triple-negative breast cancer (TNBC) cell line. Cancer Res 70:P5-06-09

    Google Scholar 

  95. Siziopikou KP, Ariga R, Proussaloglou KE et al (2006) The challenging estrogen receptor-negative/progesterone receptor-negative/HER-2-negative patient: a promising candidate for epidermal growth factor receptor-targeted therapy? Breast J 12:360–362

    Article  PubMed  Google Scholar 

  96. Dogu GG, Ozkan M, Ozturk F et al (2010) Triple-negative breast cancer: immunohistochemical correlation with basaloid markers and prognostic value of survivin. Med Oncol 27:34–39

    Article  PubMed  CAS  Google Scholar 

  97. Irvin WJ Jr, Carey LA (2008) What is triple-negative breast cancer? Eur J Cancer 44:2799–2805

    Article  PubMed  CAS  Google Scholar 

  98. Rakha EA, El-Sayed ME, Green AR et al (2007) Prognostic markers in triple-negative breast cancer. Cancer 109:25–32

    Article  PubMed  CAS  Google Scholar 

  99. Corkery B, Crown J, Clynes M, O’Donovan N (2009) Epidermal growth factor receptor as a potential therapeutic target in triple-negative breast cancer. Ann Oncol 20:862–867

    Article  PubMed  CAS  Google Scholar 

  100. Oliveras-Ferraros C, Vazquez-Martin A, Lopez-Bonet E et al (2008) Growth and molecular interactions of the anti-EGFR antibody cetuximab and the DNA cross-linking agent cisplatin in gefitinib-resistant MDA-MB-468 cells: new prospects in the treatment of triple-negative/basal-like breast cancer. Int J Oncol 33:1165–1176

    PubMed  CAS  Google Scholar 

  101. Carey L, Rugo H, Marcom P et al (2008) TBCRC 001: EGFR inhibition with cetuximab added to carboplatin in metastatic triple-negative (basal-like) breast cancer. J Clin Oncol, ASCO Annual Meeting Proceedings 26:No 15S Abstract 1009

    Google Scholar 

  102. O’Shaughnessy J, Weckstein DJ, Vukelja SJ et al. (2007) Preliminary results of a randomized phase II study of weekly irinotecan/carboplatin with or without cetuximab in patients with metastatic breast cancer. Breast Cancer Res Treat 106 (Suppl 1):S32. Abstract 308

    Google Scholar 

  103. Baselga J, Gomez P, Awada A et al (2010) The addition of cetuximab to cisplatin increases overall response rate (ORR) and progression-free survival (PFS) in metastatic triple-negative breast cancer (TNBC): Results of a randomized phase II study (BALI-1). Ann Oncol 21: viii96-viii121

    Google Scholar 

  104. Twelves C, Trigo JM, Jones R et al (2008) Erlotinib in combination with capecitabine and docetaxel in patients with metastatic breast cancer: a dose-escalation study. Eur J Cancer 44:419–426

    Article  PubMed  CAS  Google Scholar 

  105. Sharma P, Khan Q, Kimler B et al (2011) Abstract P1-11-07: results of a Phase II study of neoadjuvant platinum/taxane based chemotherapy and erlotinib for triple negative breast cancer. Cancer Res 70:P1-11-07

    Google Scholar 

  106. Finn RS, Dering J, Ginther C et al (2007) Dasatinib, an orally active small molecule inhibitor of both the src and abl kinases, selectively inhibits growth of basal-type/”triple-negative” breast cancer cell lines growing in vitro. Breast Cancer Res Treat 105:319–326

    Article  PubMed  CAS  Google Scholar 

  107. Tryfonopoulos D, O’Donovan B, Corkery M et al (2009) Activity of dasatinib with chemotehrapy in triple-negative breast cancer cells. J Clin Oncol Abstract 14605

    Google Scholar 

  108. Caldas-Lopes E, Cerchietti L, Ahn JH et al (2009) Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models. Proc Nat Acad Sci 106:8368–8373

    Article  PubMed  CAS  Google Scholar 

  109. Lehmann BD, Bauer JA, Chen X et al (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121:2750–2767

    Article  PubMed  CAS  Google Scholar 

  110. Buchsbaum DJ, Zhou T, Grizzle WE et al (2003) Antitumor efficacy of TRA-8 anti-DR5 monoclonal antibody alone or in combination with chemotherapy and/or radiation therapy in a human breast cancer model. Clin Cancer Res 9:3731–3741

    PubMed  CAS  Google Scholar 

  111. Ichikawa K, Liu W, Zhao L et al (2001) Tumoricidal activity of a novel anti-human DR5 monoclonal antibody without hepatocyte cytotoxicity. Nat Med 7:954–960

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiffany A. Traina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gucalp, A., Traina, T.A. (2013). Understanding Triple-Negative Breast Cancer. In: Ahmad, A. (eds) Breast Cancer Metastasis and Drug Resistance. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5647-6_6

Download citation

Publish with us

Policies and ethics