Skip to main content

Mass Spectrometry Applications

  • Chapter
  • First Online:
Proteomics in Foods

Part of the book series: Food Microbiology and Food Safety ((RESDEV,volume 2))

Abstract

The history of proteomics dates back to the discovery of two-dimensional gels in the 1970s, which provided the first feasible way of displaying hundreds or thousands of proteins on a single gel. Despite mass spectrometry being restricted for a long time to small and thermostable compounds, the development in the late 1980s of two techniques for the routine and general formation of molecular ions of intact biomolecules changed this situation and mass spectrometry has become an indispensable tool for proteomics research. The aim of this chapter is to review the major types of MS instruments used in proteomics analysis and to discuss strategies for the analysis of whole proteins and peptides obtained after degradation. Finally, major applications of mass spectrometry-based proteomics in food safety are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  CAS  Google Scholar 

  • Aerbersold R, Goodlett DR (2001) Mass spectrometry in proteomics. Chem Rev 101:269–295

    Article  Google Scholar 

  • Aiello D, De Luca D, Gionfriddo E, Naccarato A, Napoli A, Romano E, Russo A, Sindona G, Tagarelli A (2011) Multistage mass spectrometry in quality, safety and origin of foods. Eur J Mass Spectrom 17:1–31

    Article  CAS  Google Scholar 

  • Angeletti R, Gioacchini AM, Seraglia R, Piro R, Traldi P (1998) The potential of matrix-assisted laser desorption/ionization mass spectrometry in the quality control of water buffalo mozzarella cheese. J Mass Spectrom 33:525–531

    Article  CAS  Google Scholar 

  • Anhalt JP, Fenselau C (1975) Identification of bacteria using mass spectrometry. Anal Chem 47:219–225

    Article  CAS  Google Scholar 

  • Bendixen E (2005) The use of proteomics in meat science. Meat Sci 71:138149

    Google Scholar 

  • Bernevic B, Petre BA, Galetskiy D, Werner C, Wicke M, Schellander K, Przybylski M (2011) Degradation and oxidation postmortem of myofibrillar proteins in porcine skeleton muscle revealed by high resolution mass spectrometric proteome analysis. Int J Mass Spectrom 305:217–227

    Article  CAS  Google Scholar 

  • Cairns DA (2011) Statistical issues in quality control of proteomic analyses, good experimental design and planning. Proteomics 11:1037–1048

    Article  CAS  Google Scholar 

  • Camafeita E, Mendez E (1998) Screening of gluten avenins in foods by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Mass Spectrom 33:1023–1028

    Article  CAS  Google Scholar 

  • Camafeita E, Alfonso P, Acevedo B, Mendez E (1997a) Sample preparation optimization for the analysis of gliadins in food by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Mass Spectrom 32:444–449

    Article  CAS  Google Scholar 

  • Camafeita E, Alfonso P, Mothes T, Mendez E (1997b) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric micro-analysis: the first non-immunological alternative attempt to quantify gluten gliadins in food samples. J Mass Spectrom 32:940–947

    Article  CAS  Google Scholar 

  • Camafeita E, Solis J, Alfonso P, Lopez JA, Sorell L, Mendez E (1998) Selective identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of different types of gluten in foods made with cereal mixtures. J Chromatogr A 823:299–306

    Article  CAS  Google Scholar 

  • Careri M, Bianchi F, Corradini C (2002) Recent advances in the application of mass spectrometry in food-related analysis. J Chromatogr A 970:3–64

    Article  CAS  Google Scholar 

  • Chen CH (2008) Review of a current role of mass spectrometry for proteome research. Anal Chim Acta 624:16–36

    Article  CAS  Google Scholar 

  • Cordawener JHG, Luykx DMAM, Frankhuizen R, Bremer MGEG, Hooijerink H, America AHP (2009) Untargeted LC-Q-TOF mass spectrometry method for the detection of adulterations in skimmed-milk powder. J Sep Sci 32:1216–1223

    Article  Google Scholar 

  • Cornish TJ, Cotter RJ (1993a) Tandem time-of-flight mass spectrometer. Anal Chem 65:1043–1047

    Article  CAS  Google Scholar 

  • Cornish TJ, Cotter RJ (1993b) Collision-induced dissociation in a tandem time-of-flight mass spectrometer with two single-stage reflectrons. Org Mass Spectrom 28:1129–1134

    Article  CAS  Google Scholar 

  • Cottrell JS (1994) Protein identification by peptide mass fingerprinting. Pept Res 7:115.124

    Google Scholar 

  • D’Alessandro A, Zolla L (2012) We are what we eat: food safety and proteomics. J Proteome Res 11:26–36

    Article  Google Scholar 

  • Di Girolamo F, D’Amato A, Righetti PG (2012) Assessment of the floral origin of honey via proteomic tools. J Proteomics 75:3688–3693

    Article  Google Scholar 

  • Domon B, Aaebersold R (2006) Mass spectrometry and protein analysis. Science 312:212–217

    Article  CAS  Google Scholar 

  • Emmet MR, Caprioli RM (1994) Microelectrospray mass spectrometry: ultra high-sensitivity analysis of peptides and proteins. J Am Soc Mass Spectrom 5:605–613

    Article  Google Scholar 

  • Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:976–989

    Article  CAS  Google Scholar 

  • Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71

    Article  CAS  Google Scholar 

  • Ferranti P, Mamone G, Picariello G, Addeo F (2007) Mass spectrometry analysis of gliadins in celiac disease. J Mass Spectrom 42:1531–1548

    Article  CAS  Google Scholar 

  • Fountoulakis M, Juranville JF, Roeder D, Evers S, Berndt P, Langen H (1998) Reference map of the low molecular mass proteins of Haemophilus influenzae. Electrophoresis 19:1819–1827

    Article  CAS  Google Scholar 

  • Garbis S, Lubec G, Fountoulakis M (2005) Limitations of current proteomics technologies. J Chromatogr A 1077:1–18

    Article  CAS  Google Scholar 

  • Gašo-Sokač D, Kovač S, Josić D (2010) Application of proteomics in food technology and food biotechnology: process development, quality control and product safety. Food Technol Biotechnol 48:284–295

    Google Scholar 

  • Gingras AC, Aebersold R, Raught B (2005) Advances in protein complex analysis using mass spectrometry. J Physiol 563:11–21

    Article  CAS  Google Scholar 

  • Glish GL, Burinsky DJ (2008) Hybrid mass spectrometers for tandem mass spectrometry. J Am Soc Mass Spectrom 19:161–172

    Article  CAS  Google Scholar 

  • Griffin TJ, Xie H, Bandhakavi S, Popko J, Mohan A, Carlis JV, Higgins L (2007) iTRAQ reagent-based quantitative proteomic analysis on a linear ion trap mass spectrometer. J Proteome Res 6:4200–4209

    Article  CAS  Google Scholar 

  • Guerrera IC, Kleiner O (2005) Application of mass spectrometry in proteomics. Biosci Rep 25:71–93

    Article  CAS  Google Scholar 

  • Hager JW (2004) QTRAP™ mass spectrometer technology for proteomics applications. Drug Discov Today Targets 3:31–36

    Article  Google Scholar 

  • Han X, Aslanian A, Yates JR (2008) Mass spectrometry for proteomics. Curr Opin Chem Biol 12:483–490

    Article  CAS  Google Scholar 

  • Heick J, Fischer M, Pöpping B (2011) First screening method for the simultaneous detection of seven allergens by liquid chromatography mass spectrometry. J Chromatogr A 1218:938–943

    Article  CAS  Google Scholar 

  • Herrero M, Simó C, Garcia-Cañas V, Ibáñez E, Cifuentes A (2012) Foodomics: MS-based strategies in modern food science and nutrition. Mass Spectrom Rev 31:49–69

    Article  CAS  Google Scholar 

  • Hillenkamp F, Karas M (1990) Mass spectrometry of peptides and proteins by matrix-assisted ultraviolet laser desorption/ionization. Methods Enzymol 193:280–295

    Article  CAS  Google Scholar 

  • Holland JW, Gupta R, Deeth HC, Alewood PF (2011) Proteomic analysis of temperature-dependent changes in stored UHT milk. J Agr Food Chem 59:1837–1846

    Article  CAS  Google Scholar 

  • Hunt DF, Yates JR, Shabanowitz J, Winston S, Hauer CR (1986) Protein sequencing by tandem mass spectrometry. Proc Natn Acad Sci U S A 83:6233–6237

    Article  CAS  Google Scholar 

  • Ji QC, Rodila R, Gage EM, El-Shourbagy TA (2003) A strategy of plasma protein quantitation by selective reaction monitoring of an intact protein. Anal Chem 75:7008–7014

    Article  CAS  Google Scholar 

  • Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular mass exceeding 10,000 Daltons. Anal Chem 60:2299–2301

    Article  CAS  Google Scholar 

  • Klose J (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26:231–243

    CAS  Google Scholar 

  • Lametsch R, Roepstorff P, Bendixen E (2002) Identification of protein degradation during post-mortem storage of pig meat. J Agr Food Chem 50:5508–5512

    Article  CAS  Google Scholar 

  • Lane CS (2005) Mass spectrometry-based proteomics in the life sciences. Cell Mol Life Sci 62:848–869

    Article  CAS  Google Scholar 

  • Le Blanc JC, Hager JW, Ilisiu AM, Hunter C, Zhong F, Chu I (2003) Unique scanning capabilities of a new hybrid linear ion trap mass spectrometer (QTRAP) used for high sensitivity proteomics applications. Proteomics 3:859–869

    Article  Google Scholar 

  • Liebler DC, Yates JR (2002) Introduction to proteomics. Tools for the new biology. Humana Press, Totowa

    Google Scholar 

  • Macek B, Waanders L, Olsen JV, Mann M (2006) Top-down protein sequencing and MS3 on a hybrid linear quadrupole ion trap-orbitrap mass spectrometer. Mol Cell Proteom 5:949–958

    Article  CAS  Google Scholar 

  • Makarov A (2000) Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal Chem 72:1156–1162

    Article  CAS  Google Scholar 

  • Mann M, Hendrickson RC, Pandey A (2001) Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem 70:437–473

    Article  CAS  Google Scholar 

  • Marshall AG, Hendrickson CL (2008) High-resolution mass spectrometers. Annu Rev Anal Chem 1:579–599

    Article  CAS  Google Scholar 

  • Melanson JE, Chisholm KA, Pinto DM (2006) Targeted comparative proteomics by liquid chromatography/matrix-assisted laser desorption/ionization triple-quadrupole mass spectrometry. Rapid Comm Mass Spectrom 20:904–910

    Article  CAS  Google Scholar 

  • Michalski A, Damoc E, Hauschild JP, Lange O, Wieghaus A, Makarov A, Nagaraj N, Cox J, Mann M, Horning S (2011) Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Mol Cell Proteom 10: M111.011015-(1–15)

    Google Scholar 

  • Monaci L, Visconti A (2009) Mass spectrometry-based proteomics methods for analysis of food allergens. TrACs Trends Anal Chem 28:581–591

    Article  CAS  Google Scholar 

  • Monaci L, Losito I, Palmisano F, Visconti A (2010a) Identification of allergenic milk proteins markers in fined white wines by capillary liquid chromatography-electrospray ionization-tandem mass spectrometry. J Chromatogr A 1217:4300–4305

    Article  CAS  Google Scholar 

  • Monaci L, Nørgaard JV, van Hengel AJ (2010b) Feasibility of a capillary LC/ESI-Q-TOF MS method for the detection of milk allergens in an incurred model food matrix. Anal Methods 2:967–972

    Article  CAS  Google Scholar 

  • Monaci L, Losito I, Palmisano F, Godula M, Visconti A (2011) Towards the quantification of residual milk allergens in caseinate-fined white wines using HPLC coupled with single-stage Orbitrap mass spectrometry. Food Add Contam A 28:1304–1314

    Article  CAS  Google Scholar 

  • Narasimhan C, Tabb DL, VerBerkmoes NC, Thompson MR, Hettich RL, Uberbacher EC (2005) MASPIC: intensity-based tandem mass spectrometry scoring scheme that improves peptide identification at high confidence. Anal Chem 77:7581–7593

    Article  CAS  Google Scholar 

  • O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    Google Scholar 

  • Picariello G, Mamone G, Addeo F, Ferranti P (2011) The frontiers of mass spectrometry-based techniques in food allergenomics. J Chromatogr A 1218:7386–7398

    Article  CAS  Google Scholar 

  • Ruan Q, Ji QC, Arnold ME, Griffith Humphreys W, Zhu M (2011) Strategy and its Implications of protein bioanalysis utilizing high-resolution mass spectrometric detection of intact protein. Anal Chem 83:8937–8944

    Article  CAS  Google Scholar 

  • Scigelova M, Makarov A (2006) Orbitrap mass analyzer -overview and applications in proteomics. Prac Proteom 1–2:16–21

    Google Scholar 

  • Sénéchal S, Kussmann M (2011) Nutriproteomics: technologies and applications for identification and quantification of biomarkers and ingredients. P Nutr Soc 70:351–354

    Article  Google Scholar 

  • Shen TL, Noon KR (2004) Liquid cromatography-mass spectrometry and tandem mass spectrometry of peptides and proteins. In: Aguilar MI (ed) HPLC of peptides and proteins. Methods and protocols. Humana Press, Totowa, pp 111–139

    Google Scholar 

  • Smith RD, Loo JA, Edmonds CG, Barinaga CJ, Udseth HR (1990) Sensitivity considerations for large molecule detection by capillary electrophoresis-electrospray ionization mass spectrometry. J Chromatogr 516:157–165

    Article  CAS  Google Scholar 

  • Sospedra I, Soler C, Mañes J, Soriano JM (2012) Rapid whole protein quantitation of staphylococcal enterotoxins A and B by liquid chromatography/mass spectrometry. J Chromatogr A 1238:54–59

    Article  CAS  Google Scholar 

  • Westermeier R, Marouga R (2005) Protein detection methods in proteomics research. Bioscience Rep 25:19–32

    Article  CAS  Google Scholar 

  • Wieser A, Schneider L, Jung J, Schubert S (2012) MALDI-TOF MS in microbiological diagnostics—identification of microorganisms and beyond (mini review). Appl Microbiol Biotechnol 93:965–974

    Article  CAS  Google Scholar 

  • World Food Summit (1996) http://www.fao.org/wfs/index_en.htm

    Google Scholar 

  • Wulfkuhle JD, Liotta LA, Petricoin EF (2003) Early detection: proteomic applications for the early detection of cancer. Nat Rev Cancer 3:267–275

    Article  CAS  Google Scholar 

  • Yates JR III (2004) Mass spectral analysis in proteomics. Annu Rev Biophys Biomol Struct 33:297–316

    Article  CAS  Google Scholar 

  • Yates JR III, Cociorva D, Liao J, Zabrouskov V (2006) Performance of a linear ion trap-orbitrap hybrid for peptide analysis. Anal Chem 78:493–500

    Article  CAS  Google Scholar 

  • Zhang J, Lai S, Zhang Y, Huang B, Li D, Ren Y (2012) Multiple reaction monitoring-based determination of bovine α-lactalbumin in infant formulas and whey protein concentrates by ultra-high performance liquid chromatography–tandem mass spectrometry using tryptic signature peptides and synthetic peptide standards. Anal Chimica Acta 727:47–53

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Soler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Soler, C., Rubert, J., Mañes, J. (2013). Mass Spectrometry Applications. In: Toldrá, F., Nollet, L. (eds) Proteomics in Foods. Food Microbiology and Food Safety, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5626-1_5

Download citation

Publish with us

Policies and ethics