Skip to main content

New Developments in Retinal Cell Transplantation and the Impact of Stem Cells

  • Chapter
  • First Online:
Stem Cell Biology and Regenerative Medicine in Ophthalmology

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Retinal cell transplantation, especially transplantation of retinal epithelium, could provide a method to cure age-related macular degeneration but major hurdles have hampered its advance, such as rejection and surgical technique. The possibility to use autologous fibroblasts from the potential transplant recipient to convert these fibroblasts into pluri-potential cells in culture and then to transform them into retinal epithelium, including checks on their appropriate gene expression offers the possibility of eliminating the hurdle of host graft rejection. A new surgical technique that sections the neural retina for 180° at the temporal ora serrata and folds it nasally to expose the macula and its degenerate epithelial layer can improve the delicate microsurgery. It eliminates jet stream trauma that produces a hole in the equatorial retina and the poor visibility of the epithelium seen through a detached, opaque neural retina. It allows the surgeon to use both hands in removing degenerate epithelium and replacing it with a patch of pristine epithelium. The neural retina can then be folded back to its original location and laser secured at the ora serrata. Transplantation of photoreceptors has greater hurdles, the major one being a guarantee of sufficient synaptic connectivity of transplanted cones to host cone bipolars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Binder S, Stanzel BV, Krebs I, Glittenberg C (2007) Transplantation of the RPE in AMD. Prog Retin Eye Res 26(5):516–554

    Article  PubMed  Google Scholar 

  2. da Cruz L, Chen FK, Ahmado A, Greenwood J, Coffey P (2007) RPE transplantation and its role in retinal disease. Prog Retin Eye Res 26(6):598–635

    Article  PubMed  Google Scholar 

  3. Gouras P, Flood MT, Kjedbye H (1984) Transplantation of cultured human retinal cells in monkey retina. An Acad Bras Cienc 56(4):431–443

    PubMed  CAS  Google Scholar 

  4. Lopez R, Gouras P, Brittis M, Kjeldbye H (1987) Transplantation of rabbit retinal epithelium to rabbit retina using a closed-eye method. Invest Ophthalmol Vis Sci 28:1131–1137

    PubMed  CAS  Google Scholar 

  5. Lopez R, Gouras P, Kjeldbye H, Sullivan B, Reppucci V, Brittis M, Wapner F, Goluboff E (1989) Transplanted retinal pigment epithelium modifies the retinal degeneration in the RCS rat. Invest Ophthalmol Vis Sci 30(3):586–588

    PubMed  CAS  Google Scholar 

  6. Li L, Turner JE (1988) Inherited retinal dystrophy in the RCS rat: prevention of photoreceptor degeneration by pigment epithelial transplantation. Exp Eye Res 47:911–917

    Article  PubMed  CAS  Google Scholar 

  7. Algvere PV, Berglin L, Gouras P, Sheng Y (1994) Transplantation of fetal retinal pigment epithelium in age-related macular degeneration with subfoveal neovascularization. Graefe’s Arch Clin Exper Ophthalmol 232:707–716

    Article  CAS  Google Scholar 

  8. Algvere PV, Gouras P, Dafgård Kopp E (1999) Long-term outcome of RPE allografts in non-immunosuppressed patients with AMD. Eur J Ophthalmol 9:217–230

    PubMed  CAS  Google Scholar 

  9. Gouras P, Algvere P (1996) Retinal cell transplantation in the macula: new techniques. Vision Res 36:4121–4125

    Article  PubMed  CAS  Google Scholar 

  10. Kaplan HJ, Tezel TH, Del Priore LV (1998) Retinal pigment epithelial transplantation in age-related macular degeneration. Retina 18:99–102

    PubMed  CAS  Google Scholar 

  11. Peyman CA, Blinder KJ, Paris CL, Alturki W, Nelson NC Jr, Desai U (1991) A technique for retinal pigment epithelium transplantation for age-related macular degeneration secondary to extensive subfoveal scarring. Ophthalmic Surg 22:102–108

    PubMed  CAS  Google Scholar 

  12. Tezel TH, Del Priore LV, Berger AS, Kaplan HJ (2007) Adult retinal pigment epithelial transplantation in exudative age-related macular degeneration. Am J Ophthalmol 143:584–595

    Article  PubMed  Google Scholar 

  13. Berglin L, Gouras P, Sheng Y, Lavid J, Lin PK, Cao H, Kjeldbye H (1997) Tolerance of human fetal retinal pigment epithelium xenografts in monkey retina. Graefes Arch Clin Exp Ophthalmol 235(2):103–110

    Article  PubMed  CAS  Google Scholar 

  14. Zhang X, Bok D (1998) Transplantation of retinal pigment epithelial cells and immune response in the subretinal space. Invest Ophthalmol Vis Sci 39(6):1021–1027

    PubMed  CAS  Google Scholar 

  15. Caramoy A, Fauser S, Kirchhof B (2011) Retinal stimuli can be restored after autologous transplant of retinal pigment epithelium and choroid in pigment epithelium tears. Acta Ophthalmol 89(6):e490–e495

    Article  PubMed  Google Scholar 

  16. Chen FK, Uppal GS, MacLaren RE, Coffey PJ, Rubin GS, Tufail A, Aylward GW, Da Cruz L (2009) Long-term visual and microperimetry outcomes following autologous retinal pigment epithelium choroid graft for neovascular age-related macular degeneration. Clin Experiment Ophthalmol 37(3):275–285

    Article  PubMed  Google Scholar 

  17. Falkner-Radler CI, Krebs I, Glittenberg C, Povazay B, Drexler W, Graf A, Binder S (2011) Human retinal pigment epithelium (RPE) transplantation: outcome after autologous RPE-choroid sheet and RPE cell-suspension in a randomised clinical study. Br J Ophthalmol 95(3):370–375

    Article  PubMed  Google Scholar 

  18. van Meurs JC, van den Biesen PR (2003) Autologous retinal pigment epithelium and choroid translocation in patients with exudative age-related macular degeneration: short-term follow-up. Am J Ophthalmol 136:688–695

    Article  PubMed  Google Scholar 

  19. van Zeeburg EJ, Cereda MG, van der Schoot J, Pertile G, van Meurs JC (2011) Early perfusion of a free RPE-choroid graft in patients with exudative macular degeneration can be imaged with spectral domain-OCT. Invest Ophthalmol Vis Sci 52(8):5881–5886

    Article  PubMed  Google Scholar 

  20. Cereda MG, Parolini B, Bellesini E, Pertile G (2010) Surgery for CNV and autologous choroidal RPE patch transplantation: exposing the submacular space. Graefes Arch Clin Exp Ophthalmol 248:37–47

    Article  PubMed  Google Scholar 

  21. Binder S (2011) Scaffolds for retinal pigment epithelium (RPE) replacement therapy. Br J Ophthalmol 95(4):441–442

    Article  PubMed  Google Scholar 

  22. Cai S, Smith ME, Redenti SM, Wnek GE, Young MJ (2011) Mouse Retinal Progenitor Cell Dynamics on Electrospun Poly (ɛ-Caprolactone). J Biomater Sci Polym Ed. [Epub ahead of print]

    Google Scholar 

  23. Hynes SR, Lavik EB (2010) A tissue-engineered approach towards retinal repair: scaffolds for cell transplantation to the subretinal space. Graefes Arch Clin Exp Ophthalmol 248(6):763–778

    Article  PubMed  Google Scholar 

  24. Sodha S, Wall K, Redenti S, Klassen H, Young MJ, Tao SL (2011) Microfabrication of a three-dimensional polycaprolactone thin-film scaffold for retinal progenitor cell encapsulation. J Biomater Sci Polym Ed 22(4–6):443–456

    Article  PubMed  CAS  Google Scholar 

  25. Treharne AJ, Grossel MC, Lotery AJ, Heather A, Thomson HA (2011) The chemistry of retinal transplantation: the influence of polymer scaffold properties on retinal cell adhesion and control. Br J Ophthalmol 95:768–773

    Article  PubMed  Google Scholar 

  26. Yang J, Bei J, Wang S (2002) Enhanced cell affinity of poly (D, L-lactide) by combining plasma treatment with collagen anchorage. Biomaterials 23:2607e14.

    Google Scholar 

  27. Abe T, Yoshida M, Yoshioka Y, Wakusawa R, Tokita-Ishikawa Y, Seto H, Tamai M, Nishida K (2007) Iris pigment epithelial cell transplantation for degenerative retinal diseases. Prog Retin Eye Res 26(3):302–321

    Article  PubMed  CAS  Google Scholar 

  28. Thumann G, Kirchhof B (2004) Transplantation of iris pigment epithelium. Ophthalmologe 101(9):882–885

    Article  PubMed  CAS  Google Scholar 

  29. Thumann G, Salz AK, Walter P, Johnen S (2009) Preservation of photoreceptors in dystrophic RCS rats following allo- and xenotransplantationof IPE cells. Graefes Arch Clin Exp Ophthalmol 247:363–369

    Article  PubMed  Google Scholar 

  30. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  31. Zhao T, Zhang ZN, Rong Z, Xu Y (2011) Immunogenicity of induced pluripotent stem cells. Nature 474:212–215

    Article  PubMed  CAS  Google Scholar 

  32. Lamba DA, Reh TA (2011) Microarray characterization of human embryonic stem cell–derived retinal cultures. Invest Ophthalmol Vis Sci 52(7):4897–4906

    Article  PubMed  CAS  Google Scholar 

  33. Okamoto S, Takahashi M (2011) Induction of retinal pigment epithelial cells from monkey iPS cells. Invest Ophthalmol Vis Sci 52:8785–8790

    Article  PubMed  CAS  Google Scholar 

  34. Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, Citri A, Sebastiano V, Marro S, Südhof TC, Wernig M (2011) Induction of human neuronal cells by defined transcription factors. Nature 476(7359):220–223

    PubMed  CAS  Google Scholar 

  35. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463(7284):1035–1041

    Article  PubMed  CAS  Google Scholar 

  36. Ahmado A, Carr AJ, Vugler AA, Semo M, Gias C, Lawrence JM, Chen LL, Chen FK, Turowski P, da Cruz L, Coffey PJ (2011) Induction of differentiation by pyruvate and DMEM in the human retinal pigment epithelium cell line ARPE-19. Invest Ophthalmol Vis Sci 52:7148–7159

    Article  PubMed  CAS  Google Scholar 

  37. Sugino IK, Rapista A, Sun Q, Wang J, Nunes CF, Cheewatrakoolpong N, Zarbin M (2011) A method to enhance cell survival on Bruch’s membrane in eyes affected by age and age-related macular degeneration (AMD). Invest Ophthalmol Vis Sci 52(13):9598–9609

    Article  PubMed  Google Scholar 

  38. Yao J, Feathers K, Khanna H et al (2011) XIAP therapy increases survival of transplanted rod precursors in a degenerating host retina. Invest Ophthalmol Vis Sci 52:1567–1572

    Article  PubMed  CAS  Google Scholar 

  39. Aramant RB, Seiler MJ (2004) Progress in retinal sheet transplantation. Prog Retin Eye Res 23(5):475–494, Review

    Article  PubMed  Google Scholar 

  40. Seiler MJ, Thomas BB, Chen Z, Wu R, Sadda SR, Aramant RB (2008) Retinal transplants restore visual responses: trans-synaptic tracing from visually responsive sites labels transplant neurons. Eur J Neurosci 28(1):208–220

    Article  PubMed  Google Scholar 

  41. Seiler MJ, Aramant RB, Thomas BB, Peng Q, Sadda SR, Keirstead HS (2010) Visual restoration and transplant connectivity in degenerate rats implanted with retinal progenitor sheets. Eur J Neurosci 31(3):508–520

    Article  PubMed  CAS  Google Scholar 

  42. Gouras P, Lopez R, Brittis M, Kjeldbye H (1992) The ultrastructure of transplanted rabbit retinal epithelium. Graefes Arch Clin Exp Ophthalmol 230(5):468–475

    Article  PubMed  CAS  Google Scholar 

  43. Gouras P, Du J, Kjeldbye H, Yamamoto S, Zack DJ (1992) Reconstruction of degenerate rd mouse retina by transplantation of transgenic photoreceptors. Invest Ophthalmol Vis Sci 33(9):2579–2586

    PubMed  CAS  Google Scholar 

  44. Gouras P, Du J, Kjeldbye H, Yamamoto S, Zack DJ (1994) Long-term photoreceptor transplants in dystrophic and normal mouse retina. Invest Ophthalmol Vis Sci 35(8):3145–3153

    PubMed  CAS  Google Scholar 

  45. Gouras P, Tanabe T (2003) Ultrastructure of adult rd mouse retina. Graefes Arch Clin Exp Ophthalmol 241(5):410–417

    Article  PubMed  Google Scholar 

  46. Gouras P, Tanabe T (2003) Survival and integration of neural retinal transplants in rd mice. Graefes Arch Clin Exp Ophthalmol 241:403–409

    Article  PubMed  Google Scholar 

  47. Warfvinge K, Schwartz PH, Kiilgaard JF, la Cour, Young MJ, Scherfig E, Klassen H (2011) Xenotransplantation of human neural progenitor cells to the subretinal space of nonimmunosuppressed pigs. J Transpl 2011:948740. Epub 2011 Jun 1.Article ID 948740

    Google Scholar 

  48. West EL, Pearson RA, Barker SE, Luhmann UF, Maclaren RE, Barber AC, Duran Y, Smith AJ, Sowden JC, Ali RR (2010) Long-term survival of photoreceptors transplanted into the adult murine neural retina requires immune modulation. Stem Cells 28(11):1997–2007

    Article  PubMed  CAS  Google Scholar 

  49. West EL, Pearson RA, Barker SE, Luhmann UF, Maclaren RE, Barber AC, Duran Y, Smith AJ, Sowden JC, Ali RR (2010) Long-term survival of photoreceptors transplanted into the adult murine neural retina requires immune modulation. Stem Cells 28(11):1997–2007

    Article  PubMed  CAS  Google Scholar 

  50. Doi K, Kong J, Hargitai J, Goff SP, Gouras P (2004) Transient immunosuppression stops rejection of virus-transduced enhanced green fluorescent protein in rabbit retina. J Virol 78(20):11327–11333

    Article  PubMed  CAS  Google Scholar 

  51. Townes-Anderson E, Dacheaux RF, Raviola E (1988) Rod photoreceptors dissociated from the adult rabbit retina. J Neurosci 8:320

    PubMed  CAS  Google Scholar 

  52. Gouras P, Du J, Gelanze M, Kwun R, Kjeldbye H, Lopez R (1991) Transplantation of photoreceptors labeled with tritiate thymidine into RCS rats. Invest Ophthalmol Vis Sci 32:1704–1707

    PubMed  CAS  Google Scholar 

  53. Gust J, Reh TA (2011) Adult donor rod photoreceptors integrate into the mature mouse retina. Invest Ophthalmol Vis Sci 52:5266–5272

    Article  PubMed  Google Scholar 

  54. Bartsch U, Oriyakhel W, Kenna PF et al (2008) Retinal cells integrate into the outer nuclear layer and differentiate into mature photoreceptors after subretinal transplantation into adult mice. Exp Eye Res 86:691–700

    Article  PubMed  CAS  Google Scholar 

  55. MacLaren RE, Pearson RA, MacNeil A, Douglas RH, Salt TE, Akimoto M, Swaroop A, Sowden JC, Ali RR (2006) Retinal repair by transplantation of photoreceptor precursors. Nature 444:203–207

    Article  PubMed  CAS  Google Scholar 

  56. Pearson RA, Barber AC, West EL et al (2010) Targeted disruption of outer limiting membrane junctional proteins (Crb1 and Z0–1) increases integration of transplanted photoreceptor precursors into the adult wild-type and degenerating retina. Cell Transplant 19:487–503

    Article  PubMed  CAS  Google Scholar 

  57. West EL, Pearson RA, Tschernutter M, Sowden JC, MacLaren RE, Ali RR (2008) Pharmacological disruption of the outer limiting membrane leads to increased retinal integration of transplanted photoreceptor precursors. Exp Eye Res 86(4):601–611

    Article  PubMed  CAS  Google Scholar 

  58. Tucker BA, Redenti SM, Jiang C, Swift JS, Klassen HJ, Smith ME, Wnek GE, Young MJ (2010) The use of progenitor cell/biodegradable MMP2-PLGA polymer constructs to enhance cellular integration and retinal repopulation. Biomaterials 31(1):9–19

    Article  PubMed  CAS  Google Scholar 

  59. Yao J, Tucker BA, Zhang X, Checa-Casalengua P, Herrero-Vanrell R, Young MJ (2011) Robust cell integration from co-transplantation of biodegradable MMP2-PLGA microspheres with retinal progenitor cells. Biomaterials 32(4):1041–1050

    Article  PubMed  CAS  Google Scholar 

  60. Lakowski J, Baron M, Bainbridge J et al (2010) Cone and rod photoreceptor transplantation in models of the childhood retinopathy Leber congenital amaurosis using flow-sorted Crx-positive donor cells. Hum Mol Genet 19:4545–4559

    Article  PubMed  CAS  Google Scholar 

  61. Eberle D, Schubert S, Postel K, Corbeil D, Ader M (2011) Increased Integration of transplanted CD73-positive photoreceptor precursors into adult mouse retina. Invest Ophthalmol Vis Sci 52:6462–6471

    Article  PubMed  CAS  Google Scholar 

  62. Klassen HJ, Ng TF, Kurimoto Y, Kiro I, Shatos M, Coffey P, Young MJ (2004) Multipotent retinal progenitors express developmental markers, differentiate into retinal neurons, and preserve light-mediated behavior. Invest Ophthalmol Vis Sci 45:4167–4173

    Article  PubMed  Google Scholar 

  63. Carey BW, Markoulaki S, Hanna J, Saha K, Gao Q et al (2009) Reprogramming of murine and human somatic cells using a single polycistronic vector. Proc Natl Acad Sci U S A 106:157–162

    Article  PubMed  CAS  Google Scholar 

  64. Jin ZB, Okamoto S, Osakada F, Homma K, Assawachananont J, Hirami JY, Iwata T, Takahashi M (2011) Modeling retinal degeneration using patient-specific induced pluripotent stem cells. PLoS One 6(2):e17084

    Article  PubMed  CAS  Google Scholar 

  65. Kim JB, Greber B, Arauzo-Bravo MJ, Meyer J, Park KI et al (2009) Direct reprogramming of human neural stem cells by OCT4. Nature 461:649–653

    Article  PubMed  CAS  Google Scholar 

  66. Kim JB, Sebastiano V, Wu G, Araúzo-Bravo MJ, Sasse P, Gentile L, Ko K, Ruau D, Ehrich M, van den Boom D, Meyer J, Hübner K, Bernemann C, Ortmeier C, Zenke M, Fleischmann BK, Zaehres H, Schöler HR (2009) Oct4-induced pluripotency in adult neural stem cells. Cell 136(3):411–419

    Article  PubMed  CAS  Google Scholar 

  67. Maherali N, Sridharan R, Xie W, Utikal J, Eminli S et al (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1:55–70

    Article  PubMed  CAS  Google Scholar 

  68. Meissner A, Wernig M, Jaenisch R (2007) Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol 25:1177–1181

    Article  PubMed  CAS  Google Scholar 

  69. Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T et al (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26:101–106

    Article  PubMed  CAS  Google Scholar 

  70. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317

    Article  PubMed  CAS  Google Scholar 

  71. Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322:949–953

    Article  PubMed  CAS  Google Scholar 

  72. Osakada F, Jin ZB, Hirami Y, Ikeda H, Danjyo T et al (2009) In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J Cell Sci 122:3169–3179

    Article  PubMed  CAS  Google Scholar 

  73. Osakada F, Hirami Y, Takahashi M (2010) Stem cell biology and cell transplantation therapy in the retina. Biotechnol Genet Eng Rev 26:297–334

    Article  PubMed  CAS  Google Scholar 

  74. Park IH, Lerou PH, Zhao R, Huo H, Daley GQ (2008) Generation of human induced pluripotent stem cells. Nat Protoc 3:1180–1186

    Article  PubMed  CAS  Google Scholar 

  75. Shao L, Feng W, Sun Y, Bai H, Liu J et al (2009) Generation of iPS cells using defined factors linked via the self-cleaving 2A sequences in a single open reading frame. Cell Res 19:296–306

    Article  PubMed  CAS  Google Scholar 

  76. Sommer CA, Stadtfeld M, Murphy GJ, Hochedlinger K, Kotton DN et al (2009) Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells 27:543–549

    Article  PubMed  CAS  Google Scholar 

  77. Welstead GG, Brambrink T (2008) Jaenisch R (2008) Generating iPS cells from MEFS through forced expression of Sox-2, Oct-4, Myc, and Klf4. J Vis Exp 14:734

    PubMed  Google Scholar 

  78. Lamba DA, McUsic A, Hirata RK, Wang PR, Russell D, Reh TA (2010) Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells. PLoS One 5(1):e8763

    Article  PubMed  Google Scholar 

  79. Tucker BA, Park I-H, Qi SD, Klassen HJ, Jiang C et al (2011) Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice. PLoS One 6(4):e18992. doi:10.137

    Article  PubMed  CAS  Google Scholar 

  80. Gonzalez F, Barragan Monasterio M, Tiscornia G, Montserrat Pulido N, Vassena R et al (2009) Generation of mouse-induced pluripotent stem cells by transient expression of a single nonviral polycistronic vector. Proc Natl Acad Sci U S A 106:8918–8922

    Article  PubMed  CAS  Google Scholar 

  81. Salchow DJ, Trokel SL, Kjeldbye H, Dudley T, Gouras P (2001) Isolation of human fetal cones. Curr Eye Res 22(2):85–89

    Article  PubMed  CAS  Google Scholar 

  82. Karl MO, Reh TA (2010) Regenerative medicine for retinal diseases: activating endogenous repair mechanisms. Trends Mol Med 16(4):193–202

    Article  PubMed  CAS  Google Scholar 

  83. Singh S, MacLaren RE (2011) Stem cells as a therapeutic tool for the blind: biology and future prospects Proc. Proc Biol Sci 278:3009–3018

    Article  PubMed  CAS  Google Scholar 

  84. Lamba DA, Karl MO, Reh TA (2009) Strategies for retinal repair: cell replacement and regeneration. Prog Brain Res 175:23–31

    Article  PubMed  CAS  Google Scholar 

  85. Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A, Björklund A, Lindvall O, Jakobsson J, Parmar M (2011) Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci U S A 108(25):10343–10348

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Gouras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gouras, P. (2013). New Developments in Retinal Cell Transplantation and the Impact of Stem Cells. In: Tsang, S. (eds) Stem Cell Biology and Regenerative Medicine in Ophthalmology. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-5493-9_8

Download citation

Publish with us

Policies and ethics