Skip to main content

Bone Marrow Stem Cells in Retinal Disease

  • Chapter
  • First Online:
Stem Cell Biology and Regenerative Medicine in Ophthalmology

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1573 Accesses

Abstract

Bone marrow contains populations of self-renewing, pluripotent stem cells, here termed bone marrow stem cells (BMSCs). Mobilized by vascular endothelial growth factor, these play a crucial role in the revascularization of ischemic tissues and organs. Research on mouse models has shown that bone marrow-derived cells contribute to revascularization and improvement in various ischemic tissues, and migrate naturally to damaged sites in the eye. The transplant of BMSCs holds promise for treating ischemic retinal diseases such as diabetic retinopathy. Current treatments to prevent severe vision loss associated with these diseases include panretinal photocoagulation, which decreases the production of angiogenic factors such as VEGF by ablating ischemic peripheral retina, and anti-VEGF intravitreal pharmacotherapy, which temporarily neutralizes VEGF. Unlike these current therapies, revascularization of ischemic retina with therapeutic angiogenesis could prevent sequelae of severe ischemic retinopathy and potentially improve retinal function in a durable, nondestructive manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Srour EF et al (1991) Human CD34+ HLA-DR− bone marrow cells contain progenitor cells capable of self-renewal, multi-lineage differentiation, and long-term in vitro hematopoiesis. Blood Cells 17:287–295

    PubMed  CAS  Google Scholar 

  2. Sutherland HJ et al (1989) Characterizaion and partial purification of human marrow cells capable of initiating long-term hematopoiesis in vitro. Blood 74:1563–1570

    PubMed  CAS  Google Scholar 

  3. Spangrude GJ et al (1988) Two rare populations of mouse Thy-1 lo bone marrow cells repopulate the thyums. J Exp Med 167:1671–1683

    Article  PubMed  CAS  Google Scholar 

  4. Asahara T et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  PubMed  CAS  Google Scholar 

  5. Gehling UM et al (2000) In vitro diferentaion of endothelial cells from AC133-positive progenitor cells. Blood 93:3106–3112

    Google Scholar 

  6. Bautch VL (2011) Stem cells and the vasculature. Nat Med 17:1437–1443

    Article  PubMed  CAS  Google Scholar 

  7. Asahara T et al (1999) VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 18:3964–3972

    Article  PubMed  CAS  Google Scholar 

  8. Kalka C et al (2000) Vacular endothelial growth factor (165) gene transfer augments circulating endothelial progenitor cells in human subjects. Circ Res 86:1198–1202

    Article  PubMed  CAS  Google Scholar 

  9. Gill M et al (2001) Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells. Circ Res 88:167–174

    Article  PubMed  CAS  Google Scholar 

  10. Rafii et al (2002) Vascular and hematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer 2:826–835

    Article  PubMed  CAS  Google Scholar 

  11. Crosby JR, Kaminski WE, Schatteman G, Martin PJ, Raines EW, Seifert RA, Bowen-Pope DF (2000) Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ Res 87:728–730

    Article  PubMed  CAS  Google Scholar 

  12. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85:221–228

    Article  PubMed  CAS  Google Scholar 

  13. Grant MB et al (2002) Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat Med 8:607–612

    Article  PubMed  CAS  Google Scholar 

  14. Harris JR, Brown GA, Jorgensen M, Kaushal S, Ellis EA, Grant MB, Scott EW (2006) Bone marrow-derived cells home to and regenerate retinal pigment epithelium after injury. Invest Ophthalmol Vis Sci 47:2108–2113

    Article  PubMed  Google Scholar 

  15. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    Article  PubMed  CAS  Google Scholar 

  16. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA 98:10344–10349

    Article  PubMed  CAS  Google Scholar 

  17. Hess DC et al (2002) Bone marrow as a source of endothelial cells and NeuN-expressing cells after stroke. Stroke 33:1362–1368

    Article  PubMed  Google Scholar 

  18. Zhang ZG, Zhang L, Jiang Q, Chopp M (2002) Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Circ Res 90:284–288

    Article  PubMed  CAS  Google Scholar 

  19. Group TDRSR (1988) Photocoagulation treatment of proliferative diabetic retinopathy. Clinical application of Diabetic Retinopathy Study (DRS) findings, DRS Report Number 8. Ophthalmology 88:583–600

    Google Scholar 

  20. Avery RL, Pearlman J, Pieramici DJ, Rabena MD, Castellarin AA, Nasir MA, Giust MJ, Wendel R, Patel A (2006) Intravitreal bevacizumab (Avastin) in the treatment of proliferative diabetic retinopathy. Ophthalmology 113:1695.e1–1695.e15

    Google Scholar 

  21. Caballero S, Sengupta N, Afzal A, Chang KH, Li Calzi S, Guberski DL, Kern TS, Grant MB (2007) Ischemic vascular damage can be repaired by healthy, but not diabetic, endothelial progenitor cells. Diabetes 56:960–967

    Article  PubMed  CAS  Google Scholar 

  22. Otani A, Kinder K, Ewalt K, Otero FJ, Schimmel P, Friedlander M (2002) Bone marrow-derived stem cells target retinal astrocytes and can promote or inhibit retinal angiogenesis. Nat Med 8:1004–1010

    Article  PubMed  CAS  Google Scholar 

  23. Otani A, Dorrell MI, Kinder K, Moreno SK, Nusinowitz S, Banin E, Heckenlively J, Friedlander M (2004) Rescue of retinal degeneration by intravitreally injected adult bone marrow-derived lineage-negative hematopoietic stem cells. J Clin Invest 114:765–774

    PubMed  CAS  Google Scholar 

  24. Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, Li T, Isner JM, Asahara T (2000) Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA 97:3422–3427

    Article  PubMed  CAS  Google Scholar 

  25. Egan CG, Lavery R, Caporali F, Fondelli C, Laghi-Pasini F, Dotta F, Sorrentino V (2008) Generalised reduction of putative endothelial progenitors and CXCR4-positive peripheral blood cells in type 2 diabetes. Diabetologia 51:1296–1305

    Article  PubMed  CAS  Google Scholar 

  26. Kusuyama T, Omura T, Nishiya D, Enomoto S, Matsumoto R, Takeuchi K, Yoshikawa J, Yoshiyama M (2006) Effects of treatment for diabetes mellitus on circulating vascular progenitor cells. J Pharmacol Sci 102:96–102

    Article  PubMed  CAS  Google Scholar 

  27. Busik JV et al (2009) Diabetic retinopathy is associated with bone marrow neuropathy and a depressed peripheral clock. J Exp Med 206:2897–2906

    Article  PubMed  CAS  Google Scholar 

  28. Krankel N, Adams V, Gielen S, Erbs S, Lenk K, Schuler G, Harmbrecht R (2005) Hypreglycemia reduces survival and impairs function of circulating blood-derived progenitor cells. Arterioscler Thromb Vasc Biol 25:698–703

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis K. Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chang, L.K. (2013). Bone Marrow Stem Cells in Retinal Disease. In: Tsang, S. (eds) Stem Cell Biology and Regenerative Medicine in Ophthalmology. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-5493-9_6

Download citation

Publish with us

Policies and ethics