Skip to main content

Adaptable Overlay Network Topology

  • Chapter
  • First Online:
Structured Peer-to-Peer Systems
  • 1413 Accesses

Abstract

The previous chapter overviewed hierarchical schemes that a node uses locally to arrange its neighbors, achieving effective routing in a flat network. This chapter focuses on further advanced routing schemes where nodes are intentionally specialized in routing. Such schemes lead to a kind of global hierarchy in the network; nodes become globally differentiated, specializing their roles in routing. According to the participants heterogeneity, the schemes differentiate (1) nodes in their routing responsibility (node specialization) and (2) resources in their distribution in the whole system (resource distribution).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    “Mariposa” means “butterfly” in Spanish.

References

  1. Aberer, K., Cudré-Mauroux, P., Datta, A., Despotovic, Z., Hauswirth, M., Punceva, M., Schmidt, R.: P-Grid: a self-organizing structured P2P system. SIGMOD Rec. 32(3), 29–33 (2003). doi: http://doi.acm.org/10.1145/945721.945729

  2. Abraham, I., Awerbuch, B., Azar, Y., Bartal, Y., Malkhi, D., Pavlov, E.: A generic scheme for building overlay networks in adversarial scenarios. In: IPDPS ’03: Proceedings of 17th International Symposium on Parallel and Distributed Processing, p. 40.2. IEEE Computer Society (2003)

    Google Scholar 

  3. Abraham, I., Malkhi, D., Manku, G.S.: Papillon: greedy routing in rings. In: DISC ’05: Proceedings of 19th International Conference on Distributed Computing. Lecture Notes in Computer Science, vol. 3724, pp. 514–515. Springer, Berlin (2005)

    Google Scholar 

  4. Arge, L., Eppstein, D., Goodrich, M.T.: Skip-webs: efficient distributed data structures for multi-dimensional data sets. In: PODC ’05: Proceedings of 24th Annual ACM Symposium on Principles of Distributed Computing, pp. 69–76. ACM, New York (2005). doi: http://doi.acm.org/10.1145/1073814.1073827

  5. Aspnes, J., Shah, G.: Skip graphs. In: SODA ’03: Proceedings of 14th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 384–393. Society for Industrial and Applied Mathematics (2003)

    Google Scholar 

  6. Aspnes, J., Wieder, U.: The expansion and mixing time of skip graphs with applications. In: SPAA ’05: Proceedings of 17th Annual ACM Symposium on Parallelism in Algorithms and Architectures, pp. 126–134. ACM, New York (2005). doi: http://doi.acm.org/10.1145/1073970.1073989

  7. Aspnes, J., Kirsch, J., Krishnamurthy, A.: Load balancing and locality in range-queriable data structures. In: PODC ’04: Proceedings of 23rd Annual ACM Symposium on Principles of Distributed Computing, pp. 115–124. ACM, New York (2004). doi: http://doi.acm.org/10.1145/1011767.1011785

  8. Awerbuch, B., Scheideler, C.: Peer-to-peer systems for prefix search. In: PODC ’03: Proceedings of 21nd Annual Symposium on Principles of Distributed Computing, pp. 123–132. ACM, New York (2003). doi: http://doi.acm.org/10.1145/872035.872053

  9. Castro, M., Drushel, P., Ganesh, A., Rowstron, A., Wallach, D.S.: Secure routing for structured peer-to-peer overlay networks. In: Proceedings of 5th USENIX Symposium on Operating System Design and Implementation (OSDI 2002), pp. 299–314. ACM, Boston (2002)

    Google Scholar 

  10. Dabek, F., Kaashoek, M.F., Karger, D., Morris, R., Stoica, I.: Wide-area cooperative storage with CFS. In: Proceedings of 18th ACM Symposium Operating Systems Principles (SOSP ’01), pp. 202–215. ACM, New York (2001). doi: http://doi.acm.org/10.1145/502034.502054

  11. Datta, A., Girdzijauskas, S., Aberer, K.: On de bruijn routing in distributed hash tables: There and back again. In: IEEE P2P ’04: Proceedings of 4th International Conference on Peer-to-Peer Computing, pp. 159–166. IEEE Computer Society (2004). doi: http://dx.doi.org/10.1109/P2P.2004.29

  12. Fiat, A., Saia, J.: Censorship resistant peer-to-peer content addressable networks. In: SODA ’02: Proceedings of 13th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 94–103. Society for Industrial and Applied Mathematics (2002)

    Google Scholar 

  13. Freedman, M.J., Vingralek, R.: Efficient peer-to-peer lookup based on a distributed trie. In: Revised Papers from 1st International Workshop on Peer-to-Peer Systems (IPTPS ’01), pp. 66–75. Springer, New York (2002)

    Google Scholar 

  14. Fujita, S., Ohtsubo, A., Mito, M.: Extended skip graphs for efficient key search in P2P environment. In: ISPAN ’05: Proceedings of 8th International Symposium on Parallel Architectures, Algorithms and Networks, pp. 256–261. IEEE Computer Society (2005). doi: http://dx.doi.org/10.1109/ISPAN.2005.45

  15. Ganesan, P., Bawa, M., Garcia-Molina, H.: Online balancing of range-partitioned data with applications to peer-to-peer systems. In: VLDB ’04: Proceedings of 30th International Conference Very Large Data Bases, pp. 444–455. VLDB Endowment (2004)

    Google Scholar 

  16. Goodrich, M.T., Nelson, M.J., Sun, J.Z.: The rainbow skip graph: a fault-tolerant constant-degree distributed data structure. In: SODA ’06: Proceedings of 17th Annual ACM-SIAM Symposium on Discrete Algorithm, pp. 384–393. ACM, New York (2006). doi: http://doi.acm.org/10.1145/1109557.1109601

  17. Guerraoui, R., Handurukande, S.B., Huguenin, K., Kermarrec, A.M., Le Fessant, F., Riviere, E.: Gosskip, an efficient, fault-tolerant and self organizing overlay using gossip-based construction and skip-lists principles. In: IEEE P2P ’06: Proceedings of 6th International Conference on Peer-to-Peer Computing, pp. 12–22. IEEE Computer Society (2006). doi: http://dx.doi.org/10.1109/P2P.2006.19

  18. Guo, D., Wu, J., Chen, H., Luo, X.: Moore: An extendable peer-to-peer network based on incomplete Kautz digraph with constant degree. In: Proceedings of IEEE INFOCOM’07, pp. 821–829. IEEE (2007)

    Google Scholar 

  19. Guo, D., Liu, Y., Li, X.Y.: BAKE: A balanced Kautz tree structure for peer-to-peer networks. In: Proceedings of IEEE INFOCOM’08, pp. 2450–2457. IEEE (2008)

    Google Scholar 

  20. Harvey, N.J.A., Jones, M.B., Saroiu, S., Theimer, M., Wolman, A.: SkipNet: a scalable overlay network with practical locality properties. In: USITS’03: Proceedings of 4th USENIX Symposium on Internet Technologies and Systems. USENIX Association (2003)

    Google Scholar 

  21. Harvey, N.J.A., Munro, J.I.: Deterministic SkipNet. Inf. Process. Lett. 90(4), 205–208 (2004). doi: http://dx.doi.org/10.1016/j.ipl.2004.01.019

  22. Hengkui, W., Fuhong, L., Hongke, Z.: Reducing maintenance overhead via heterogeneity in Skip Graphs. In: IC-BNMT ’09: Proceedings of 2nd IEEE International Conference on Broadband Network & Multimedia Technology, pp. 638–642. IEEE (2009). doi:10.1109/ICBNMT.2009.5347832

    Google Scholar 

  23. Hu, J., Li, M., Zheng, W., Wang, D., Ning, N., Dong, H.: Smartboa: constructing P2P overlay network in the heterogeneous Internet using irregular routing tables. In: IPTPS ’04: Proceedings of 3rd International Workshop on Peer-to-Peer Systems. Lecture Notes in Computer Science, vol. 3279, pp. 278–287. Springer, Berlin (2004)

    Google Scholar 

  24. Huang, X., Chen, L., Huang, L., Li, M.: Routing algorithm using SkipNet and Small-World for peer-to-peer system. In: GCC 2005: Proceedings of 4th International Conference on Grid and Cooperative Computing. Lecture Notes in Computer Science, vol. 3795, pp. 984–989. Springer, Berlin (2005)

    Google Scholar 

  25. Jacob, R., Richa, A., Scheideler, C., Schmid, S., Täubig, H.: A distributed polylogarithmic time algorithm for self-stabilizing skip graphs. In: PODC ’09: Proceedings of 28th ACM Symposium on Principles of Distributed Computing, pp. 131–140. ACM, New York (2009). doi: http://doi.acm.org/10.1145/1582716.1582741

  26. Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., Lewin, D.: Consistent hashing and random trees: distributed caching protocols for relieving hot spots on the world wide web. In: STOC ’97: Proceedings of 29th Annual ACM Symposium on Theory of Computing, pp. 654–663. ACM, New York (1997). doi: http://doi.acm.org/10.1145/258533.258660

  27. Karger, D.R., Ruhl, M.: New algorithms for load balancing in peer-to-peer systems. Technical Report LCS-TR-911, MIT (2003)

    Google Scholar 

  28. Karger, D.R., Ruhl, M.: Diminished Chord: a protocol for heterogeneous subgroup formation in peer-to-peer networks. In: IPTPS ’04: Proceedings of 3rd International Workshop on Peer-to-Peer Systems. Lecture Notes in Computer Science, vol. 3279, pp. 288–297. Springer, Berlin (2004)

    Google Scholar 

  29. Karger, D.R., Ruhl, M.: Simple efficient load balancing algorithms for peer-to-peer systems. In: SPAA ’04: Proceedings of 16th Annual ACM Symposium on Parallelism in Algorithms and Architectures, pp. 36–43. ACM, New York (2004). doi: http://doi.acm.org/10.1145/1007912.1007919

  30. Kenthapadi, K., Manku, G.S.: Decentralized algorithms using both local and random probes for P2P load balancing. In: SPAA ’05: Proceedings of 17th Annual ACM Symposium on Parallelism in Algorithms and Architectures, pp. 135–144. ACM, New York (2005). doi: http://doi.acm.org/10.1145/1073970.1073990

  31. King, V., Saia, J.: Choosing a random peer. In: Proceedings of 23rd Annual ACM Symposium Principles of Distributed Computing (PODC ’04), pp. 125–130. ACM, New York (2004). doi: http://doi.acm.org/10.1145/1011767.1011786

  32. Konstantinou, I., Tsoumakos, D., Koziris, N.: Measuring the cost of online load-balancing in distributed range-queriable systems. In: IEEE P2P ’09: Proceedings of 9th International Conference on Peer-to-Peer Computing, pp. 135–138. IEEE (2009)

    Google Scholar 

  33. Ledlie, J., Seltzer, M.I.: Distributed, secure load balancing with skew, heterogeneity and churn. In: Proceedings of IEEE INFOCOM’05, pp. 1419–1430. IEEE (2005)

    Google Scholar 

  34. Li, D., Lu, X., Wu, J.: FISSIONE: a scalable constant degree and low congestion DHT scheme based on Kautz graphs. In: Proceedings of IEEE INFOCOM’05, pp. 1677–1688. IEEE (2005)

    Google Scholar 

  35. Li, X., Misra, J., Greg Plaxton, C.: Maintaining the Ranch topology. J. Parallel Distrib. Comput. 70(11), 1142–1158 (2010). doi: http://dx.doi.org/10.1016/j.jpdc.2010.06.004

  36. Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: a scalable and dynamic emulation of the butterfly. In: PODC ’02: Proceedings of 21st Annual Symposium on Principles of Distributed Computing, pp. 183–192. ACM, New York (2002). doi: http://doi.acm.org/10.1145/571825.571857

  37. Manku, G.S.: Routing networks for distributed hash tables. In: PODC ’03: Proceedings of 22nd Annual Symposium on Principles of Distributed Computing, pp. 133–142. ACM, New York (2003). doi: http://doi.acm.org/10.1145/872035.872054

  38. Manku, G.S., Naor, M., Wieder, U.: Know thy neighbor’s neighbor: the power of lookahead in randomized P2P networks. In: STOC ’04: Proceedings of 36th Annual ACM Symposium on Theory of Computing, pp. 54–63. ACM, New York (2004). doi: http://doi.acm.org/10.1145/1007352.1007368

  39. Naor, M., Wieder, U.: Novel architectures for P2P applications: the continuous-discrete approach. ACM Trans. Algorithms 3(3), 37 (2007). doi: http://doi.acm.org/10.1145/1273340.1273350

    Google Scholar 

  40. Risson, J., Harwood, A., Moors, T.: Stable high-capacity one-hop distributed hash tables. In: ISCC ’06: Proceedings of 11th IEEE Symposium on Computers and Communications, pp. 687–694. IEEE Computer Society (2006). doi: http://dx.doi.org/10.1109/ISCC.2006.152

  41. Saia, J., Fiat, A., Gribble, S.D., Karlin, A.R., Saroiu, S.: Dynamically fault-tolerant content addressable networks. In: IPTPS ’01: Revised Papers from 1st International Workshop on Peer-to-Peer Systems, pp. 270–279. Springer, Berlin (2002)

    Google Scholar 

  42. Shen, H., Xu, C.Z., Chen, G.: Cycloid: a constant-degree and lookup-efficient p2p overlay network. Perform. Eval. 63(3), 195–216 (2006). doi: http://dx.doi.org/10.1016/j.peva.2005.01.004

  43. Surana, S., Godfrey, B., Lakshminarayanan, K., Karp, R., Stoica, I.: Load balancing in dynamic structured peer-to-peer systems. Perform. Eval. 63(3), 217–240 (2006). doi: http://dx.doi.org/10.1016/j.peva.2005.01.003

  44. Vu, Q.H., Ooi, B.C., Rinard, M., Tan, K.L.: Histogram-based global load balancing in structured peer-to-peer systems. IEEE Trans. Knowl. Data Eng. 21(4), 595–608 (2009). doi: http://dx.doi.org/10.1109/TKDE.2008.182

  45. Wepiwe, G., Simeonov, P.L.: A concentric multi-ring overlay for highly reliable P2P networks. In: NCA ’05: Proceedings of 4th IEEE International Symposium on Network Computing and Applications, pp. 83–90. IEEE Computer Society (2005). doi: http://dx.doi.org/10.1109/NCA.2005.1

  46. Xu, J., Kumar, A., Yu, X.: On the fundamental tradeoffs between routing table size and network diameter in peer-to-peer networks. IEEE J. Sel. Areas Commun. 22(1), 151–163 (2004)

    Google Scholar 

  47. Xu, M., Zhou, S., Guan, J.: A new and effective hierarchical overlay structure for Peer-to-Peer networks. Comput. Commun. 34(7), 862–874 (2011). doi: http://dx.doi.org/10.1016/j.comcom.2010.10.005

  48. Zatloukal, K.C., Harvey, N.J.A.: Family trees: an ordered dictionary with optimal congestion, locality, degree, and search time. In: SODA ’04: Proceedings of 15th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 308–317. Society for Industrial and Applied Mathematics (2004)

    Google Scholar 

  49. Zhang, Y., Liu, L., Li, D., Lu, X.: Distributed line graphs: A universal framework for building DHTs based on arbitrary constant-degree graphs. In: ICDCS 2008: Proceedings of 28th IEEE International Conference Distributed Computing Systems, pp. 152–159. IEEE Computer Society (2008)

    Google Scholar 

  50. Zhang, Y., Li, D., Chen, L., Lu, X.: Flexible routing in grouped DHTs. In: IEEE P2P ’08: Proceedings of 8th International Conference Peer-to-Peer Computing, pp. 109–118. IEEE Computer Society (2008). doi: http://dx.doi.org/10.1109/P2P.2008.43

  51. Zhang, Y., Lu, X., Li, D.: SKY: efficient peer-to-peer networks based on distributed Kautz graphs. Sci. China Ser. F Inf. Sci. 52(4), 588–601 (2009)

    Google Scholar 

  52. Zhou, G., Yu, J.: pService: Towards similarity search on peer-to-peer web services discovery. In: Conference Advances in P2P Systems, pp. 111–115. IEEE Computer Society (2009). doi: http://doi.ieeecomputersociety.org/10.1109/AP2PS.2009.25

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Korzun, D., Gurtov, A. (2013). Adaptable Overlay Network Topology. In: Structured Peer-to-Peer Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5483-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5483-0_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5482-3

  • Online ISBN: 978-1-4614-5483-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics