Skip to main content

Current Status and Perspectives in Stem Cell Research

  • Chapter
  • First Online:
Stem Cells and Tissue Engineering

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

  • 1846 Accesses

Abstract

Research on stem cells is advancing knowledge about how an organism develops from a single cell and how healthy cells replace damaged cells in adult organisms. This promising area of science is also leading scientists to investigate the possibility of cell-based therapies to treat disease, which is often referred to as regenerative or reparative medicine.

Perfection is achieved, not when there is nothing more to add, but when there is nothing left to take away.

– Antoine de Saint Exupery

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkoff D, Wang J et al (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduced remodelling and improves cardiac function. Nat Med 7:430–436

    Article  Google Scholar 

  2. Obradovic S, Balint B, Rusovic S, Ristic-Angelkov A, Romanovic R, Baskot B et al (2004) The first experience with autologous bone marrow derived progenitor cell transfer for myocardial regeneration after acute infarction. Anesth Reanim Transf 32(1–2):39–50

    Google Scholar 

  3. Dai W, Kloner RA (2006) Myocardial regeneration by embryonic SC transplantation: present and future trends. Expert Rev Cardiovasc Ther 4(3):375–383

    Article  Google Scholar 

  4. Rogers I, Casper RF (2004) Umbilical cord blood SCs. Best Pract Res Clin Obstet Gynaecol 18(6):893–908

    Article  Google Scholar 

  5. Rangappa S, Fen C, Lee EH, Bongso A, Sim EK (2003) Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg 75:775–779

    Article  Google Scholar 

  6. Lakshmipathy U, Pelacho B, Sudo K, Linehan JL, Coucouvanis E, Kaufman DS, Verfaillie CM (2004) Efficient transfection of embryonic and adult stem cells. Stem Cells 22(4):531–543

    Article  Google Scholar 

  7. Hierlihy AM, Seale P, Lobe CG, Rudnicki MA, Megeney LA (2002) The post-natal heart contains a myocardial stem cell population. FEBS Lett 520:239–243

    Article  Google Scholar 

  8. Yau TM, Tomita S, Weisel RD, Jia Z-Q, Tumiati LC, Mickle DAG et al (2003) Beneficial effect of autologous cell transplantation on infarcted heart function: comparison between bone marrow stromal cells and heart cells. Ann Thorac Surg 75:169–177

    Article  Google Scholar 

  9. Dowell JD, Rubart M, Pasumarthi KBS, Soonpaa MH, Field LJ (2003) Myocyte and myogenic stem cell transplantation in the heart. Cardiovasc Res 58:333–347

    Article  Google Scholar 

  10. Shintani S, Murohara T, Ikeda H, Uenoi T, Honma T, Katoh A et al (2001) Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation 103:2776–2779

    Article  Google Scholar 

  11. Kuznetsov SA, Mankani MH, Gronthos S, Satomura K, Bianco P, Robey PG (2001) Circulating skeletal stem cells. J Cell Biol 153:1133–1139

    Article  Google Scholar 

  12. Brehm M, Zeus T, Strauer BE (2002) Stem cells-clinical application and perspectives. Herz 27(7):611–620

    Article  Google Scholar 

  13. Penn MS, Francis GS, Ellis SG, Young JB, McCarthy PM, Topol EJ (2002) Skeletal myoblast transplantation for the treatment of damage myocardium. Prog Cardiovasc Dis 45:21–32

    Article  Google Scholar 

  14. Rafii S, Lyden D (2003) Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 9(6):702–712

    Article  Google Scholar 

  15. Khakoo AY, Finkel T (2005) Endothelial progenitor cells. Annu Rev Med 56:79–101

    Article  Google Scholar 

  16. Hassink RJ, de la Rivere AB, Mummery CL, Doevendans PA (2003) Transplantation of cells for cardiac repair. J Am Coll Cardiol 41(5):771–777

    Article  Google Scholar 

  17. Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J et al (1999) Cardiomyocytes can be generated from stromal cells in vitro. J Clin Invest 103:697–705

    Article  Google Scholar 

  18. Murry CE, Wiseman RW, Schwartz SM, Hauschka SD (1996) Skeletal myoblasts transplantation for repair of myocardial necrosis. J Clin Invest 98:2512–2523

    Article  Google Scholar 

  19. Yeh ETH, Zhang S, Wu HD, Kërbling M, Willerson JT, Estrov Z (2003) Transdifferentiation of human peripheral blood CD34+-enriched cell population into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo. Circulation 108:2070–2073

    Article  Google Scholar 

  20. Obradović S, Rusović S, Dinčić D, Gligić B, Baškot B, Balint B, i sar (2003) Autologe pluripotentne progenitorne ćelije u lečenju ishemijske bolesti srca. Vojnosanit Pregl 60(6):725–31

    Google Scholar 

  21. Kang H-J, Kim H-S, Zhang S-Y, Park K-W, Cho H-J, Koo B-K et al (2004) Effects of intracoronary infusion of peripheral blood stem-cells mobilized with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomized clinical trial. Lancet 363:751–756

    Article  Google Scholar 

  22. Avilés FF. Conventional postreperfusion therapy versus intracoronary bone marrow stem cell transplantation or mobilization after STEMI. The TECAM randomised trial. First international symposium on cell therapy for cardiac diseases, Valladolid, Spain, March 26 2004

    Google Scholar 

  23. Tse HF, Kwong YM, Chan JKF, Lo G, Ho C-L, Lau C-P (2003) Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet 361:47–49

    Article  Google Scholar 

  24. Fuchs S, Satler L, Kornowski R, Okubagzi P, Weisz G, Baffour R et al (2003) Catheter-based autologous bone marrow myocardial injection in no-option patients with advanced coronary artery disease. J Am Coll Cardiol 41:1721–1724

    Article  Google Scholar 

  25. Perin EC, Dohmann HFR, Borojevic R, Silva SA, Sousa ALS, Mesquita CT et al (2003) Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107:2294–2302

    Article  Google Scholar 

  26. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quani F et al (2001) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A 98:10344–10349

    Article  Google Scholar 

  27. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    Article  Google Scholar 

  28. Strauer BE, Brehm M, Zeus T, Köstering M, Hernandez A, Sorg RV et al (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106:1913–1918

    Article  Google Scholar 

  29. Aicher A et al (2003) Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation 107:2134–2139

    Article  Google Scholar 

  30. Beauchamp JR, Morgan JE, Pagel CN, Partridge TA (1999) Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source. J Cell Biol 144:1113–1122

    Article  Google Scholar 

  31. Liu F, Pan X, Chen G, Jiang D, Cong X, Fei R, Wei L (2006) Hematopoietic SCs mobilized by granulocyte colony-stimulating factor partly contribute to liver graft regeneration after partial orthotopic liver transplantation. Liver Transpl 12(7):1129–1137

    Article  Google Scholar 

  32. Perin EC et al (2003) Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107:2294–2302

    Article  Google Scholar 

  33. Taylor DA et al (1998) Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med 4:929–933

    Article  Google Scholar 

  34. Hutcheson KA et al (2000) Comparison of benefits on myocardial performance of cellular cardiomyoplasty with skeletal myoblasts and fibroblasts. Cell Transplant 9:359–368

    Google Scholar 

  35. Thompson RB et al (2003) Comparison of intracardiac cell transplantation: autologous skeletal myoblasts versus bone marrow cells. Circulation 108(suppl 1):II264–II271

    Google Scholar 

  36. Balsam LB et al (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428:668–673

    Article  Google Scholar 

  37. Murry CE et al (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668

    Article  Google Scholar 

  38. Nygren JM et al (2004) Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med 10:494–501

    Article  Google Scholar 

  39. Jin DK, Shido K, Kopp HG, Petit I, Shmelkov SV, Young LM et al (2006) Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nat Med 12(5):557–67. Erratum in: Nat Med 12(8):978

    Google Scholar 

  40. Rehman J, Li J, Orschell CM, March KL (2003) Peripheral blood endothelial progenitor cells are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107:1164–1169

    Article  Google Scholar 

  41. Kinnaird T, Stabile E, Burnett MS, Lee CW, Barr S, Fuchs S et al (2004) Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanism. Circ Res 94:678–685

    Article  Google Scholar 

  42. Zhang S, Zhang P, Guo J, Jia Z, Ma K, Liu Y et al (2004) Enhanced cytoprotection and angiogenesis by bone marrow cell transplantation may contribute to improved ischemic myocardial function. Eur J Cardiothorac Surg 25:188–195

    Article  Google Scholar 

  43. Hirata K, Li TS, Nishida M, Ito H, Matsuzaki M, Kasaoka S, Hamano K (2002) Autologous bone marrow cell implantation as therapeutic angiogenesis for ischeminc hindlimb in diabetic rat model. Am J Physiol Heart Circ Physiol 28(1):H66–H70

    Google Scholar 

  44. Adams BG, Scadden DT (2006) The hematopoietic stem cells in its place. Nat Immunol 7:333–337

    Article  Google Scholar 

  45. Adams BG, Chabner KT, Alley JR, Scadden D et al (2006) Stem cell engraftment at the endosteal niche is specified by the calcium-sesning receptor. Nat Lett 439:599–603. doi:10.1038/nature0424

    Article  Google Scholar 

  46. Wojakowski W, Tendera M, Michalowska A, Majka M, Kucia M, Ratajczak MZ et al (2004) Mobilization of CD34/CXCR4+, CD34/CD117+, c-met+ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation (Genetics) 110:3213–3220

    Google Scholar 

  47. Kucia M, Dawn B, Hunt G, Guo Y, Wysoczynski M, Majka M et al (2004) Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction. Circulation Res 95(12):1191–1199

    Article  Google Scholar 

  48. Kucia M, Reca R, Jala V, Dawn B, Ratajczak J, Ratajczak MZ (2005) Bone marrow as home of heterogeneous populations of nonhematopoietic stem cells. Leukemia 19:1118–1127

    Article  Google Scholar 

  49. Kucia M, Ratajczak J, Ratajczak ZM (2005) Bone marrow as a source of circulating CXR4+ tissue-commited stem cells. Biol Cell 97:133–146

    Article  Google Scholar 

  50. Kucia M, Ratajczak J, Ratjczak MX (2005) Are bone marrow cells plastic or heterogeneous-that is the question. Exp Hematol 33(6):613–623

    Article  Google Scholar 

  51. Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, Ratajczak MZ (2006) Embryonic stemcell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20:847–856

    Article  Google Scholar 

  52. Kucia M, Wojakowski W, Ryan R, Machalinski B, Gozdzik J, Majka M, Baran J, Ratajczak J, Ratjczak MZ (2006) The migration of bone marrow-derived non-hematopoietic tissue-commited stem cells is regulated in and SDF-1-, HGF-, and LIF dependent manner. Arch Immunol Ther Exp 54(2):121–135

    Article  Google Scholar 

  53. Kucia M, Zhang YP, Reac R, Wysoczynski M, Machalinski B, Majka M, Ildstad ST, Ratajczak JU, Chields CB, Ratajczak MZ (2006) Cells enriched in markers of neural tissue-commited stem cells reside in the bone marrow and are mobilized into the peripheral blood following stroke. Leukemia 20:18–28

    Article  Google Scholar 

  54. Kucia M, Reca R, Campbell FR, Surma-Zuba E, Majka M, Ratajczak M, Ratajczak MZ (2006) A population of very small embryonic-like (VSEL) CXR4+ SSEA-1+ Oct4+ stem cells identified in adult bone marrow. Leukemia 20:857–869

    Article  Google Scholar 

  55. Wagers AJ, Sherwood RI, Christensen JL, Weissman IL (2002) Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297:2256–2259

    Article  Google Scholar 

  56. Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Rubart M, Pasumarthi KBS et al (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarction. Nature 428:664–668

    Article  Google Scholar 

  57. Ziegelhoeffer T, Fernandez B, Kostin S, Heil M, Voswinckel R, Helisch A et al (2004) Bone marrow-derived cells do not incorporate into adult growing vasculature. Circ Res 94:230–238

    Article  Google Scholar 

  58. Menasche P (2004) Cellular transplantation: hurdles remaining before widespread clinical use. Curr Opin Cardiol 19:154–161

    Article  Google Scholar 

  59. Levy JS, Stroomza M, Melemed E, Offen D (2004) Embryonic and adult stem cells as a soutce for cell therapy in Parkinson’s disease. J Mol Neurosci 24(3):353–386

    Article  Google Scholar 

  60. De Copi P, Bartsch G Jr, Minhaj MS, Atala A et al (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25:100–106

    Article  Google Scholar 

  61. Kim J, Lee Y, Hwanf KJ, Kwon HC, Kim SK, Cho DJ, Kang SG, You J (2007) Human amniotic fluid-derived stem cells have characteristics of multipotent stem cells. Cell Prolif 40(1):75–90

    Article  Google Scholar 

  62. Jendelova P, Herynek V, Urdzikova L, Glogarova K, Kroupova J, Anderson B, Vryja V, Burtain M, Hajek M, Sykova J (2004) Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J Neurosci Res 76:232–243

    Article  Google Scholar 

  63. Marshall CT, Lu C, Winstead W, Zhanf X, Xiao M, Harding G, Klueber KM, Roisen FJ (2006) The therapeutic potential of human olfactory-derived stem cells. Histol Histopathol 21:633–643

    Google Scholar 

  64. Lindwall O, Kokaia Z, Martinez-Serrano A (2006) SCs for the treatment of neurological disorders. Nature 441:1094–1096

    Article  Google Scholar 

  65. D’Ippolito G, Sylma D, Howadr GA, Philippe M, Roos BA, Schiller PC (2004) Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 117:2971–2981

    Article  Google Scholar 

  66. Serafini M, Dylla SJ, Oki M, Heremans Y, Tolar J, Jiang Y et al (2007) Hematopoietic reconstitution by multipotent adult progenitor cells: precursors to long-term hematopoietic stem cells. J Exp Med 204(1):129–139

    Article  Google Scholar 

  67. Young-sup Y, Wecker A, Heyd L, Park JS, Douglas W, Losordo DW et al (2005) Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J Clin Invest 115(2):326–338

    Google Scholar 

  68. Balint B (2004) SCs—unselected or selected, unfrozen or cryopreserved: marrow repopulation capacity and plasticity potential in experimental and clinical settings. Maked Med Pregl 58(suppl 63):22–24

    Google Scholar 

  69. Pelacho B, Aranguren XL, Mazo M, Abizanda G, Gavira JJ, Clavel C et al (2007) Prosper plasticity and cardiovascular applications of multipotent adult progenitor cells. Nat Clin Pract Cardiovasc Med 4(suppl 1):S15–S20

    Article  Google Scholar 

  70. Müller P, Pfeiffer P, Koglin J, Schafers HJ, Seeland U, Janzen I et al (2002) Cardiomyocytes of noncardiac origin in myocardial biopsies of human transplanted hearts. Circulation 106:31–35

    Article  Google Scholar 

  71. Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298:2188–2190

    Article  Google Scholar 

  72. Bettencourt-Dias M, Mittnacht S, Brockes JP (2003) Heterogeneous proliferative potential in regenerative adult newt cardiomyocytes. J Cell Sci 116:4001–4009

    Article  Google Scholar 

  73. Pasumarthi KB, Nakajima H, Nakajima HO, Soonpaa MH, Field LJ (2005) Targeted expression of cyclin D2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice. Circ Res 96:110–118

    Article  Google Scholar 

  74. Oh H, Wang SC, Prahash A et al (2003) Telomere attrition and chk2 activation in human heart failure. Proc Natl Acad Sci U S A 100:5378–5383

    Article  Google Scholar 

  75. Olson EN, Schneider MD (2003) Sizing up the heart: development redux in disease. Genes Dev 17:1937–1956

    Article  Google Scholar 

  76. Menache P, Hagege AA, Vilquin JT, Desnos M, Abergel E, Pouzet B et al (2003) Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 41:1078–1083

    Article  Google Scholar 

  77. Assmus B, Schachinger V, Teupe C, Britten M, Lehmann R, Döbert N et al (2002) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 106:3009–3017

    Article  Google Scholar 

  78. Stamm C, Westphal B, Kleine HD, Petzsch M, Kittner C, Klinge H et al (2003) Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361:45–46

    Article  Google Scholar 

  79. Wollert KC, Meyer GP, Ringes-Lichtenberg S, Drexler H et al (2004) Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomized controlled clinical trial. Lancet 364(9429):141–148

    Article  Google Scholar 

  80. Smits PC et al (2003) Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. J Am Coll Cardiol 42:2063–2069

    Article  Google Scholar 

  81. Ince H, Petzsch M, Dieter Keline H et al (2005) Preservation from left ventricular remodeling by front-integrated revascularization and stem cell liberation in evolving acute myocardial infarction by use of granulocyte-colony-stimulating factor (FIRSTLINE-AMI). Circulation 112:3097–3106

    Article  Google Scholar 

  82. Siminiak T, Kalawski R, Fiszer D, Jerzykowska O, Rzezniczak J, Rozwadowska N et al (2004) Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury: phase I clinical study with 12 months of follow-up. Am Heart J 148(3):531–537

    Article  Google Scholar 

  83. Kuethe F, Figulla HR, Herzau M, Voth M, Fritzenwanger M, Opfermann T, Pachmann K, Krack A, Sayer HG, Gottschild D, Werner GS (2005) Treatment with granulocyte colony-stimulating factor for mobilization of bone marrow cells in patients with acute myocardial infarction. Am Heart J 150(1):115

    Article  Google Scholar 

  84. Welt FGP, Edelman ER, Simon DI, Rogers C (2000) Neutrophil, not macrophage, infiltration precedes neointimal thickening in balloon-injured arteries. Arterioscler Thromb Vasc Biol 20:2553–2558

    Article  Google Scholar 

  85. Zohlnhofer D, Kastrati A, Schomig A (2007) Stem cell mobilization by granulocyte-colony-stimulating factor in acute myocardial infarction: lessons from the REVIVAL-2 trial. Nat Clin Pract Cardiovasc Med 4(suppl 1):S106–S109

    Article  Google Scholar 

  86. Zohlnhofer D, Kastrati A, Schomig A et al (2006) Stem cell mobilization by granulocyte colony-stimulating factor in patients with acute myocardial infarction: a randomized controlled trial. JAMA 295(9):1003–1010

    Article  Google Scholar 

  87. Asahara T, Takahashi T, Masuda H et al (1999) VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 18:3964–3972

    Article  Google Scholar 

  88. Takahashi T et al (1999) Ischemia and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5:434–438

    Article  Google Scholar 

  89. Hattori K, Heisssig B, Tashiro K et al (2001) Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood 97:3354–3360

    Article  Google Scholar 

  90. Hattori K, Heissig B, Wu Y et al (2002) Placental growth factor reconstitutes hematopoiesis by recruiting vegfr1(+) stem cells from bone-marrow microenvironment. Nat Med 8:841–849

    Google Scholar 

  91. Heeschen C, Aicher A, Lehmann R et al (2003) Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood 102:1340–1346

    Article  Google Scholar 

  92. Dimmeler S, Aicher A, Vasa M et al (2001) HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest 108:391–397

    Google Scholar 

  93. Laufs U, Werner N, Link A et al (2004) Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation 109:220–226

    Article  Google Scholar 

  94. Iwakura A, Leudemann V, Shastry S et al (2003) Estrogen-mediated, endothelial nitric oxide synthase-dependent mobilization of bone marrow-derived endothelial progenitor cells contributes to reendothelialization after arterial injury. Circulation 108:3115–3121

    Article  Google Scholar 

  95. Askari AT, Unzek S, Popovich ZB et al (2003) Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 362:697–703

    Article  Google Scholar 

  96. Aicher A, Brenner W, Zuhayra M et al (2003) Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation 107:2134–2139

    Article  Google Scholar 

  97. Liles WC, Roger E, Broxmeyer HE, Dehner C, Badel K, Calandra G et al (2005) Augmented mobilization and collection of CD34+ hematopoietic cells from normal human volunteers with granulocyte-stimulating factor by single-dose administration ofr AMD3100, a CXXR4 antagonist. Transfusion 45(3):295–300

    Article  Google Scholar 

  98. Larochelle A, Krouse A, Metzger M, Orlic D et al (2006) AMD3100 mobilizes hematopoietic stem cells with long-term repopulating capacity in non-numan primates. Blood 107(9):3772–3778

    Article  Google Scholar 

  99. Vulliet PR, Greegly M, Halloran SM, MacDonald KA, Kittleson MD (2004) Inracoronary arterial injection of mesenchimal stromal cells and microinfarction in dogs. Lancet 363(9411):783–784

    Article  Google Scholar 

  100. Obradovic S, Rusovic S, Dincic D, Gligic B, Baskot B, Balint B et al (2003) [Autologous pluripotent progenitor cells in the treatment of ischemic heart disease]. Vojnosanit Pregl 60(6):725–731

    Article  Google Scholar 

  101. Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, Lanzavecchia A, Manz MG (2004) Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304(5667):104–107

    Article  Google Scholar 

  102. Ratajzcak MZ, Kucia M, Reca R, Majka M et al (2004) Stem cell plasticity revised: CXR4 positive cells expressing mRNA for early muscle, liver and neural cells “hide out” in the bone marrow. Leukemia 19(1):29–40

    Article  Google Scholar 

  103. Vassilopoulos G, Wang PR, Russel DV (2003) Transplanted bone marrow regenerates liver by cell fusion. Nature 422(6934):901–904

    Article  Google Scholar 

  104. Wang X, Willenbring H, Akkari Y et al (2003) Cell fusion is the principal source of bone-marrow derived hepatocytes. Nature 422(6934):897–901

    Article  Google Scholar 

  105. Chen J, Zhang ZG, Li Y, Wang L et al (2003) Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res 92(6):692–699

    Article  Google Scholar 

  106. Prockop DJ, Gregory CA, Spees JL (2003) One strategy for cell and gene therapy; harnessing the power of adult stem cells to repair tissue. Proc Natl Acad Sci U S A 200(suppl 1):11917–11923

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Pavlovic, M., Balint, B. (2013). Current Status and Perspectives in Stem Cell Research. In: Stem Cells and Tissue Engineering. SpringerBriefs in Electrical and Computer Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5505-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5505-9_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5504-2

  • Online ISBN: 978-1-4614-5505-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics