Skip to main content

Mechanics of Fluid Flow Through a Porous Medium

  • Chapter
  • First Online:
Convection in Porous Media

Abstract

By a porous medium, we mean a material consisting of a solid matrix with an interconnected void. We suppose that the solid matrix is either rigid (the usual situation) or it undergoes small deformation. The interconnectedness of the void (the pores) allows the flow of one or more fluids through the material. In the simplest situation (“single-phase flow”), the void is saturated by a single fluid. In “two-phase flow,” a liquid and a gas share the void space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achenbach, E. 1995 Heat and flow characteristics of packed beds. Expt. Thermal Fluid Science 10, 17-27. [1.5.2]

    Google Scholar 

  • Alazmi, B. and Vafai, K. 2001 Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer. Int. J. Heat Mass Transfer 44, 1735-1749. [1.6]

    Google Scholar 

  • Allan, F. M. and Hamdan, M. H. 2002 Fluid mechanics of the interface region between two porous layers. Appl. Math. Comput. 128, 37-43. [1.6]

    Google Scholar 

  • Altevogt, A. S., Rolston, D. E. and Whitaker, S. 2003 New equations for binary gas transport in porous media; part 1: equation development. Adv. Water Res. 26, 695-715. [1.4.1]

    Google Scholar 

  • Alvarez, G., Bournet, P. E. and Flick, D. 2003 Two-dimensional simulation of turbulent flow and transfer through stacked spheres. Int. J. Heat Mass Transfer 46, 2459-2469. [1.8]

    Google Scholar 

  • Antohe, B. V. and Lage, J. L. 1997b A general two-equation macroscopic turbulence model for incompressible flow in porous media. Int. J. Heat Mass Transfer 40, 3013-3024. [1.8]

    Google Scholar 

  • Assato, M., Pedras, M. H. J. and de Lemos, M. J. S. 2005 Numerical solution of turbulent channel flow past a backward-facing step with a porous insert using linear and nonlinear k - ε models. J. Porous Media 8, 13-29. [1.8]

    Google Scholar 

  • Auriault, J. L. 2009 On the domain of validity of Brinkman’s equation. Transp. Porous Media 79, 215-223. [1.5.3]

    Google Scholar 

  • Auriault, J. L. 2010a About the Beavers and Joseph boundary condition. Transp. Porous Media 83, 257-266. [1.6]

    Google Scholar 

  • Auriault, J. L. 2010b Reply to the coments on “About the Beavers and Joseph boundary condition”. Transp. Porous Media 83, 269-270. [1.6]

    Google Scholar 

  • Auriault, J. L., Geindreau, C. and Orgeas, L. 2007 Upscaling Forchheimer law.. Transp. Porous Media 70, 213-229. [1.5.2]

    Google Scholar 

  • Auriault, J. L., Royer, P. and Geindreau, C. 2002b Filtration law for power-law fluids in anisotropic porous media. Int. J. Engng. Sci. 40, 1151-1163. [1.5.4]

    Google Scholar 

  • Bai, H. X., Yu, P., Winoto, S. H. and Low, H. T. 2009 Lattice Boltzmann method for flows in porous and homogenesous fluid domains coupled at the interface by stress jump. Int, J. Numer. Meth. Fluids 60, 691-708. [1.6]

    Google Scholar 

  • Bai, M. and Roegiers, J. C. 1994 Fluid flow and heat flow in deformable fractured media. Int. J. Engng. Sci. 32, 1615-1663. [1.9]

    Google Scholar 

  • Bai, M., Ma, Q. and Roegiers, J. C. 1994a Dual porosity behaviour of naturally fractured reservoirs. Int. J. Num. Anal. Mech. Geomech. 18, 359-376. [1.9]

    Google Scholar 

  • Bai, M., Ma, Q. and Roegiers, J. C. 1994b Nonlinear dual-porosity model. Appl. Math. Model. 18, 602-610. [1.9]

    Google Scholar 

  • Bai, M., Roegiers, J. C. and Inyang, H. F. 1996 Contaminant transport in nonisothermal fractured porous media. J. Env. Engng, 122, 416-423. [1.9]

    Google Scholar 

  • Barak, A. Z. 1987 Comments on “High velocity flow in porous media” by Hassanizadeh and Gray. Transport in Porous Media 2, 533-535. [1.5.2]

    Google Scholar 

  • Barenblatt, G. I., Entov, V. M. and Ryzhik, V. M. 1990 Theory of Fluid Flowthrough Natural Rocks, Kluwer Academic Publishers, Dordrecht. [1.9]

    Google Scholar 

  • Bars, M. L. and Worster, M. G. 2006 Interfacial conditions between a pure fluid and a porous medium: Implications for binary alloy solidification. J. Fluid Mech. 550, 149-173. [1.6]

    Google Scholar 

  • Batchelor, G. K. 1967 An Introduction to FluidDynamics, Cambridge University Press. [1.5.1]

    Google Scholar 

  • Bear, J. and Bachmat, Y. 1990 Introduction to Modeling ofTransport Phenomena in Porous Media, Kluwer Academic, Dordrecht. [1.1, 1.5.3]

    Google Scholar 

  • Beavers, G. S. and Joseph, D. D. 1967 Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197-207. [1.6]

    Google Scholar 

  • Beavers, G. S., Sparrow, E. M. and Magnuson, R. A. 1970 Experiments on coupled parallel flows in a channel and a bounding medium. ASME J. Basic Engng. 92, 843-848. [1.6]

    Google Scholar 

  • Beavers, G. S., Sparrow, E. M. and Masha, B. A. 1974 Boundary conditions at a porous surface which bounds a fluid flow. AIChE J. 20, 596-597. [1.6]

    Google Scholar 

  • Beavers, G. S., Sparrow, E. M. and Rodenz, D. E. 1973 Influence of bed size on the flow characteristics and porosity of randomly packed beds of spheres. J. Appl. Mech. 40, 655-660. [1.5.2]

    Google Scholar 

  • Beck, J. L. 1972 Convection in a box of porous material saturated with fluid. Phys. Fluids 15, 1377-1383. [1.5.1, 6.15.1]

    Google Scholar 

  • Bejan, A. 1984 Convection Heat Transfer, Wiley, New York. [1.1, 4.1, 4.2, 4.5, 4.17, 5.1.4, 5.11.1, 6.9.2, 7.1.1, 7.1.2, 7.3.3, 7.4.2, 9.2.1, 10.1.2]

    Google Scholar 

  • Bejan, A. 2000 Shape and Structure, fromEngineering to Nature, Cambridge University Press, Cambridge, UK. [1.5.2, 4.18, 6.2, 6.26, 11.10]

    Google Scholar 

  • Bejan, A. 2004a Convection Heat Transfer, 3rd ed., Wiley, New York. [1.5.2, 2.1, 4.17, 4.18, 4.20]

    Google Scholar 

  • Bejan, A. 2004b Designed porous media: maximal heat transfer density at decreasing length scales. Int. J. Heat Mass Transfer 47, 3073-3083. [4.15]

    Google Scholar 

  • Bejan, A. and Lage, J. L. 1991 Heat transfer from a surface covered with hair. Convective Heat and MassTransfer in Porous Media (eds. S. Kakaç, et al.), Kluwer Academic, Dordrecht, 823-845. [1.2, 4.14]

    Google Scholar 

  • Bejan, A., Dincer, I., Lorente, S., Miguel, A. F. and Reis, A. H. 2004 Porous and Complex FlowStructures in Modern Technologies. Springer, New York. [1.5.2, 2.1, 3.3, 3.7, 4.18, 4.19, 6.26, 10.1.7]

    Google Scholar 

  • Bennethum, L. S. and Giorgi, T. 1997 Generalized Forchheimer equation for two-phase flow based on hybrid mixture theory. Transport Porous Media 26, 261-275. [1.5.2]

    Google Scholar 

  • Braga, E. J. and de Lemos, M. J. S. 2006 Simulation of turbulent natural convection in a porous cylindrical annulus using a macroscopic two-equation model. Int. J. Heat Mass Transfer 49, 4340-4351. [1.8]

    Google Scholar 

  • Braga, E. J. and de Lemos, M. J. S. 2008 Computation of turbulent free convection in left and right tilted porous enclosuresusing a macroscopic k-epsilon model. Int. J. Heat Mass Transfer 51, 5279-5287. [1.8]

    Google Scholar 

  • Braga, E. J. and de Lemos, M. J. S. 2009 Laminar and turbulent free convection in a composite enclosure. Int. J. Heat Mass Transfer 52, 588-596. [1.8]

    Google Scholar 

  • Brinkman, H. C. 1947a A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A 1, 27-34. [1.5.3]

    Google Scholar 

  • Brinkman, H. C. 1947b On the permeability of media consisting of closely packed porous particles. Appl. Sci. Res. A 1, 81-86. [1.5.3]

    Google Scholar 

  • Bussiere, W., Rochette, D., Latchimy, T, Velleaud, G. and Andre, P. 2006 Measurement of Darcy and Forchheimer coefficients for silica sand beds. High Temp. Mat. Process. 10, 55-78. [1.5.2]

    Google Scholar 

  • Catton, I. and Travkin, V. S. 1996 Turbulent flow and heat transfer in high permeability porous media. Proceedings of the InternationalConference on Porous Media and their Applications inScience, Engineering and Industry, Kona, Hawaii, June 1996, (K.Vafai, editor), Engineering Foundation, New York, pp. 333-368. [1.8]

    Google Scholar 

  • Chandesris, M. and Jamet, D. 2006 Boundary conditions at a planar fluid-porous interface for a Poiseille flow. Int. J. Heat Mass Transfer 49, 2137-2150. [1.6]

    Google Scholar 

  • Chandesris, M. and Jamet, D. 2007 Boundary conditions at a fluid-porous interface: An a priori estimation of the stress jump boundary conditions. Int. J. Heat Mass Transfer 50, 3422-3436. [1.6]

    Google Scholar 

  • Chandesris, M. and Jamet, D. 2009a Derivation of jump conditions for the turbulence k-ε model at a fluid/porous interface. Int. J. Heat Mass Transfer 50, 3422-3436. [1.6]

    Google Scholar 

  • Chandesris, M. and Jamet, D. 2009b Jump conditions and surface-excess quantities at a fluid/porous interface: A multiple scale approach. Transp. Porous Media 78, 419-428. [1.6]

    Google Scholar 

  • Chandesris, M. and Jamet, D. 2009c Derivation of jump conditions for the turbulence k -ε model at a fluid/porous interface. Int. J. Heat Fluid Flow 30, 306-318. [1.6]

    Google Scholar 

  • Chandesris, M., Serre, G. and Sagaut, T. 2006 A macroscopic turbulence model for flow in porous media suited for channel, pipe and rod bundle flows. Int. J. Heat Mass Transfer 49, 2739-2750. [1.8]

    Google Scholar 

  • Chen, F. and Chen, C. F. 1992 Convection in superposed fluid and porous layers. J. Fluid Mech. 234, 97-119. [1.6, 6.19.1.2]

    Google Scholar 

  • Chen, G. M. and Tsao, C. P. 2012 A thermal resistance analysis on forced convection with viscous dissipation in a porous medium using entransy dissipation concept. Int. J. Heat Mass Transfer 55, 3744-3754. [4.10]

    Google Scholar 

  • Chen, H., Besant, R. W. and Tao, Y. X. 1998 Numerical modeling of heat transfer and water vapor transfer and frosting within a fiberglass filled cavity during air infiltration. Heat Transfer 1998, Proc. 11th IHTC, 4, 381-386. [3.6]

    Google Scholar 

  • Chen, L., Li, Y. and Thorpe, G. 1998 High Rayleigh-number natural convection in an enclosure containing a porous layer. Heat Transfer 1998, Proc. 11th IHTC, 4, 423-428. [1.8, 7.7]

    Google Scholar 

  • Chen, X. B., Yu, P., Winoto, S. H. and Low, H. T. 2008a A numerical method for forced convection in porous and heterogeneous fluid domains coupled at interface by stress jump. Int. J. Numer. Meth. Fluid Flow 18, 635-655. [1.6]

    Google Scholar 

  • Chen, X. B., Yu, P., Winoto, S. H. and Low, H. T. 2008c Free convection in a porous wavy cavity based on the Darcy-Brinkman-Forchheimer extended model. Numer. Heat Transfer A 52, 377-397. [7.3.7]

    Google Scholar 

  • Chen, X. B., Yu, P., Winoto, S. H. and Low, H. T. 2008d Numerical analysis for the flow past a porous square cylinder based on the stress-jump interfacial conditions. Int. J. Numer. Meth. Fluids 56, 1705-1729. [4.11]

    Google Scholar 

  • Chen, Z., Lyons, S. L. and Qin, G. 2001 Derivation of the Forchheimer equation via homogenization. Transport Porous Media 44, 325-335. [1.5.2]

    Google Scholar 

  • Cheng, P., Chowdhury, A. and Hsu, C. T. 1991 Forced convection in packed tubes and channels with variable porosity and thermal dispersion effects. Convective Heat and MassTransfer in Porous Media, (eds. S. Kakaç, et al.), Kluwer Academic, Dordrecht, 625-653. [1.7, 4.9]

    Google Scholar 

  • Chung, K., Lee, K. S. and Kim, W. S. 2003 Modified macroscopic turbulence modeling for the tube with channel geometry in porous media. Numer. Heat Transfer A 43, 659-668. [1.8]

    Google Scholar 

  • Cieszko, M. and Kubik, J. 1999 Derivation of matching conditions at the contact surface between fluid-saturated porous solid and bulk fluid. Transp. Por. Media 34, 319-336. [1.6]

    Google Scholar 

  • Collins, R. E. 1961 Flow of Fluids throughPorous Materials, Reinhold, New York. [1.1]

    Google Scholar 

  • Costa, V. A. F. , Oliveira, L. A. and Sousa, A. C. M. 2004b Simulation of coupled flows in adjacent porous and open domains using a control volume finite-element method. Energy Conversion and Management 45, 2795-2811. [1.6]

    Google Scholar 

  • Costa, V. A. F. , Oliveira, L. A., Baliga, B. R. and Sousa, A. C. M. 2004a Simulation of coupled flows in adjacent porous and open domains using a control volume finite-element method. Numer. Heat Transfer A 45, 675-697. [1.6]

    Google Scholar 

  • Costa, V. A. F., Oliveira, L. A. and Baliga, B. R. 2008 Implementation of the stress jump condition in a control-volume finite-element method for the simulation of laminar coupled flows in adjacent open and porous domains. Numer. Heat Transfer B 53, 383-411. [1.6]

    Google Scholar 

  • Coulaud, O., Morel, P. and Caltagirone, J. P. 1988 Numerical modelling of nonlinear effects in laminar flow through a porous medium. J. Fluid Mech. 190, 393-407. [1.5.2]

    Google Scholar 

  • Darcy, H. P. G. 1856 Les Fontaines Publiques dela Ville de Dijon. Victor Dalmont, Paris. [1.4.1]

    Google Scholar 

  • Das, D. B. and Lewis, M. 2007 Dynamics of fluid circulation in coupled free and heterogeneous porous domains. Chem. Engng. Sci. 62, 3549-3573. [1.6]

    Google Scholar 

  • Das, D. B., Hanspal, N. S. and Nassehi, V. 2005 Analysis of hydrodynamic conditions in adjacent free and heterogeneous porous flow domains. Hydrological Processes 19, 2775-2799. [1.6]

    Google Scholar 

  • Davis, A.M.J. and James, D.F. 1996 Slow flow through a model porous medium. Int. J. Multiphase Flow 22, 969-989. [1.4.2]

    Google Scholar 

  • de Lemos, M. J. S. 2004 Turbulent heat and mass transfer in porous media. In Technologies and Techniques inPorous Media (D. B. Ingham, A. Bejan, E. Mamut and I. Pop, eds), Kluwer Academic, Dordrecht, pp. 157-168. [1.8].

    Google Scholar 

  • de Lemos, M. J. S. 2005b Mathematical modeling and applications of turbulent heat and mass transfer in porous media. Handbook of Porous Media (ed. K. Vafai), 2nd ed., Taylor and Francis, New York, pp. 409-454. [1.8]

    Google Scholar 

  • de Lemos, M. J. S. 2005c The double-decomposition concept for turbulent transport in porous media. In Transport Phenomena in PorousMedia III, (eds. D. B. Ingham and I. Pop), Elsevier, Oxford, pp. 1-33. [1.8]

    Google Scholar 

  • de Lemos, M. J. S. 2008 Analysis of turbulent flows in fixed and moving permeable media. Acta Geophys. 56, 562-583. [1.8]

    Google Scholar 

  • de Lemos, M. J. S. 2009 Turbulent flow and fluid-porous interfaces computed with a diffusion-jump model for k and ε transport equations. Transp. Porous Media 78, 331-346.

    Article  Google Scholar 

  • De Lemos, M. J. S. 2012a Turbulent Impinging Jets into Porous Media. Springer, New York.. [1.8]

    Google Scholar 

  • De Lemos, M. J. S. 2012b Turbulence in Porous Media: Modeling and Applications, 2nd ed., Elsevier, Oxford. [1.8]

    Google Scholar 

  • de Lemos, M. J. S. and Braga, E. J. 2003 Modeling of turbulent natural convection in porous media. Int. Comm. Heat Mass Transfer 30, 615-624. [1.8]

    Google Scholar 

  • De Lemos, M. J. S. and Dorea, F. T. 2011 Simulation of a turbulent impinging jet into a layer of porous material using a two-energy equation model. Numer. Heat Transfer A 59, 769-798. [1.8]

    Google Scholar 

  • de Lemos, M. J. S. and Fischer, C. 2008 Thermal analysis of an impinging jet on a plate with and without a porous layer. Numer. Heat Transfer A 54, 1022-1041. [1.8]

    Google Scholar 

  • de Lemos, M. J. S. and Mesquita, M. S. 2003 Modeling of turbulent natural convection in porous media. Int. Comm. Heat Mass Transfer 30, 105-113. [1.8]

    Google Scholar 

  • de Lemos, M. J. S. and Pedras, M. H. J. 2000 On the definitions of turbulent kinetic energy for flow in porous media. Int. Comm. Heat Mass Transfer 27, 211-220. [1.8]

    Google Scholar 

  • de Lemos, M. J. S. and Pedras, M. H. J. 2001 Recent mathematical models for turbulent flow in saturated rigid porous media. ASME J. Fluids Engng. 123, 935-940. [1.8]

    Google Scholar 

  • de Lemos, M. J. S. and Rocamora, F. D. 2002 Turbulent transport modeling for heat flow in rigid porous media. Heat Transfer 2002, Proc. 12th Int. Heat Transfer Conf., Elsevier, Vol. 2, pp. 791-796. [1.8]

    Google Scholar 

  • de Lemos, M. J. S. and Saito, M. B. 2008 Computation of turbulent heat transfer in a moving porous bed using a macroscopic two-energy equation model. Int. Comm. Heat Mass Transfer 35, 1262-1266. [1.8]

    Google Scholar 

  • de Lemos, M. J. S. and Silva, R. A. 2006 Turbulent flow over a highly permeable medium simulated with a diffusion-jump model of the interface. Int. J. Heat Mass Transfer 49, 546-556. [1.8]

    Google Scholar 

  • de Lemos, M. J. S. and Tofaneli, L. A. 2004 Modelling of double-diffusive turbulent natural convection in porous media. Int. J. Heat Mass Transfer 47, 4233-4241. [1.8]

    Google Scholar 

  • Discacciati, M., Miglio, E. and Quarteroni, A. 2002 Mathematical and numerical methods for coupling surface and groundwater flows. Appl. Numer. Anal. 43, 57-74. [1.6]

    Google Scholar 

  • Dorea, F. T. and de Lemos, M. J. S. 2010 Simulation of laminar impinging jet on a porous medium with thermal non-equilibrium model. Int. J. Heat Mass Transfer 53, 5089-5101. [1.8]

    Google Scholar 

  • du Plessis, J. P. 1994 Analytical quantification of coefficients in the Ergun equation for fluid friction in a packed bed. Transport in Porous Media 16, 189-207. [1.5.2]

    Google Scholar 

  • Dullien, F. A. L. 1992 Porous Media: Fluid Transportand Pore Structure, Academic, New York, 2nd Edit. [1.4.2]

    Google Scholar 

  • Dupuit, A. J. E. J. 1863 Études Théoriques et Pratiquessur le Mouvement des aux dans les CanauxDécouverts et a Travers les Terrains Perméables. Victor Dalmont, Paris. [1.5.2]

    Google Scholar 

  • Durlofsky, L. and Brady, J. F. 1987 Analysis of the Brinkman equation as a model for flow in porous media. Phys. Fluids 30, 3329-3341. [1.5.3]

    Google Scholar 

  • Ene, H. I. 2004 Modeling the flow through porous media. In Emerging Technologies and Techniquesin Porous Media (D. B. Ingham, A. Bejan, E. Mamut and I. Pop, eds), Kluwer Academic, Dordrecht, pp. 25-41. [1.4.3]

    Google Scholar 

  • Ene, H. I. and Polievski, D. 1987 Thermal Flow in PorousMedia, Reidel, Dordrecht. [1.4.3, 5.6.2, 5.11.2]

    Google Scholar 

  • Firdaouss, M., Gurmond, J. L. and Le Quéré, P. 1997 Nonlinear corrections to Darcy’s law at low Reynolds Number. J. Fluid Mech. 343, 331-350. [1.5.2]

    Google Scholar 

  • Flick, D., Leslous, A. and Alvarez, G. 2003 Semi-empirical modeling of turbulent fluid flow and heat transfer in porous media. Int. J. Refrig. 26, 349-359. [1.8]

    Google Scholar 

  • Forchheimer, P. 1901 Wasserbewegung durch Boden. Zeitschrift des Vereines DeutscherIngenieure 45, 1736-1741 and 1781-1788. [1.5.2]

    Google Scholar 

  • Fourar, M., Lenormand, R., Karimi-Fard, M. and Horne, R. 2005 Inertia effects in high-rate flow through heterogeneous porous media. Transport Porous Media 60, 353-370. [1.5.2]

    Google Scholar 

  • Fowler, A. J. and Bejan, A. 1995 Forced convection from a surface covered with flexible fibers. Int. J. Heat Mass Transfer 38, 767–777. [1.9, 4.14]

    Google Scholar 

  • Fu, W. S. and Huang, H. C. 1999 Effects of random porosity model on heat transfer performance of porous media. Int. J. Heat Mass Transfer 42, 13-25. [1.7]

    Google Scholar 

  • Gartling, D. K., Hickox, C. E. and Givler, R. C. 1996 Simulation of coupled viscous and porous flow problems. Comp. Fluid Dyn. 7, 23-48. [1.6]

    Google Scholar 

  • Georgiadis, J. G. 1991 Effect of randomness on heat and mass transfer in porous media. Convective Heat and MassTransfer in Porous Media (eds. S. Kakaç, et al.), Kluwer Academic, Dordrecht, 499-524. [1.1]

    Google Scholar 

  • Georgiadis, J. G. and Catton, I. 1987 Stochastic modeling of unidirectional fluid transport in uniform and random packed beds. Phys. Fluids 30, 1017-1022. [1.1, 1.7]

    Google Scholar 

  • Georgiadis, J. G. and Catton, I. 1988 Dispersion in cellular thermal convection in porous media. Int. J. Heat Mass Transfer 31, 1081-1091. [1.1, 6.6]

    Google Scholar 

  • Gerritsen, M. G., Chen, T. and Chen, Q. 2005 Stanford University, private communication.

    Google Scholar 

  • Getachew, D., Minkowycz, W. J. and Lage, J. L. 2000 A modified form of the κ - ε model for turbulent flows of an incompressible fluid in porous media. Int. J. Heat Mass Transfer 43, 2909-2915. [1.8]

    Google Scholar 

  • Ghorayeb, K. and Firoozabadi, A. 2000a Numerical study of natural convection and diffusion in fractured porous media. SPE Journal 5, 12-20. [1.9]

    Google Scholar 

  • Ghorayeb, K. and Firoozabadi, A. 2000b Modeling multicomponent diffusion and convection in porous media. SPE Journal 5, 158-171. [1.9]

    Google Scholar 

  • Ghorayeb, K. and Firoozabadi, A. 2001 Features of convection and diffusion in porous media for binary systems. J. Canad. Petrol. Tech. 40, 21-28. [1.9]

    Google Scholar 

  • Ghosh, S., Das, T., Chakraborty, S. and Das, S. K. 2011 Predicting DNA-mediated drug delivery in interior carcinoma using electromagnetically excited nanoparticles. Comput. Biol. Med. 41, 771-779.[1.9]

    Google Scholar 

  • Giorgi, T. 1997 Derivation of the Forchheimer law via matched asymptotic expansions. Transport Porous Media 29, 191-206. [1.5.2]

    Google Scholar 

  • Givler, R. C. and Altobelli, S. A. 1994 A determination of the effective viscosity for the Brinkman-Forchheimer flow model. J. Fluid Mech. 258, 355-370. [1.5.3]

    Google Scholar 

  • Gobin, D., Goyeau, B. 2012 Thermosolutal natural convection in partially porous domains. ASME J. Heat Transfer 134, #031013. [1.6, 9.4]

    Google Scholar 

  • Goharzadeh, A., Khalili, A. and Jørgensen, B. B. 2005 Transition layer thickness at a fluid-porous interface. Phys. Fluids 17, 057102. [1.6]

    Google Scholar 

  • Goyeau, B., Lhuillier, D., Gobin, D. and Velarde, M. G. 2003 Momentum transport at a fluid-porous interface. Int. J. Heat Mass Transfer 46, 4071-4081. [1.6]

    Google Scholar 

  • Gratton, L. J., Travkin, V. S. and Catton, I. 1996 Influence of morphology upon two-temperature statements for convective transport in porous media. J. Enhanced Heat Transfer 3, 129-145. [1.8]

    Google Scholar 

  • Haber, S. and Mauri, R. 1983 Boundary conditions for Darcy’s flow through porous media. Int. J. Multiphase Flow 9, 561-574. [1.6]

    Google Scholar 

  • Hanspal, N. S., Waghode A. N., Nassehi, V. and Wakeman, R. J. 2006 Numerical analysis of coupled Stokes/Darcy flows in industrial filtrations. Transport Porous Media 64, 73-101.[1.6]

    Google Scholar 

  • Hassanizadeh, S. M. and Gray, W. G. 1988 Reply to comments by Barak on “High velocity flow in porous media” by Hassanizadeh and Gray. Transport in Porous Media 3, 319-321. [1.5.2]

    Google Scholar 

  • Hayes, R. E., Afacan, A., Boulanger, B. and Shenoy, A. V. 1996 Modelling the flow of power law fluids in a packed bed using a volume-averaged equation of motion. Transport in Porous Media 23, 175-196. [1.5.4]

    Google Scholar 

  • Hoffman, M. R. and van der Meer, F. M. 2002 A simple space-time averaged porous media model for flow in densely vegetated channels. In Computational Methods in WaterResources (eds. S. M. Hassanizadeh, R. J. Schotting, W, G, Gray and G. F. Pinder.) Vol. 2., Elsevier, Amsterdam. [1.8]

    Google Scholar 

  • Howells, I. D. 1998 Drag on fixed beds of fibres in slow flow. J. Fluid Mech. 355, 163-192. [1.5.3]

    Google Scholar 

  • Hsu, C. T. and Cheng, P. 1990 Thermal dispersion in a porous medium. Int. J. Heat Mass Transfer 33, 1587-1597. [1.5.2, 1.5.3, 2.2.4, 4.9]

    Google Scholar 

  • Hsu, C. T., Fu, H. L. and Cheng, P. 1999 On pressure-velocity correlation of steady and oscillating flows in generators made of wire screens. ASME. Fluids Engng. 121, 52-56. [1.5.2]

    Google Scholar 

  • Huang, H. and Ayoub, J. 2008 Applicability of the Forchheimer equation for non-Darcy flow in porous media. SPE Journal 13, 112-122. [1.5.2]

    Google Scholar 

  • Inoue, M. and Nakayama, A. 1998 Numerical modeling of non-Newtonian fluid flow in a porous medium using a three-dimensional periodic array. ASME J. Fluids Engng. 120, 131-135. [1.5.4]

    Google Scholar 

  • Irmay, S. 1958 On the theoretical derivation of Darcy and Forchheimer formulas. Eos, Trans. AGU 39, 702-707. [1.5.2]

    Google Scholar 

  • Jäger, W. and Mikelič, A. 2000 On the interface boundary condition of Beavers, Joseph and Saffman. SIAM J. Appl. Math. 60, 1111-1127. [1.6]

    Google Scholar 

  • Jäger, W. and Mikelič, A. 2009 Modeling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization. Transp. Porous Media. 78, 489-508. [1.6]

    Google Scholar 

  • Jäger, W. and Mikelič, A. 2010 Letter to the Editor: Coments on “About the Beavers and Joseph boundary condition”. Transp. Porous Media 83, 267-268. [1.6]

    Google Scholar 

  • Jäger, W., Mikelič, A. and Neuss, N. 2001 Asymptotic analysis of the laminar viscous flow over a porous bed. SIAM J. Sci. Comp. 22, 2006-2028. [1.6]

    Google Scholar 

  • James, D. F. and Davis, A. M. 2001 Flow at the interface of a model fibrous porous medium. J. Fluid Mech. 426, 47-72. [1.6]

    Google Scholar 

  • Jamet, D. and Chandesris, M. 2009 On the intrinsic nature of jump coefficients at the interface between a porous medium and a free fluid region. Int. J. Heat Mass Transfer 52, 289-300. [1.6]

    Google Scholar 

  • Jamet, D., Chandesris, M. and Goyeau, B. 2009 On the equivalence of the discontinuous one- and two-domain approaches for the modeling of transport phenomena at the fluid/porous interface. Transp. Porous Media 78, 403-418. [1.6]

    Google Scholar 

  • Joly, N., Bernard, D. and Menegazzi, P. 1996 ST2D3D: An FE program to compute stability criteria for natural convection in complex porous structures. Numer. Heat Transfer B 29, 91-112. [1.9]

    Google Scholar 

  • Jones, I. P. 1973 Low Reynolds number flow past a porous spherical shell. Proc. Camb. Phil. Soc. 73, 231-238. [1.6]

    Google Scholar 

  • Joseph, D. D., Nield, D. A. and Papanicolaou, G. 1982 Nonlinear equation governing flow in a saturated porous medium. Water Resources Res. 18, 1049-1052 and 19, 591. [1.5.2]

    Google Scholar 

  • Kaviany, M. 1995 Principles of Heat Transferin Porous Media, Second Edition, Springer, New York. [1.5.2, 6.10]

    Google Scholar 

  • Kelliher, J. P., Teman, R. and Wang, X. M. 2011 Boundary layer associated with the Darcy-Brinkman-Boussinesq model for convection in porous media. Physica D 240, 619-628 [1.6]

    Google Scholar 

  • Khaled, A. R. A. and Vafai, K. 2003 The role of porous media in modeling flow and heat transfer in biological tissues. Int. J. Heat Mass Transfer 46, 4989-5003. [1.9, 2.6]

    Google Scholar 

  • Knupp, P. M. and Lage, J. L. 1995 Generalization of the Forchheimer-extended Darcy flow model to the tensor permeability case via a variational principle. J. Fluid Mech. 299, 97-104. [1.5.2]

    Google Scholar 

  • Koponen, E., Kandhai, D., Hellén, E., Alava, M., Hoekstra, A., Kataja, M, Niskasen, K., Sloot, P. and Timonen, J. 1998 Permeability of three-dimensional random fiber web. Phys. Rev. lett. 80, 716-719. [1.5.2]

    Google Scholar 

  • Kubik, J. and Cieszko, M. 2005 Analysis of matching conditions at the bounding surface of a fluid-saturated porous solid and a bulk fluid: the use of Lagrange multipliers. Cont. Mech. Therm. 17, 351-359. [1.6]

    Google Scholar 

  • Kulacki, F. A. and Rajen, G. 1991 Buoyancy-induced flow and heat transfer in saturated fissured media. Convective Heat and MassTransfer in Porous Media,(eds. S. Kakaç, B. Kilkis, F. A. Kulacki and F. Arinç), Kluwer Academic Publishers, Dordrecht, 465-498. [1.9]

    Google Scholar 

  • Kuwahara, F. and Nakayama, A. 1998 Numerical modelling of non-Darcy convective flow in a porous medium. Heat Transfer 1998, Proc. 11th IHTC, 4, 411-416. [1.5.2, 1.8]

    Google Scholar 

  • Kuwahara, F. Yamane, I. and Nakayama, A. 2006 Large eddy simulation of turbulent flow in porous media. Int. Comm. Heat Mass Transfer 33, 411-418. [1.8]

    Google Scholar 

  • Kuwahara, F., Kameyama, Y., Yamashita, S. and Nakayama, A. 1998 Numerical modeling of turbulent flow in porous media using a spatially periodic array. J. Porous Media 1, 47-55. [1.8]

    Google Scholar 

  • Kuwahara, F., Nakayama, A. and Koyama, H. 1996 A numerical study of thermal dispersion in porous media. ASME J. Heat Transfer 118, 756-761. [2.2.4]

    Google Scholar 

  • Kuznetsov, A. V. 1996a Analytical investigation of the fluid flow in the interface region between a porous medium and a clear fluid in channels partially filled with a porous medium. Appl. Sci. Res. 56, 53-67. [1.6]

    Google Scholar 

  • Kuznetsov, A. V. 1997b Influence of the stress jump condition at the porous-medium/clear-fluid interface on a flow at a porous wall. Int. Comm. Heat Mass Transfer 24, 401-410. [1.6]

    Google Scholar 

  • Kuznetsov, A. V. 2004a Effect of turbulence on forced convection in a composite tube partly filled with a porous medium. J. Porous Media 7, 59-64. [4.11]

    Google Scholar 

  • Kuznetsov, A. V. and Xiong, M. 2003 Development of an engineering approach to computations of turbulent flows in composite porous/fluid domains. Int. J. Therm. Sci. 42, 9123-919. [1.8]

    Google Scholar 

  • Laakkonen, K. 2003 Method to model dryer fabrics in paper machine scale using small-scale simulations and porous medium model. Int. J. Heat Fluid Flow 24, 114-121. [1.8]

    Google Scholar 

  • Lage, J. L. 1992 Effect of the convective inertia term on Bénard convection in a porous medium. Numer. Heat Transfer A 22, 469-485. [1.5.2]

    Google Scholar 

  • Lage, J. L. 1993a Natural convection within a porous medium cavity: predicting tools for flow regime and heat transfer. Int. Comm. Heat Mass Transfer 20, 501-513. [1.5.2, 6.6]

    Google Scholar 

  • Lage, J. L. 1997 Contaminant clean-up in a single rock fracture with porous obstructions. ASME J. Fluids Engng. 119, 180-187. [1.4.1, 1.9]

    Google Scholar 

  • Lage, J. L. 1998 The fundamental theory of flow through permeable media: from Darcy to turbulence. Transport Phenomena in PorousMedia (eds. D.B. Ingham and I. Pop), Elsevier, Oxford, pp.1-30. [1.5.2, 1.8]

    Google Scholar 

  • Lage, J. L. and Antohe, B. V. 2000 Darcy’s experiments and the deviation to nonlinear flow regime. ASME J. Fluids Engng. 122, 619-625. [1.5.2]

    Google Scholar 

  • Lage, J. L., Antohe, B. V. and Nield, D. A. 1997 Two types of nonlinear pressure-drop versus flow rate relation observed for saturated porous media. ASME J. Fluids Engng. 119, 701-706. [1.5.2]

    Google Scholar 

  • Lage, J. L., de Lemos, M. J. S. and Nield, D. A. 2002 Modeling turbulence in porous media. In Transport Phenomena in PorousMedia II (D. B. Ingham and I. Pop, eds.) Elsevier, Oxford, pp. 198-230. [1.8]

    Google Scholar 

  • Lage, J. L., Krueger, P. S. and Narasimhan, A. 2005 Protocol for measuring permeability and form coefficient of porous media. Phys. Fluids 17, art. no. 088101. [1.5.2]

    Google Scholar 

  • Lage, J. L., Merrikh, A. A. and Kulish, V.V. 2004a A porous medium model to investigate the red cell distribution effect on alveolar respiration. In Emerging Technologies and Techniquesin Porous Media (D. B. Ingham, A. Bejan, E. Mamut and I. Pop, eds), Kluwer Academic, Dordrecht, pp. 381-407. [1.9]

    Google Scholar 

  • Layton, W., Schieweck, F. and Yotov, I 2003 Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40, 2195-2218. [1.6]

    Google Scholar 

  • Lee, J. S. and Ogawa, K. 1994 Pressure drop through packed bed. J. Chem. Engrg Japan 27, 691-693. [1.5.2]

    Google Scholar 

  • Lee, S. L. and Yang, J. H. 1997 Modelling of Darcy-Forchheimer drag for fluid flow across a bank of circular cylinders. Int. J. Heat Mass Transfer 40, 3149-3155. [1.5.2}

    Google Scholar 

  • Levy, A., Levi-Hevroni, D., Sorek, S. and Ben-Dor, G. 1999 Derivation of Forchheimer terms and their verification by applications to waves propagated in porous media. Int. J. Multiphase Flows 25, 683-704. [1.5.2]

    Google Scholar 

  • Levy, T. 1981 Loi de Darcy ou loi de Brinkman? C. R. Acad. Sci. Paris, Sér. II 292, 872-874. [1.5.3]

    Google Scholar 

  • Levy, T. 1990 Écoulement dans un milieu poreux avec fissures unidirectionelles. C.R. Acad. Sci. Paris, Sér. II, 685-690. [1.9]

    Google Scholar 

  • Li, Y. and Park, C. W. 1998 Permeability of packed beds filled with polydiverse spherical particles. Ind. Eng. Chem Res. 37, 2005-2011. [1.4.2]

    Google Scholar 

  • Liu, S. and Masliyah, J. H. 1998 On non-Newtonian fluid flow in ducts and porous media. Chem. Engng. Sci. 53, 1175-1201. [1.5.4]

    Google Scholar 

  • Liu, S. and Masliyah, J. H. 2005 Dispersion in porous media. Handbook of Porous Media (ed. K. Vafai), 2nd ed., Taylor and Francis, Boca Raton, FL, pp. 81-140. [1.5.1, 2.2.4]

    Google Scholar 

  • Liu, S., Afacan, A. and Masliyah, J. 1994 Steady incompressible laminar flow in porous media. Chem. Engng Sci. 49, 3565-3586. [1.4.2]

    Google Scholar 

  • Liu, Y. 2009 Convergence and continuous dependence for the Brinkman-Forchheimer equations. Math. Comput. Modell. 49, 1401-1415. [1.5.3]

    Google Scholar 

  • Lundgren, T. S. 1972 Slow flow through stationary random beds and suspensions of spheres. J. Fluid Mech. 51, 273-299. [1.5.3]

    Google Scholar 

  • Ma, H. and Ruth, D. W. 1993 The microscopic analysis of high Forchheimer number flow in porous media. Transport Porous Media 13, 139-160. [1.5.2]

    Google Scholar 

  • Macdonald, I. F., El-Sayed, M. S., Mow, K. and Dullien, F. A. L. 1979 Flow through porous media: The Ergun equation revisited. Ind. Chem. Fundam. 18, 199-208. [1.5.2]

    Google Scholar 

  • Macedo, H. H., Costa, U. M. S. and Almeido, M. P. 2001 Turbulent effects on fluid flow through disordered porous media. Physica A 299, 371-377. [1.8]

    Google Scholar 

  • Madani, B., Tobin, F., Rigollet, F. and Tadrist, L. 2007 Flow laws in metallic foams: Experimental determination of inertial and viscous contributions. J. Porous Media 10, 51-70. [1.5.3]

    Google Scholar 

  • Maier, R. S., Kroll, D. M., Davis, H. T. and Bernard, R. S. 1998 Simulation of flow through bead packs using the lattice Boltzmann method. Phys. Fluids 10, 60-74. [1.9]

    Google Scholar 

  • Manole, D. M. and Lage, J. L. 1993 The inertial effect on the natural convection flow within a fluid saturated porous medium. Int. J. Heat Fluid Flow 14, 376-384. [1.5.2]

    Google Scholar 

  • Martys, N., Bentz, D. P. and Garboczi, E. J. 1994 Computer simulation study of the effective viscosity in Brinkman equation. Phys. Fluids 6, 1434-1439. [1.5.3]

    Google Scholar 

  • Marys, N. S. 2001 Improved approximation of the Brinkman equation using a lattice Boltzmann method. Phys. Fluids 13, 1807-1810. [1.5.3]

    Google Scholar 

  • Masuoka, T. and Takatsu, Y. 1996 Turbulence model for flow through porous media. Int. J. Heat Mass Transfer 39, 2803-2809. [1.8]

    Google Scholar 

  • Masuoka, T. and Takatsu, Y. 2002 Turbulence characteristics in porous media. In Transport Phenomena in PorousMedia II (D. B. Ingham and I. Pop, eds.) Elsevier, Oxford, pp. 231-256. [1.8]

    Google Scholar 

  • Mauran, S., Riguad, L. and Coudevylle, O. 2001 Application of the Carman-Kozeny correlation to a high porosity and anisotropic consolidated medium: The compressed expanded natural graphite. Transport Porous Media 43, 355-376. [1.4.2]

    Google Scholar 

  • Mei, C. C., Auriault, J. L. and Ng, C. O. 1996 Some applications of the homogenization theory. Adv. Appl. Mech. 32, 278-348. [1.4.4]

    Google Scholar 

  • Miglio, E., Quarteroni, A. and Saleri, F. 2003 Coupling of free surface and groundwater flows. Compt. Fluids 32, 73-83. [1.6]

    Google Scholar 

  • Miglio, E., Quarteroni, A. and Saleri, F. 2003 Coupling of free surface and groundwater flows. Comput. Fluids 32, 73-83. [1.6]

    Google Scholar 

  • Min, J. Y. and Kim, S. J. 2005 A novel methodology for thermal analysis of a composite system consisting of a porous medium and an adjacent fluid layer. ASME J. Heat Transfer 127, 648-656. [1.6, 2.4]

    Google Scholar 

  • Montillet, A. 2004 Flow through a finite packed bed of spheres: A note on the limit of applicability of the Forchheimer-type equation. ASME J. Fluids Engng. 126, 139-143. [1.5.2]

    Google Scholar 

  • Murdoch, A. and Soliman, A. 1999 On the slip-boundary condition for liquid flow over planar boundaries. Proc. Roy. Soc. Lond. A . 455, 1315-1340. [1.6]

    Google Scholar 

  • Naakteboren, C., Krueger, P. S. and Lage, J. L. 2012 Inlet and outlet pressure-drop effects on the determination of permeability and form coefficient of a porous medium. ASME J. Fluids Engng. 134, 051209. [1.5.2]

    Google Scholar 

  • Nakayama, A. and Kuwahara, F. 1999 A macroscopic turbulence model for flow in a porous medium. ASME J. Fluids Engng. 121, 427-433. [1.8]

    Google Scholar 

  • Nakayama, A. and Kuwahara, F. 2000 Numerical modeling of convective heat transfer in porous media using microscopic structures. Handbook of Porous Media (K. Vafai, ed.), Marcel Dekker, New York., pp. 441-488. [1.8]

    Google Scholar 

  • Nakayama, A. and Kuwahara, F. 2005 Three-dimensional numerical models for periodically-developed heat and fluid flows within porous media. In Transport Phenomena in PorousMedia III, (eds. D. B. Ingham and I. Pop), Elsevier, Oxford, pp. 174-200. [1.8]

    Google Scholar 

  • Nakayama, A., Kuwahara, F. and Hayashi, T. 2004 Numerical modeling for three-dimensional heat and fluid flow through a bank of cylinders with yaw. J. Fluid Mech. 498, 139-159. [1.8]

    Google Scholar 

  • Nakayama, A., Kuwahara, F., Kawamura, Y. and Koyama, H. 1995 Three-dimensional numerical simulation of flow through microscopic porous structure. Proc. ASME/JSME Thermal Engineering Conf., vol. 3, pp. 313-318. [1.5.2]

    Google Scholar 

  • Nassehi, V. 1998 Modelling of combined Navier-Stokes and Darcy flows in crossflow membrane filtration. Chem. Engng. Sci. 53, 1253-1265. [1.6]

    Google Scholar 

  • Neale, G. and Nader, W. 1974 Practical significance of Brinkman’s extension of Darcy’s law: coupled parallel flows within a channel and a bounding porous medium. Canad. J. Chem. Engng. 52, 475-478. [1.6]

    Google Scholar 

  • Nepf, H. M. 1999 Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resources Res. 35, 479-489. [1.8]

    Google Scholar 

  • Nield, D. A 2009b The modeling of form drag in a porous medium saturated by a power-law fluid. ASME Journal of HeatTransfer 131, #104501. [1.5.2]

    Google Scholar 

  • Nield, D. A. 1983 The boundary correction for the Rayleigh-Darcy problem: limitations of the Brinkman equation. J. Fluid Mech. 128, 37-46. Corrigendum 150, 503. [1.6, 6.19.1.2]

    Google Scholar 

  • Nield, D. A. 1994b Modelling high speed flow of a compressible fluid in a saturated porous medium. Transport in Porous Media 14, 85-88. [1.5.1]

    Google Scholar 

  • Nield, D. A. 1997a Discussion of a discussion by F. Chen and C.F. Chen. ASME J. Heat Transfer 119, 193-194. [1.6]

    Google Scholar 

  • Nield, D. A. 1997c Comments on “Turbulence model for flow through porous media”. Int. J. Heat Mass Transfer 40, 2499. [1.8]

    Google Scholar 

  • Nield, D. A. 2001b Alternative models of turbulence in a porous medium, and related matters. ASME J. Fluids Engng. 123, 928-931. [1.8]

    Google Scholar 

  • Nield, D. A. 2003 The stability of flow in a channel or duct occupied by a porous medium. Int. J. Heat Mass Transfer 46, 4351-4354. [1.8]

    Google Scholar 

  • Nield, D. A. 2009a Closure to “Discussion of ‘The modeling of viscous dissipation in a saturated porous medium.’ “ (2009, ASME J. Heat Transfer, 131, p. 025501), ASME J. Heat Transfer 131, #025502. [2.2.2]

    Google Scholar 

  • Nield, D. A. 2009c The Beavers-Joseph boundary condition and related matters: A historical and critical note. Transp. Porous Media 78, 537-540. [1.6]

    Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2005c Heat transfer in bidisperse porous media. In Transport Phenomena in PorousMedia III, (eds. D. B. Ingham and I. Pop), Elsevier, Oxford, pp. 34-59. [4.16.4]

    Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2009a Forced convection with laminar pulsating counterflow in a saturated porous channel. ASME J. Heat Transfer 131, #101005. [2.6, 4.16.2]

    Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2009b The Cheng-Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid. Int. J. Heat Mass Transfer 52, 5792-5795. [9.7]

    Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2009c The effect of a transition layer between a fluid and a porous medium: shear flow in a channel. Transp. Porous Media 78, 477-487. [1.6]

    Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2009d Thermal instability in a porous medium layer saturated by a nanofluid. Int. J. Heat Mass Transfer 52, 5796-5801. [3.8,9.7]

    Google Scholar 

  • Nield, D. A. and Lage, J. L. 1997 Discussion of a Discussion by K. Vafai and S.J. Kim. ASME J. Heat Transfer 119, 195-197. [1.5.3]

    Google Scholar 

  • Ochoa-Tapia, J. A. and Whitaker, S. 1995a Momentum transfer at the boundary between a porous medium and a homogeneous fluid — I. Theoretical development. Int. J. Heat Mass Transfer 38, 2635-2646. [1.5.3, 1.6]

    Google Scholar 

  • Ochoa-Tapia, J. A. and Whitaker, S. 1995b Momentum transfer at the boundary between a porous medium and a homogeneous fluid—II. Comparison with experiment. Int. J. Heat Mass Transfer 38, 2647-2655. [1.6]

    Google Scholar 

  • Ochoa-Tapia, J. A. and Whitaker, S. 1998 Momentum jump condition at the boundary between a porous medium and a homogeneous fluid: Inertia effects. J. Porous Media 1, 201-207. [1.6]

    Google Scholar 

  • Ochoa-Tapia, J. A., Valdes-Parada, F. J. and Alvarez-Ramirez, J. 2007 A fractional-order Darcy’s law. Physica A 374, 1-14. [1.4.3]

    Google Scholar 

  • Panilov, M. and Fourar, M. 2006 Physical splitting of nonlinear effects in high-velocity stable flow through porous media. Adv. Water Resources 29, 30-41. [1.5.2]

    Google Scholar 

  • Papathanasiou, T. D., Markicevic, B. and Dendy, E. D. 2001 A computational evaluation of the Ergun and Forchheimer equations for fibrous porous media. Phys. Fluids 13, 2795-2804. [1.5.2]

    Google Scholar 

  • Payne, L. E. and Song, J. C. 1997 Spatial decay estimates for the Brinkman and Darcy flows in a semi-infinit cylinder. Cont. Mech. Thermodyn. 9, 175-190. [1.5.3]

    Google Scholar 

  • Payne, L. E. and Song, J. C. 2000 Spatial decay for a model of double diffusive convection in Darcy and Brinkman flow. Z. Angew. Math. Phys. 51, 867-889. [1.5.3]

    Google Scholar 

  • Payne, L. E. and Song, J. C. 2002 Spatial decay bounds for the Forchheimer equation. Int. J. Engng. Sci. 40, 943-956. [1.5.3]

    Google Scholar 

  • Payne, L. E. and Straughan, B. 1998a Analysis of the boundary condition at the interface between a viscous fluid and a porous medium and related modelling questions. J. Math. Pures Appl. 77, 317-354. [1.6]

    Google Scholar 

  • Payne, L. E. and Straughan, B. 1998b Structure stability for the darcy equations of flow in porous media. Proc. Roy. Soc. Lond. A. 454, 1691-1698. [1.5.3]

    Google Scholar 

  • Payne, L. E. and Straughan, B. 1999 Convergence and continuous dependence for the Brinkman-Focrchheimer equations. Stud. Appl. Math. 102, 419-439. [1.5.3]

    Google Scholar 

  • Payne, L. E., Rodriigues, J. F. and Straughan, B. 2001 Effect of anisotropic permeability on Darcy’s law. Math. Meth. Appl. Sci. 24, 427-438. [1.5.3]

    Google Scholar 

  • Payne, L., Song, J. and Straughan, B. 1999 Continuous dependence and convergence results for Brinkman and Forchheimer models with variable viscosity. Proc. Roy. Soc. Londaon A 455, 2173-2190. [1.5.3]

    Google Scholar 

  • Pedras, M. H. J. and de Lemos, M. J. S. 2000 On the definition of turbulent kinetic energy for flow in porous media. Int. Comm. Heat Mass Transfer 27, 211-220. [1.8]

    Google Scholar 

  • Pedras, M. H. J. and de Lemos, M. J. S. 2001a Macroscopic turbulence modeling for incompressible flow through undeformable porous media. Int. J. Heat Mass Transfer 44, 1081-1093. [1.8]

    Google Scholar 

  • Pedras, M. H. J. and de Lemos, M. J. S. 2001b Simulation of turbulent flow in porous media using a spatially periodic array and low Re two-equation closure. Numer. Heat Transfer A 39, 35-59. [1.8]

    Google Scholar 

  • Pedras, M. H. J. and de Lemos, M. J. S. 2001c On the mathematical description and simulation of turbulent flow in a porous medium formed by an array of elliptical rods. ASME J. Fluids Engng. 123, 941-947. [1.8]

    Google Scholar 

  • Pedras, M. H. J. and de Lemos, M. J. S. 2003 Computation of turbulent flow in porous media using a low Reynolds number k - ε model and an infinite array of transversely displaced elliptic rods. Numer. Heat Transfer A 43, 585-602. [1.8]

    Google Scholar 

  • Pinson, F., Gregoire, O. and Simonin, O. 2006 Kappa-epsilon macroscale modeling of turbulence based on a two-scale analysis in porous media. Int. J. Heat Fluid Flow 27, 955-966. [1.8]

    Google Scholar 

  • Pinson, F., Gregoire, O. and Simonin, O. 2007 Macroscale turbulence modeling for flows in media laden with solid structures. Comptes Rendus Mecanique 335, 13-19. [1.8]

    Google Scholar 

  • Prescott, P. J. and Incropera, F. P. 1995 The effect of turbulence on solidification of binary metal alloy with electromagnetic stirring. ASME J. Heat Transfer 117, 716-724. [1.8, 10.2.3]

    Google Scholar 

  • Rahli, O., Tadrist, L., Miscevic, M. and Santini, R. 1997 Fluid flow through randomly packed monodisperse fibers: the Kozeny-Carman parameter analysis. ASME J. Fluids Engng. 119, 188-192. [1.4.2]

    Google Scholar 

  • Richardson, S. 1971 A model for the boundary condition of a porous material. Part 2. J. Fluid Mech. 49, 327-336. [1.6]

    Google Scholar 

  • Rocamora, F. D. and de Lemos, M. J. S. 2000 Analysis of convective heat transfer for turbulent flow in saturated porous media. Int. Comm. Heat Mass Transfer 27, 825-834. [1.8]

    Google Scholar 

  • Royer, P., Auriault, J. L. and Boutin, C. 1995 Contribution de l’homogénéisation à l’étude de la filtration d’un fluide en mileux poreux fracturé. Rev. Inst. Franc. Petr. 50, 337-352. [1.9]

    Google Scholar 

  • Rubinstein, J. 1986 Effective equations for flow in random porous media with a large number of scales. J. Fluid Mech. 170, 379-383. [1.5.3]

    Google Scholar 

  • Rudraiah, N. 1985 Coupled parallel flows in a channel and a bounding porous medium of finite thickness. ASME J. Fluids Engng. 107, 322-329. [1.6]

    Google Scholar 

  • Rudraiah, N. 1988 Turbulent convection in porous media with non-Darcy effects. ASME HTD 96, vol. 1, 747-754. [1.8]

    Google Scholar 

  • Saez, A. E., Perfetti, J. C. and Rusinek, I. 1991 Prediction of effective diffusivities in porous media using spatially periodic models. Transport Porous Media 11, 187-199. [1.5.2]

    Google Scholar 

  • Saffman, P. 1971 On the boundary condition at the surface of a porous medium. Stud. Appl. Math. 50, 93-101. [1.6]

    Google Scholar 

  • Saghir, M. Z., Nejad, M., Vaziri, H. H. and Islam, M. R. 2001 Modeling of heat and mass transfer in a fractured porous medium. Int. J. Comput. Fluid Dyn. 15, 279-292. [1.9]

    Google Scholar 

  • Sahimi, M. 1993 Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata, and simulated annealing. Rev. Mod. Phys. 65, 1393-1534. [1.9]

    Google Scholar 

  • Sahimi, M. 1995 Flow and Transport inPorous Media and Fractured Rock. VCH Verlagsgesellschaft, Weinheim. [1.9]

    Google Scholar 

  • Sahraoui, M. and Kaviany, M. 1992 Slip and no-slip velocity boundary conditions at the interface of porous, plain media. Int. J. Heat Mass Transfer 35, 927-943. [1.6]

    Google Scholar 

  • Saito, M. B. and de Lemos, J. S. 2006 A correlation for interfacial heat transfer coefficient for turbulent flow over an array of square rods. ASME J. Heat Transfer 128, 444-452. [1.8]

    Google Scholar 

  • Saito, M. B. and de Lemos, M. J. S. 2009 Laminar heat transfer in a porous channel simulated with a two-energy equation model. Int. Comm. Heat Mass Transfer 36, 1002-1007. [1.8]

    Google Scholar 

  • Saito, M. B. and de Lemos, M. J. S. 2010 A macroscopic two-energy equation model for turbulent flow and heat transfer in highly porous media. Int.J. Heat Mass Transfer 53, 2424-2433. [1.8]

    Google Scholar 

  • Sakamoto, H. and Kulacki, F. A. 2008 Effective thermal diffusivity of porous media in the wall vicinity. ASME J. Heat Transfer 130, #022601. [1.7]

    Google Scholar 

  • Salinger, A. G., Aris, R. and Derby, J. J. 1994a Finite element formulations for large-scale, coupled flows in adjacent porous and open fluid domains. Int. J. Numer. Meth. Fluids 18, 1185-1209. [1.6]

    Google Scholar 

  • Scheidegger, A. E. 1974 The Physics of Flowthrough Porous Media, University of Toronto Press, Toronto. [1.2]

    Google Scholar 

  • Seguin, D., Montillet, A., Comiti, J. and Huet, F. 1998 Experimental characterization of flow regimes in various porous media – II: Transition to turbulent regime. Chem. Engng. Sci. 53, 3897-3909. [1.8]

    Google Scholar 

  • Shah, C. B. and Yortsos, Y. C. 1995 Aspects of flow of power-law fluids in porous media. AIChE J. 41, 1099-1112. [1.5.4]

    Google Scholar 

  • Shavit, U., Bar-Yosef, G., Rosenzweig, R. and Assouline, S. 2002 Modified Brinkman equation for a free flow problem at the interface of porous surfaces: The Cantor-Taylor brush configuration case. Water Resour. Res. 38, 1320-1334. [1.6}

    Google Scholar 

  • Shavit, U., Rosenzweig, R. and Assouline, S. 2004 Free flow at the interface of porous surfaces: A generalization of the Taylor brush configuration. Transport Porous Media. 54, 345-360. [1.6]

    Google Scholar 

  • Shenoy, A. V. 1994 Non-Newtonian fluid heat transfer in porous media. Adv. Heat Transfer 24, 101-190. [1.5.4]

    Google Scholar 

  • Silva, R. A. and de Lemos, M. J. S. 2003a Numerical analysis of the stress jump interface condition for laminar flow over a porous layer. Numer. Heat Transfer A 43, 603-617. [1.6]

    Google Scholar 

  • Silva, R. A. and de Lemos, M. J. S. 2003b Turbulent flow in a channel occupied by a porous layer considering the stress jump at the interface. Int. J. Heat Mass Transfer 46, 5113-5136. [1.8]

    Google Scholar 

  • Siyyam, H., Merabet, N. and Hamdan, M. H. 2007 Standard numerical schemes for coupled parallel flow over porous layers. Appl. Math. Comput. 194, 38-45. [1.6]

    Google Scholar 

  • Skjetne, E. and Auriault, J. L. 1999a New insights on steady, nonlinear flow in porous media. Europ. J. Mech. B – Fluids 18, 131-145. [1.5.2]

    Google Scholar 

  • Skjetne, E. and Auriault, J. L. 1999b Homogenization of wall-slip gas flow through porous media. Transport Porous Media 36, 293-306. [1.6]

    Google Scholar 

  • Somerton, C. W. and Catton, I. 1982 On the thermal instability of superimposed porous and fluid layers. ASME J. Heat Transfer 104, 160-165. [1.6, 6.19.1.2, 6.19.2]

    Google Scholar 

  • Song, J. 2002 Spatial decay estimate in time-dependent double-diffusive Darcy plane flow. J. Math. Anal. Appl. 267, 76-88. [1.5.3]

    Google Scholar 

  • Straughan, B. 2004b The Energy Method, Stability,and Nonlinear Convection, 2nd ed., Springer, New York. [1.6, 6.4, 6.19.3, 11.2, 11.3]

    Google Scholar 

  • Straughan, B. 2010a Green-Naghdi fluid with non-thermal equilibrium effects. Proc Roy. Soc. Lond. A 466, 2021-2032. [6.23]

    Google Scholar 

  • Straughan, B. 2010b Porous convection with Cattaneo heat flux. Int. J. Heat Mass Transfer 53, 2808-2812. [6.24]

    Google Scholar 

  • Straughan, B. 2010c Structure of the dependence of Darcy and Forchheimer coefficients on porosity. Int. J. Engng. Sci. 48, 1610-1621. [1.5.2]

    Google Scholar 

  • Takatsu, Y. and Masuoka, T. 1998 Turbulent phenomena in flow through porous media. J. Porous Media 1, 243-251. [1.8]

    Google Scholar 

  • Tam, C. K. W. 1969 The drag on a cloud of spherical particles in low Reynolds number flow. J. Fluid Mech. 38, 537-546. [1.5.3]

    Google Scholar 

  • Taylor, G. I. 1971 A model for the boundary condition of a porous material, Part 1. J. Fluid Mech. 49, 319-326. [1.6]

    Google Scholar 

  • Teng, H. and Zhao, H. 2000 An extension of Darcy’s law to non-Stokes flow in porous media. Chem. Eng. Sci. 55, 2727-2735. [1.5.2]

    Google Scholar 

  • Toutant, A., Chandesris, M. and Jamet, D. 2009 Jump conditions for filtered quantities at an under-resolved discontinuous interface. Part I; Theoretical development. Int. J. Multiphase Flow 35, 1100-1118. [1.6]

    Google Scholar 

  • Travkin, V. and Catton, I. 1995 A two-temperature model for turbulent flow and heat transfer in a porous layer. ASME J. Fluids Engng. 117, 181-188. [1.8]

    Google Scholar 

  • Travkin, V. S. and Catton, I. 1994 Turbulent transport of momentum, heat and mass in a two-level highly porous medium. Heat Transfer 1994, Inst. Chem. Engrs, Rugby, vol. 6, pp. 399-404. [1.8]

    Google Scholar 

  • Travkin, V. S. and Catton, I. 1998 Porous media transport descriptions – non-local, linear and nonlinear against effective thermal/fluid properties. Adv. Colloid Interface Sci. 77, 389-443. [1.8]

    Google Scholar 

  • Vadasz, P. 1999a Local and global transitions to chaos and hysteresis in a porous layer heated from below. Transport Porous Media 37, 213-245. [6.4]

    Google Scholar 

  • Vadasz, P. 1999b A note and discussion on J.-L. Auriault’s letter “Comments on the paper ‘Local and global transitions to chaos and hysteresis in a porous layer heated from below’ by P. Vadasz.” Transport Porous Media 37, 251-254. [6.4]

    Google Scholar 

  • Vafai, K. and Kim, S. J. 1997 Closure. ASME J. Heat Transfer 119, 197-198. [1.5.3]

    Google Scholar 

  • Vafai, K. and Tien, C. L. 1982 Boundary and inertial effects on convective mass transfer in porous media. Int. J. Heat Mass Transfer 25, 1183-1190. [1.5.3]

    Google Scholar 

  • Vafai, K. and Tien, C.L. 1981 Boundary and inertia effects on flow and heat transfer in porous media. Int. J. Heat Transfer 24, 195-203. [1.5.3, 4.9]

    Google Scholar 

  • Vafai, K., Bejan, A., Minkowycz, W. J. and Khanafer, K. 2006 A critical synthesis of pertinent models for turbulent transport through porous media. In Handbook of Numerical HeatTransfer (W. J. Minkowycz, E. M. Sparrow, J. Y. Murthy, eds.), 2nd ed., Wiley, New York, pp. 389-416. [1.8]

    Google Scholar 

  • Vafai, K., Minkowycz, W. J., Bejan, A. and Khanafer, K. 2006 Synthesis of models for turbulent transport through porous media. Handbook of Numerical HeatTransfer (eds. W. J. Minkowycz and E. M. Sparrow), Wiley, New York, ch. 12. [1.8]

    Google Scholar 

  • Valdes-Parada, F. J., Alvarez-Ramirez, J., Goyeau, B. and Ochoa-Tapia, J. A. 2009a Computation of jump coefficients for momentum transfer between a porous medium and a fluid using a closed generalized transfer equation. Transp. Porous Media 78, 439-457. [1.6]

    Google Scholar 

  • Valdes-Parada, F. J., Alvarez-Ramirez, J., Goyeau, B. and Ochoa-Tapia, J. A. 2009b Jump condition for diffusive and convective mass transfer between a porous medium and a fluid involving adsorption and chemical reaction. Transp. Porous Media 78, 459-476. [2.4]

    Google Scholar 

  • Valdes-Parada, F. J., Goyeau, B. and Ochoa-Tapia, J. A. 2007 Jump momentum boundary condition at a fluid-porous dividing surface: Derivation of the closure problem. Chem. Engng. Sci. 62, 4025-4039. [1.6]

    Google Scholar 

  • Valdes-Parada, F. J., Ochoa-Tapia, J. A. and Alvarez-Ramirez, J. 2007 On the effective viscosity for the Darcy-Brinkman equation. Physica A 385, 69-79. [1.5.3]

    Google Scholar 

  • Venkataraman, P. and Rao, P. R. M. 2000 Validation of Forchheimer’s law for flow through porous media with converging boundaries. J. Hydr. Engng. 126, 63-71. [1.5.2]

    Google Scholar 

  • Wang, H. and Takle, E. 1995 Boundary-layer flow and turbulence near porous obstacles. Boundary-Layer Meteor. 74, 73-88. [1.8]

    Google Scholar 

  • Wang, X., Thauvin, F. and Mohanty, K. K. 1999 Non-Darcy flow through anisotropic porous media. Chem. Engng. Sci. 54, 1859-1869. [1.5.2]

    Google Scholar 

  • Ward, J. C. 1964 Turbulent flow in porous media. ASCE J. Hydraul. Div. 90 (HY5), 1-12. [1.5.2, 10.1.6]

    Google Scholar 

  • Weinert, A. and Lage, J. L. 1994 Porous aluminum-alloy based cooling devices for electronics. SMU-MED-CPMA Inter. Rep. 1.01/94, Southern Methodist University, Dallas, TX. [1.5.3]

    Google Scholar 

  • Whitaker, S. 1986 Flow in porous media J: A theoretical derivation of Darcy’s law. Transport in Porous Media 1, 3-25. [1.4.3]

    Google Scholar 

  • Whitaker, S. 1996 The Forchheimer equation: a theoretical development. Transport in Porous Media 25, 27-61. [1.5.2]

    Google Scholar 

  • Whitaker, S. 1999 The Method of VolumeAveraging. Springer, New York. [1.1, 3.5]

    Google Scholar 

  • Wooding, R. A. 1957 Steady state free thermal convection of liquid in a saturated permeable medium. J. Fluid Mech. 2, 273-285. [1.5.1]

    Google Scholar 

  • Wu J. and Yu, B. 2007 A fractal resistance model for flow through porous media Int. J. Heat Mass Transfer 50, 3925-3932. [1.4.3]

    Google Scholar 

  • Yang, Y. T. and Hwang, C. Z. 2003 Calculation of turbulent flow and heat transfer in a porous-baffled channel. Int. J. Heat Mass Transfer 46, 771-780. [1.8]

    Google Scholar 

  • Yu, P., Lee, T. S., Zeng, Y. and Low, H. T. 2007 A numerical method for flows in porous and homogeneous fluid domains coupled at the interface by a stress jump. Int. J. Numer. Meth. Fluids 53, 1755-1775. [1.6]

    Google Scholar 

  • Zhang, X. Y. and Nepf, H. M. 2011 Exchange flow between open water and floating vegetation. Exp. Fluid Mech. 11, 531-546. [1.6]

    Google Scholar 

  • Zhu, J. and Kuznetsov, A. V. 2005 Forced convection in a composite parallel plate channel: modeling the effect of interface roughness and turbulence using a k-ε model. Int. Comm. Heat Mass Transfer 32, 10-18. [1.8]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald A. Nield .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nield, D.A., Bejan, A. (2013). Mechanics of Fluid Flow Through a Porous Medium. In: Convection in Porous Media. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5541-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5541-7_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5540-0

  • Online ISBN: 978-1-4614-5541-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics