Skip to main content

Platinum and Ruthenium Complexes for the Therapy of Breast Cancer Diseases

  • Chapter
  • First Online:
Breast Cancer Metastasis and Drug Resistance

Abstract

Breast cancer is still the leading cause of cancer deaths among women worldwide, and new therapies for the treatment of this dangerous disease are desperately sought for. Complexes of metals such as platinum and ruthenium have been frequently found efficacious against breast tumors, in particular highly aggressive multidrug resistant and triple-negative subtypes. Numerous platinum and ruthenium complexes with enhanced selectivity for breast cancer and with reduced side effects have been developed recently. This chapter is intended to give an insight into the latest developments in the field of platinum and ruthenium based drugs against breast cancer. Chemical formulae and a brief description of the manifold biological activities of some important such compounds are provided which might be of interest to inorganic chemists, medicinal chemists, biologists, and clinicians alike.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wong E, Giandomenico CM (1999) Current status of platinum-based antitumor drugs. Chem Rev 99:2451–2466

    Article  PubMed  CAS  Google Scholar 

  2. Jamieson ER, Lippard SJ (1999) Structure, recognition, and processing of cisplatin-DNA adducts. Chem Rev 99:2467–2498

    Article  PubMed  CAS  Google Scholar 

  3. Slamon DJ, Eiermann W, Robert N, Pienkowski T, Martin M, Pawlicki M, Chan A, Smylie M, Liu M, Falkson C, Pinter T, Fornander T, Shiftan T, Valero V, von Minckwitz G, Mackey J, Tabah-Fisch I, Buyse M, Lindsay MA, Riva A, Bee V, Pegram M, Press M, Crown J (2005) Phase III randomized trial comparing doxorubicin and cyclophosphamide followed by docetaxel (ACT) with doxorubicin and cyclophosphamide followed by docetaxel and trastuzumab (ACTH) with docetaxel, carboplatin and trastuzumab (TCH) in HER2 positive early breast cancer patients: BCIRG 006 study. Breast Cancer Res and Treat 94(1):S5

    Google Scholar 

  4. Curigliano G, Goldhirsch A (2011) The triple-negative subtype: new ideas for the poorest prognosis breast cancer. J Natl Cancer Inst 43:108–110

    CAS  Google Scholar 

  5. Foulkes WD, Stefansson IM, Chappuis PO, Bégin LR, Goffin JR, Wong N, Trudel M, Akslen M, Akslen LA (2003) Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J Natl Cancer Inst 95:1482–1485

    Article  PubMed  CAS  Google Scholar 

  6. Scully R, Ganesan S, Vlasakova K, Chen J, Socolovsky M, Livingston DM (1999) Genetic analysis of BCRA1 function in a defined tumor cell line. Mol Cell 4:1093–1099

    Article  PubMed  CAS  Google Scholar 

  7. Silver DP, Richardson AL, Eklund AC (2010) Efficacy of neoadjuvant cisplatin in triple-negative breast cancer. J Clin Oncol 28:1145–1153

    Article  PubMed  CAS  Google Scholar 

  8. Ang WH, Dyson PJ (2006) Classical and non-classical ruthenium-based anticancer drugs: towards targeted chemotherapy. Eur J Inorg Chem 4003–4018

    Google Scholar 

  9. Voigt W, Dietrich A, Schmoll H-J (2006) Cisplatin und seine Analoga. Pharm Unserer Zeit 35:134–143

    Article  PubMed  CAS  Google Scholar 

  10. O’Dwyer PJ, Stevenson JP, Johnson SW (1999) Clinical status of cisplatin, carboplatin, and other platinum-based antitumor drugs. In: Lippert B (ed) Cisplatin—chemistry and biochemistry of a leading anticancer drug. Verlag Helvetica Chimica Acta, Zürich

    Google Scholar 

  11. He Y, Groleau S, C-Gaudreault R, Caron M, Thérien H-M, Bérubé G (1995) Synthesis and in vitro biological evaluation of new triphenylethylene platinum (II) complexes. Bioorg Med Chem 5:2217–2222

    Article  CAS  Google Scholar 

  12. Biersack B, Schobert R, Bernhardt G, Bollwein S (2007) (6-Aminomethylnicotinate) dichloroplatinum(II) complex conjugates with non-steroidal estrogens and related aromatic compounds. J Biol Inorg Chem 12(1):S25

    Google Scholar 

  13. Perron V, Rabouin D, Asselin É, Parent S, C-Gaudreault R, Bérubé G (2005) Synthesis of 17β-estradiol-linked platinum(II) complexes and their cytocidal activity on estrogen-dependent and independent breast tumor cells. Bioorg Chem 33:1–15

    Article  PubMed  CAS  Google Scholar 

  14. Kim E, Rye PT, Essigmann JM, Croy RG (2009) A bifunctional platinum(II) antitumor agent that forms DNA adducts with affinity for the estrogen receptor. J Inorg Biochem 103:256–261

    Article  PubMed  CAS  Google Scholar 

  15. He Q, Liang CH, Lippard SJ (2000) Steroid hormones induce HMG1 overexpression and sensitize breast cancer cells to cisplatin and carboplatin. Proc Natl Acad Sci USA 97:5768–5772

    Article  PubMed  CAS  Google Scholar 

  16. Barnes KR, Kutikov A, Lippard SJ (2004) Synthesis, characterization, and cytotoxicity of a series of estrogen-tethered platinum(IV) complexes. Chem Biol 11:557–564

    Article  PubMed  CAS  Google Scholar 

  17. Schobert R, Bernhardt G, Biersack B, Bollwein S, Fallahi M, Grotemeier A, Hammond GL (2007) Steroid conjugates of dichloro(6-aminomethylnicotinate)platinum(II): effects on DNA, sex hormone binding globulin, the estrogen receptor, and various breast cancer cell lines. Chem Med Chem 2:333–342

    PubMed  CAS  Google Scholar 

  18. Nakhla AM, Rosner W (1996) Stimulation of prostate cancer growth by androgens and estrogens through the intermediacy of sex hormone-binding globulin. Endocrinology 137:4126–4129

    Article  PubMed  CAS  Google Scholar 

  19. Gust R, Krauser R, Schmid B, Schönenberger H (1998) Synthesis and antitumor activity of [1,2-Bis(4-fluorophenyl)-ethylenediamine][dicarboxylato] platinum(II) complexes. Arch Pharm Pharm Med Chem 331:27–35

    Article  CAS  Google Scholar 

  20. Schertl S, Hartmann RW, Batzl-Hartmann C, Bernhardt G, Spruß T, Beckenlehner K, Koch M, Krauser R, Schlemmer R, Gust R, Schönenberger H (2004) [1,2-Bis(2,6-difluoro-3-hydroxyphenyl)ethylenediamine]platinum(II) complexes, compounds for the endocrine therapy of breast cancer—mode of action I: antitumor activity due to the reduction of the endogenous estrogen level. Arch Pharm Pharm Med Chem 337:335–348

    Article  CAS  Google Scholar 

  21. Brunner H, Obermeier H (1994) Platinum(II) complexes with porphyrin ligands—additive cytotoxic and photodynamic effect. Angew Chem Int Ed 33:2214–2215

    Article  Google Scholar 

  22. Brunner H, Schellerer K-M, Treitinger B (1997) Synthesis and in vitro testing of hematoporphyrin type ligands in platinum(II) complexes as potent cytostatic and phototoxic antitumor agents. Inorg Chim Acta 264:67–79

    Article  CAS  Google Scholar 

  23. Murugkar A, Unnikrishnan B, Padhye S, Bhonde R, Teat S, Triantafillou E, Sinn E (1999) Hormone anchored metal complexes. 1. Synthesis, structure, spectroscopy and in vitro antitumor activity of testosterone acetate thiosemicarbazone and its metal complexes. Met-Based Drugs 6:177–182

    Article  PubMed  CAS  Google Scholar 

  24. Zoldakova M, Biersack B, Kostrhunova H, Ahmad A, Padhye S, Sarkar FH, Schobert R, Brabec V (2011) (Carboxydiamine)Pt(II) complexes of a combretastatin A-4 analogous chalcone: the influence of the diamine ligand on DNA binding and anticancer effects. Med Chem Commun 2:493–499

    Article  CAS  Google Scholar 

  25. Trávnícek Z, Malon M, Zatlokal M, Dolezal K, Strnad M, Marek J (2003) Mixed ligand complexes of platinum(II) and palladium(II) with cytokinin-derived compounds bohemine and olomoucine: X-ray structure of [Pt[BohH+-N7)Cl3]x9/5H2O {Boh = 6-(benzylamino)-2-[(3-(hydroxypropyl)-amino]-9-isopurine, Bohemine}. J Inorg Biochem 94:307–316

    Article  PubMed  Google Scholar 

  26. Margiotta N, Natile G, Capitelli F, Fanizzi FP, Boccarelli A, de Rinaldis P, Giordano D, Coluccia M (2006) Sterically hindered complexes of platinum(II) with planar heterocyclic nitrogen donors. A novel complex with 1-methyl-cytosine has a spectrum of activity different from cisplatin and is able of overcoming aquired cisplatin resistance. J Inorg Biochem 100:1849–1857

    Article  PubMed  CAS  Google Scholar 

  27. Krause-Heuer AM, Grünert R, Kühne S, Buczkowska M, Wheate NJ, Le Pevelen DD, Boag LR, Fisher DM, Kasparkova J, Malina J, Bednarski PJ, Brabec V, Aldrich-Wright JR (2009) Studies of the mechanism of action of platinum(II) complexes with potent cytotoxicity in human cancer cells. J Med Chem 52:5474–5484

    Article  PubMed  CAS  Google Scholar 

  28. Navarro-Ranninger C, López-Solera I, Pérez JM, Rodríguez J, García-Ruano JL, Raithby PR, Masaguer JR, Alonso C (1993) Analysis of two cycloplatinated compounds derived from N-(4-methoxyphenyl)-α-benzoylbenzylideneamine. Comparison of the activity of these compounds with other isostructural cyclopalladated compounds. J Med Chem 36:3795–3801

    Article  PubMed  CAS  Google Scholar 

  29. Ruiz J, Villa MD, Cutillas N, López G, de Haro C, Bautista D, Moreno V, Valencia L (2008) Palladium(II) and platinum(II) organometallic complexes with 4,7-dihydro-5-methyl-7-oxo[1,2,4]triazolo[1,5-a]pyrimidine. Antitumor activity of the platinum compounds. Inorg Chem 47:4490–4505

    Article  PubMed  CAS  Google Scholar 

  30. Frezza M, Ping Dou Q, Xiao Y, Samouei H, Rashidi M, Samari F, Hemmateenejad B (2011) In vitro and in vivo antitumor activities and DNA binding mode of coordinated cyclometalated organoplatinum(II) complexes containing biphosphine ligands. J Med Chem 54:6166–6176

    Article  PubMed  CAS  Google Scholar 

  31. Lakomska I, Kooijman H, Spek AL, Shen W-Z, Reedijk J (2009) Mono- and dinuclear platinum(II) compounds with 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine. Structure, cytotoxic activity and reaction with 5′-GMP. Dalton Trans 10736–10741

    Google Scholar 

  32. Messori L, Casini A, Gabbiani C, Michelucci E, Cubo L, Ríos-Luci C, Padrón JM, Navarro-Ranninger C, Quiroga AG (2010) Cytotoxic profile and peculiar reactivity with biomolecules of a novel ′′rule-breaker′′ iodidoplatinum(II) complex. ACS Med Chem Lett 1:381–385

    Article  CAS  Google Scholar 

  33. Marzano C, Sbovata SM, Gandin V, Colavito D, del Giudice E, Michelin RA, Venzo A, Seraglia R, Benetollo F, Schiavon M, Bertani R (2010) A new class of antitumor trans-amine-amidine-Pt(II) cationic complexes: influence of chemical structure and solvent on in vitro and in vivo tumor cell proliferation. J Med Chem 53:6210–6227

    Article  PubMed  CAS  Google Scholar 

  34. Cubo L, Quiroga AG, Zhang J, Thomas DS, Carnero A, Navarro-Ranninger C, Berners-Price SJ (2009) Influence of amine ligands on the aquation and xytotoxicity of trans-diamine platinum(II) anticancer complexes. Dalton Trans 3457–3466

    Google Scholar 

  35. Ang WH, Pilet S, Scopelliti R, Bussy F, Juillerat-Jeanneret L, Dyson PJ (2005) Synthesis and characterization of platinum(IV) anticancer drugs with functionalized aromatic carboxylate ligands: influence of the ligands on drugs efficacies and uptake. J Med Chem 48:8060–8069

    Article  PubMed  CAS  Google Scholar 

  36. Abedi A, Safari N, Amani V, Tavajohi S, Ostad SN (2011) Synthesis, characterization and cytotoxicity of a series of tetrachloridoplatinum(IV) complexes. Inorg Chim Acta 376:679–686

    Article  CAS  Google Scholar 

  37. Clarke MJ (2003) Ruthenium metallopharmaceuticals. Coord Chem Rev 236:209–233

    Article  CAS  Google Scholar 

  38. Smith GS, Therrien B (2011) Targeted and multifunctional arene ruthenium chemotherapeutics. Dalton Trans 40:10793–10800

    Article  PubMed  CAS  Google Scholar 

  39. Sava G, Pacor S, Mestroni G, Alessio E (1992) Na[trans-RuCl4(DMSO)Im], a metal complex of ruthenium with antimetastatic properties. Clin Exp Metastasis 10:273–280

    Article  PubMed  CAS  Google Scholar 

  40. Rademaker-Lakhai JM, van den Bougard D, Pluim D, Beijnen JH, Schellens JHM (2004) A phase I and pharmacological study with imidazolium-trans-DMSO-imidazole-tetrachlororuthenate, a novel ruthenium anticancer agent. Clin Cancer Res 10:3717–3727

    Article  PubMed  CAS  Google Scholar 

  41. Depenbrock H, Schmelcher S, Peter R, Keppler BK, Weirich G, Block T, Rastetter J, Hanauske A-R (1997) Preclinical activity of trans—indazolium [tetrachlorobisindazoleruthenate(III)] (NCS 666158; IndCR; KP 1019) against tumour colony-forming units and haematopoietic progenitor cells. Eur J Cancer 33:2404–2410

    Article  PubMed  CAS  Google Scholar 

  42. Hartinger CG, Jakupec MA, Zorbas-Seifried S, Groessl M, Egger A, Berger W, Zorbas H, Dyson PJ, Keppler BK (2008) KP1019, a new redox-active anticancer agent—preclinical development and results of a clinical phase I study in tumor patients. Chem Biodiv 5:2140–2155

    Article  CAS  Google Scholar 

  43. Bergamo A, Masi A, Jakupec MA, Keppler BK, Sava G (2009) Inhibitory effects of the ruthenium complex KP1019 in models of mammary cancer cell migration and invasion. Met-Based Drugs. doi:10.1155/2009/681270

    PubMed  Google Scholar 

  44. Heffeter P, Pongratz M, Steiner E, Chiba P, Jakupec MA, Elbling L, Marian B, Körner W, Sevelda F, Micksche M, Keppler BK, Berger W (2005) Intrinsic and acquired forms of resistance against the anticancer ruthenium compound KP1019 [indazolium trans-[tetrachlorobis(1H-indazole)ruthenate (III)] (FFC14A). J Pharm Exp Ther 312:281–289

    Article  CAS  Google Scholar 

  45. Ruiz J, Vicente C, de Haro C, Bautista D (2009) A novel ruthenium(II) arene based intercalator with potent anticancer activity. Dalton Trans 5071–5073

    Google Scholar 

  46. Ruiz J, Rodríguez V, Cutillas N, Espinosa A, Hannon MJ (2011) A potent ruthenium(II) antitumor complex bearing a lipophilic levonorgestrel group. Inorg Chem 50:9164–9171

    Article  PubMed  CAS  Google Scholar 

  47. Schobert R, Seibt S, Effenberger-Neidnicht K, Underhill C, Biersack B, Hammond GL (2011) (Arene)Cl2Ru(II) complexes with N-coordinated estrogen and androgen isonicotinates: interaction with sex hormone binding globulin and anticancer activity. Steroids 76:393–399

    Article  PubMed  CAS  Google Scholar 

  48. Biersack B, Zoldakova M, Effenberger K, Schobert R (2010) (Arene)Ru(II) complexes of epidermal growth factor receptor inhibiting tyrphostins with enhanced selectivity and cytotoxicity in cancer cells. Eur J Med Chem 45:1972–1975

    Article  PubMed  CAS  Google Scholar 

  49. Loughrey BT, Healy PC, Parsons PG, Williams ML (2008) Selective cytotoxic Ru(II) arene Cp* complex salts [R-PhRuCp*]+X− for X = BF4 −, PF6 −, and BPh −4 . Inorg Chem 47:8589–8591

    Article  PubMed  CAS  Google Scholar 

  50. Schobert R, Seibt S, Mahal K, Ahmad A, Biersack B, Effenberger-Neidnicht K, Padhye S, Sarkar FH, Mueller T (2011) Cancer selective metallocenedicarboxylates of the fungal cytotoxin illudin M. J Med Chem 54:6177–6182

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Own work referenced in this review was supported by grants from the Deutsche Forschungsgemeinschaft (Scho 402/8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Biersack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Biersack, B., Schobert, R. (2013). Platinum and Ruthenium Complexes for the Therapy of Breast Cancer Diseases. In: Ahmad, A. (eds) Breast Cancer Metastasis and Drug Resistance. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5647-6_16

Download citation

Publish with us

Policies and ethics