Skip to main content

Construction of Human Embryonic Stem Cell Banks: Prospects for Tissue Matching

  • Chapter
  • First Online:
The Immunological Barriers to Regenerative Medicine

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Although human embryonic stem (hES) cells are critical for the future of regenerative medicine, their clinical application is threatened by polymorphism within the human leukocyte associated antigens (HLA), that normally precipitate rejection. Given that HLA matching between donor and recipient reduces the immune response in conventional transplantation, establishment of a hES cell bank with a broad spectrum of HLA genotypes may provide greater access to cell-replacement therapies. Both theoretical calculations and actual HLA matching analysis between an established hES cell bank and local populations indicate that a feasible number of hES cell lines could provide sufficient HLA matched tissues for the majority of the population. Furthermore, isolated hES cell lines with homozygous HLA haplotypes will significantly reduce the number of lines required, parthenogenic and “unwanted” clinical embryos serving as two major sources. We will discuss prospects for hES cell banking and issues involved in clinical compliance in the light of recent developments in induced pluripotency, using a patient’s own somatic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    CAS  PubMed  Google Scholar 

  2. Drukker M, Katz G, Urbach A et al (2002) Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci U S A 99:9864–9869

    CAS  PubMed  Google Scholar 

  3. Drukker M, Benvenisty N (2004) The immunogenicity of human embryonic stem-derived cells. Trends Biotechnol 22:136–141

    CAS  PubMed  Google Scholar 

  4. Sarić T, Frenzel LP, Hescheler J (2008) Immunological barriers to embryonic stem cell-derived therapies. Cells Tissue Organs 188:78–90

    Google Scholar 

  5. Lui KO, Waldmann H, Fairchild PJ (2009) Embryonic stem cells: overcoming the immunological barriers to cell replacement therapy. Curr Stem Cell Res Ther 4:70–80

    CAS  PubMed  Google Scholar 

  6. Lengerke C, Daley GQ (2010) Autologous blood cell therapies from pluripotent stem cells. Blood Rev 24:27–37

    PubMed  Google Scholar 

  7. Capello E, Vuolo L, Gualandi F et al (2009) Autologous haematopoietic stem-cell transplantation in multiple sclerosis: benefits and risks. Neurol Sci 30(Suppl 2):S175–S177

    PubMed  Google Scholar 

  8. Pal R, Venkataramana NK, Bansal A et al (2009) Ex vivo-expanded autologous bone marrow-derived mesenchymal stromal cells in human spinal cord injury/paraplegia: a pilot clinical study. Cytotherapy 11:897–911

    CAS  PubMed  Google Scholar 

  9. Venkataramana NK, Kumar SK, Balaraju S et al (2010) Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease. Transl Res 155:62–70

    CAS  PubMed  Google Scholar 

  10. Richardson SM, Hoyland JA, Mobasheri R, Csaki C, Shakibaei M, Mobasheri A (2010) Mesenchymal stem cells in regenerative medicine: opportunities and challenges for articular cartilage and intervertebral disc tissue engineering. J Cell Physiol 222:23–32

    CAS  PubMed  Google Scholar 

  11. Hwang NS, Elisseeff J (2009) Application of stem cells for articular cartilage regeneration. J Knee Surg 22:60–71

    PubMed  Google Scholar 

  12. Fanning LR, Hegerfeldt Y, Tary-Lehmann M et al (2008) Allogeneic transplantation of multiple umbilical cord blood units in adults: role of pretransplant-mixed lymphocyte reaction to predict host-vs-graft rejection. Leukemia 22:1786–1790

    CAS  PubMed  Google Scholar 

  13. Le Blanc K, Ringden O (2008) Mesenchymal stem cells: properties and role in clinical bone marrow transplantation. Curr Opin Immunol 18:586–591

    Google Scholar 

  14. Yu BD, Mukhopadhyay A, Wong C (2008) Skin and hair: models for exploring organ regeneration. Hum Mol Genet 17:R54–R59

    CAS  PubMed  Google Scholar 

  15. Shiina T, Inoko H, Kulski JK (2004) An update of the HLA genomic region, locus information and disease associations: 2004. Tissue Antigens 64:631–649

    CAS  PubMed  Google Scholar 

  16. Horton R, Wilming L, Rand V et al (2004) Gene map of the extended human MHC. Nat Rev Genet 5:889–899

    CAS  PubMed  Google Scholar 

  17. Opelz G, Wujciak T, Dohler B et al (1999) HLA compatibility and organ transplant survival. Collab Transpl Stud Rev Immunogenet 1:334–342

    CAS  Google Scholar 

  18. Sheldon S, Poulton K (2006) HLA typing and its influence on organ transplantation. Methods Mol Biol 333:157–174

    CAS  PubMed  Google Scholar 

  19. Marsh SGE, Albert ED, Bodmer WF et al (2010) Nomenclature for factors of the HLA system, 2010. Tissue Antigens 75:291–455

    CAS  PubMed  Google Scholar 

  20. Nowak J (2008) Role of HLA in hematopoietic SCT. Bone Marrow Transpl 42:S71–S76

    CAS  Google Scholar 

  21. Takemoto S, Port FK, Claas FHJ et al (2004) HLA matching for kidney transplantation. Hum Immunol 65:1489–1505

    CAS  PubMed  Google Scholar 

  22. Laughlin MJ, Eapen M, Rubinstein P et al (2004) Outcomes after transplantation of cord blood or bone marrow from unrelated donors in adults with leukemia. N Engl J Med 351:2265–2275

    CAS  PubMed  Google Scholar 

  23. Sullivan MJ (2008) Banking on cord blood stem cells. Nat Rev Cancer 8:554–563

    Google Scholar 

  24. Stroncek D, Bartsch G, Perkins HA et al (1993) The national marrow donor program. Transfusion 33:567–577

    CAS  PubMed  Google Scholar 

  25. Kaimal AJ, Smith CC, Laros RK Jr et al (2009) Cost-effectiveness of private umbilical cord blood banking. Obstet Gynecol 114:848–855

    PubMed  Google Scholar 

  26. Thornley I, Eapen M, Sung L et al (2009) Private cord blood banking: experiences and views of pediatric hematopoietic cell transplantation physicians. Pediatrics 123:1011–1017

    PubMed  Google Scholar 

  27. Li L, Baroja ML, Majumdar A et al (2004) Human embryonic stem cells possess immune-privileged properties. Stem Cells 22:448–456

    CAS  PubMed  Google Scholar 

  28. Drukker M, Katchman H, Katz G et al (2006) Human embryonic stem cells and their differentiated derivatives are less susceptible to immune rejection than adult cells. Stem Cells 24:221–229

    PubMed  Google Scholar 

  29. Koch CA, Geraldes P, Platt JL (2008) Immunosuppression by embryonic stem cells. Stem Cells 26:89–98

    CAS  PubMed  Google Scholar 

  30. Bradley JA, Bolton EM, Pedersen RA (2002) Stem cell medicine encounters the immune system. Nat Rev Immunol 2:859–871

    CAS  PubMed  Google Scholar 

  31. Bradley JA, Bolton EM, Pedersen RA (2005) ES cells for transplantation: coping with immunity. In: Odorico J, Zhang S, Pedersen R (eds) Human embryonic stem cells. BIOS Scientific Publishers, New York, pp 231–256

    Google Scholar 

  32. Faden RR, Dawson L, Bateman-House AS et al (2003) Public stem cell banks: considerations of justice in stem cell research and therapy. Hastings Cent Rep 33:13–27

    PubMed  Google Scholar 

  33. Taylor CJ, Bolton EM, Pocock S et al (2005) Banking on human embryonic stem cells: estimating number of the donor cell lines needed for HLA matching. Lancet 366:2019–2025

    PubMed  Google Scholar 

  34. Nakajima F, Tokunaga K, Nakatsuji N (2007) HLA matching estimations in a hypothetical bank of human embryonic stem cell lines in the Japanese population for use in cell transplantation therapy. Stem Cells 25:983–985

    CAS  PubMed  Google Scholar 

  35. Lin G, Xie YB, Ou-Yang Q et al (2009) HLA-matching potential of an established human embryonic stem cell bank in China. Cell Stem Cell 5:461–465

    CAS  PubMed  Google Scholar 

  36. Maiers M, Gragert L, Klitz W (2007) High-resolution HLA alleles and haplotypes in the United States population. Hum Immunol 68:779–788

    CAS  PubMed  Google Scholar 

  37. Bannai M, Ohashi J, Harihara S et al (2000) Analysis of HLA genes and haplotypes in Ainu (from Hokkaido, northern Japan) supports the premise that they descent from Upper Paleolithic populations of East Asia. Tissue Antigens 55:128–139

    CAS  PubMed  Google Scholar 

  38. Müller CR, Ehninger G, Goldmann SF (2003) Gene and haplotype frequencies for the loci hLA-A, hLA-B, and hLA-DR based on over 13,000 german blood donors. Hum Immunol 64:137–151

    PubMed  Google Scholar 

  39. Pedron B, Yakouben K, Adjaoud D et al (2005) Listing of common HLA alleles and haplotypes based on the study of 356 families residing in the Paris, France, area: implications for unrelated hematopoietic stem cell donor selection. Hum Immunol 66:721–731

    CAS  PubMed  Google Scholar 

  40. Lin H, Lei J, Wininger D et al (2003) Multilineage potential of homozygous stem cells derived from metaphase II oocytes. Stem Cells 21:152–161

    PubMed  Google Scholar 

  41. Kim K, Lerou P, Yabuuchi A et al (2007) Histocompatible embryonic stem cells by parthenogenesis. Science 315:482–486

    CAS  PubMed  Google Scholar 

  42. Kim K, Ng K, Rugg-Gunn PJ et al (2007) Recombination signatures distinguish embryonic stem cells derived by parthenogenesis and somatic cell nuclear transfer. Cell Stem Cell 1:345–352

    Google Scholar 

  43. Revazova ES, Turovets NA, Kochetkova OD et al (2007) Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 9:432–449

    CAS  PubMed  Google Scholar 

  44. Kaufman MH, Robertson EJ, Handyside AH et al (1983) Establishment of pluripotential cell lines from haploid mouse embryos. Great Britain 73:249–261

    CAS  Google Scholar 

  45. Lin G, Ou Yang Q, Zhou XY et al (2007) A highly homozygous and parthenogenetic human embryonic stem cell line derived from a one-pronuclear oocyte following in vitro fertilization procedure. Cell Res 17:999–1007

    CAS  PubMed  Google Scholar 

  46. Revazova ES, Turovets NA, Kochetkova OD et al (2008) HLA homozygous stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 10:11–24

    CAS  PubMed  Google Scholar 

  47. Mai Q, Yu Y, Li T et al (2007) Derivation of human embryonic stem cell lines from parthenogenetic blastocysts. Cell Res 17:1008–1019

    CAS  PubMed  Google Scholar 

  48. Sturm KS, Flannery ML, Pedersen RA (1994) Abnormal development of embryonic and extraembryonic cell lineages in parthenogenetic mouse embryos. Dev Dyn 201:11–28

    CAS  PubMed  Google Scholar 

  49. McKarney LA, Overall ML, Dziadek M (1997) Myogenesis in cultures of uniparental mouse embryonic stem cells: differing patterns of expression of myogenic regulatory factors. Int J Dev Biol 41:485–490

    CAS  PubMed  Google Scholar 

  50. Nakatsuji N, Nakajima F, Tokunaga K (2008) HLA-haplotype banking and iPS cells. Nat Biotechnol 26:739–740

    CAS  PubMed  Google Scholar 

  51. Carpenter MK, Frey-Vasconcells J, Rao MS (2009) Developing safe therapies from human pluripotent stem cells. Nat Biotechnol 27:606–613

    CAS  PubMed  Google Scholar 

  52. Miura K, Okada Y, Aoi T et al (2009) Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol 27:743–745

    CAS  PubMed  Google Scholar 

  53. Hu BY, Weick JP, Yu J et al (2010) Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci U S A 107:4335–4340

    Google Scholar 

  54. http://stemcells.nih.gov/policy/2009guidelines.htm

  55. Baltaci V, Satiroglu H, Kabukçu C et al (2006) Relationship between embryo quality and aneuploidies. Reprod Biomed Online 12:77–82

    CAS  PubMed  Google Scholar 

  56. Hardarson T, Hanson C, Sjögren A, Lundin K (2001) Human embryos with unevenly sized blastomeres have lower pregnancy and implantation rates: indications for aneuploidy and multinucleation. Hum Reprod 16:313–318

    CAS  PubMed  Google Scholar 

  57. Cortes JL, Sanchez L, Ligero G et al (2009) Mesenchymal stem cells facilitate the derivation of human embryonic stem cells from cryopreserved poor-quality embryos. Hum Reprod 24:1844–1851

    CAS  PubMed  Google Scholar 

  58. Liu W, Yin Y, Long X et al (2009) Derivation and characterization of human embryonic stem cell lines from poor quality embryos. J Genet Genomics 36:229–239

    CAS  PubMed  Google Scholar 

  59. Lerou PH, Yabuuchi A, Huo H et al (2008) Human embryonic stem cell derivation from poor-quality embryos. Nat Biotechnol 26:212–214

    CAS  PubMed  Google Scholar 

  60. Zhang X, Stojkovic P, Przyborski S et al (2006) Derivation of human embryonic stem cells from developing and arrested embryos. Stem Cells 24:2669–2676

    CAS  PubMed  Google Scholar 

  61. Chen H, Qian K, Hu J et al (2005) The derivation of two additional human embryonic stem cell lines from day 3 embryos with low morphological scores. Hum Reprod 20:2201–2206

    PubMed  Google Scholar 

  62. Mitalipova M, Calhoun J, Shin S et al (2003) Human embryonic stem cell lines derived from discarded embryos. Stem Cells 21:521–526

    CAS  PubMed  Google Scholar 

  63. Ilic D, Giritharan G, Zdravkovic T et al (2009) Derivation of human embryonic stem cell lines from biopsied blastomeres on human feeders with minimal exposure to xenomaterials. Stem Cells Dev 18:1343–1350

    CAS  PubMed  Google Scholar 

  64. Geens M, Mateizel I, Sermon K et al (2009) Human embryonic stem cell lines derived from single blastomeres of two 4-cell satge embryos. Hum Reprod 24:2709–2717

    CAS  PubMed  Google Scholar 

  65. Klimanskaya I, Chung Y, Becker S, Lu SJ, Lanza R (2006) Human embryonic stem cell lines derived from single blastomeres. Nature 444:481–485

    CAS  PubMed  Google Scholar 

  66. Vanneste E, Voet T, Le Caignec C et al (2009) Chromosome instability is common in human cleavage-stage embryos. Nat Med 15:577–583

    CAS  PubMed  Google Scholar 

  67. Unger C, Skottman H, Blomberg P, Dilber MS, Hovatta O (2008) Good manufacturing practice and clinical-grade human embryonic stem cell lines. Hum Mol Genet 17:R48–R53

    CAS  PubMed  Google Scholar 

  68. Hewitt ZA, Amps KJ, Moore HD (2007) Derivation of GMP raw materials for use in regenerative medicine: hESC-based therapies, progress toward clinical application. Clin Pharmacol Ther 82:448–452

    CAS  PubMed  Google Scholar 

  69. Crook JM, Peura TT, Kravets L et al (2007) The generation of six clinical-grade human embryonic stem cell lines. Cell Stem Cell 1:490–494

    CAS  Google Scholar 

  70. Sidhu KS, Walke S, Tuch BE (2008) Derivation and propagation of hESC under a therapeutic environment. Curr Protoc Stem Cell Biol Chap 1:Unit 1A.4

    Google Scholar 

  71. Skottman H, Dilber MS, Hovatta O (2006) The derivation of clinical-grade human embryonic stem cell lines. FEBS Lett 580:2875–2878

    CAS  PubMed  Google Scholar 

  72. Stacey GN, Cobo F, Nieto A, Talavera P, Healy L, Concha A (2006) The development of ‘feeder’ cells for the preparation of clinical grade hES cell lines: challenges and solutions. J Biotechnol 125:583–588

    CAS  PubMed  Google Scholar 

  73. Rodríguez CI, Galán A, Valbuena D, Simón C (2006) Derivation of clinical-grade human embryonic stem cells. Reprod Biomed Online 12:112–118

    PubMed  Google Scholar 

  74. Zhou J, Ou-Yang Q, Li J, Zhou XY, Lin G, Lu GX (2008) Human feeder cells support establishment and definitive endoderm differentiation of human embryonic stem cells. Stem Cells Dev 17:737–749

    CAS  PubMed  Google Scholar 

  75. Martin MJ, Muotri A, Gage F, Varki A (2005) Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med 11:228–232

    CAS  PubMed  Google Scholar 

  76. Ludwig TE, Levenstein ME, Jones JM et al (2006) Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 24:185–187

    CAS  PubMed  Google Scholar 

  77. Ludwig TE, Bergendahl V, Levenstein ME, Yu J, Probasco MD, Thomson JA (2006) Feeder-independent culture of human embryonic stem cells. Nat Methods 3:637–646

    CAS  PubMed  Google Scholar 

  78. Swistowski A, Peng J, Han Y, Swistowska AM, Rao MS, Zeng X (2009) Xeno-free defined conditions for culture of human embryonic stem cells, neural stem cells and dopaminergic neurons derived from them. PLoS ONE 4:e6233

    PubMed  Google Scholar 

  79. Shapiro AM, Lakey JR, Ryan EA et al (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid free immunosuppressive regimen. N Engl J Med 343:230–238

    CAS  PubMed  Google Scholar 

  80. Marinho PA, Fernandes AM, Cruz JC, Rehen SK, Castilho LR (2010) Maintenance of pluripotency in mouse embryonic stem cells cultivated in stirred microcarrier cultures. Biotechnol Prog 26:548–555

    CAS  PubMed  Google Scholar 

  81. Kehoe DE, Jing D, Lock LT, Tzanakakis EM (2009) Scalable Stirred-suspension bioreactor culture of human pluripotent stem cells. Tissue Eng Part A 16:405–421

    Google Scholar 

  82. Nie Y, Bergendahl V, Hei DJ, Jones JM, Palecek SP (2009) Scalable culture and cryopreservation of human embryonic stem cells on microcarriers. Biotechnol Prog 25:20–31

    CAS  PubMed  Google Scholar 

  83. Thomas RJ, Anderson D, Chandra A, Smith NM, Young LE, Williams D, Denning C (2009) Automated, scalable culture of human embryonic stem cells in feeder-free conditions. Biotechnol Bioeng 102:1636–1644

    CAS  PubMed  Google Scholar 

  84. Serra M, Brito C, Costa EM, Sousa MF, Alves PM (2009) Integrating human stem cell expansion and neuronal differentiation in bioreactors. BMC Biotechnol 9:82

    PubMed  Google Scholar 

  85. Dang SM, Gerecht-Nir S, Chen J, Itskovitz-Eldor J, Zandstra PW (2004) Controlled, scalable embryonic stem cell differentiation culture. Stem Cells 22:275–282

    PubMed  Google Scholar 

  86. Lock LT, Tzanakakis ES (2009) Expansion and differentiation of human embryonic stem cells to endoderm progeny in a microcarrier stirred-suspension culture. Tissue Eng Part A 15:2051–2063

    CAS  PubMed  Google Scholar 

  87. Niebruegge S, Bauwens CL, Peerani R et al (2009) Generation of human embryonic stem cell-derived mesoderm and cardiac cells using size-specified aggregates in an oxygen-controlled bioreactor. Biotechnol Bioeng 102:493–507

    CAS  PubMed  Google Scholar 

  88. Baker DE, Harrison NJ, Maltby E et al (2007) Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol 25:207–215

    CAS  PubMed  Google Scholar 

  89. Caisander G, Park H, Frej K et al (2006) Chromosomal integrity maintained in five human embryonic stem cell lines after prolonged in vitro culture. Chromosom Res 14:131–137

    CAS  Google Scholar 

  90. Inzunza J, Sahlén S, Holmberg K et al (2004) Comparative genomic hybridization and karyotyping of human embryonic stem cells reveals the occurrence of an isodicentric X chromosome after long-term cultivation. Mol Hum Reprod 10:461–466

    CAS  PubMed  Google Scholar 

  91. Rosler ES et al (2004) Long-term culture of human embryonic stem cells in feeder-free conditions. Dev Dyn 229:259–274

    CAS  PubMed  Google Scholar 

  92. Imreh MP, Gertow K, Cedervall J et al (2006) In vitro culture conditions favoring selection of chromosomal abnormalities in human ES cells. J Cell Biochem 99:508–516

    CAS  PubMed  Google Scholar 

  93. Draper JS, Smith K, Gokhale P et al (2004) Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 22:53–54

    CAS  PubMed  Google Scholar 

  94. Maitra A, Arking DE, Shivapurkar N et al (2005) Genomic alterations in cultured human embryonic stem cells. Nat Genet 37:1099–1103

    CAS  PubMed  Google Scholar 

  95. Herszfeld D, Wolvetang E, Langton-Bunker E et al (2006) CD30 is a survival factor and a biomarker for transformed human pluripotent stem cells. Nat Biotechnol 24:351–357

    CAS  PubMed  Google Scholar 

  96. Mitalipova MM, Rao RR, Hoyer DM et al (2005) Preserving the genetic integrity of human embryonic stem cells. Nat Biotechnol 23:19–20

    CAS  PubMed  Google Scholar 

  97. Närvä E, Autio R, Rahkonen N et al (2010) High-resolution DNA analysis of human embryonic stem cell lines reveals culture-induced copy number changes and loss of heterozygosity. Nat Biotechnol 28:371–377

    PubMed  Google Scholar 

  98. Yang S, Lin G, Tan YQ et al (2008) Tumor progression of culture-adapted human embryonic stem cells during long-term culture. Genes Chromosom Cancer 47:665–679

    CAS  PubMed  Google Scholar 

  99. Werbowetski-Ogilvie TE, Bossé M, Stewart M et al (2009) Characterization of human embryonic stem cells with features of neoplastic progression. Nat Biotechnol 27:91–97

    CAS  PubMed  Google Scholar 

  100. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    CAS  PubMed  Google Scholar 

  101. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    CAS  PubMed  Google Scholar 

  102. Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    CAS  PubMed  Google Scholar 

  103. Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA (2008) In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455:627–632

    CAS  PubMed  Google Scholar 

  104. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035–1041

    CAS  PubMed  Google Scholar 

  105. Zhao XY, Li W, Lv Z et al (2009) iPS cells produce viable mice through tetraploid complementation. Nature 461:86–90

    CAS  PubMed  Google Scholar 

  106. Kang L, Wang J, Zhang Y, Kou Z, Gao S (2009) iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell 5:135–138

    CAS  PubMed  Google Scholar 

  107. Marchetto MC, Yeo GW, Kainohana O, Marsala M, Gage FH, Muotri AR (2009) Transcriptional signature and memory retention of human-induced pluripotent stem cells. PLoS ONE 4:e7076

    PubMed  Google Scholar 

  108. Chin MH, Mason MJ, Xie W et al (2009) Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 5:111–123

    CAS  PubMed  Google Scholar 

  109. Hu BY, Weick JP, Yu J et al (2010) Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci U S A 107:4335–4340

    CAS  PubMed  Google Scholar 

  110. Miura K, Okada Y, Aoi T et al (2009) Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol 27:743–745

    CAS  PubMed  Google Scholar 

  111. Park IH, Zhao R, West JA et al (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451:141–146

    CAS  PubMed  Google Scholar 

  112. Raya A, Rodríguez-Pizà I, Guenechea G et al (2009) Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460:53–59

    CAS  PubMed  Google Scholar 

  113. Kazuki Y, Hiratsuka M, Takiguchi M et al (2010) Complete genetic correction of iPS cells from duchenne muscular dystrophy. Mol Ther 18:386–393

    CAS  PubMed  Google Scholar 

  114. Xu D, Alipio Z, Fink LM et al (2009) Phenotypic correction of murine hemophilia a using an iPS cell-based therapy. Proc Natl Acad Sci U S A 106:808–813

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangxiu Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lin, G., Ou-Yang, Q., Qian, X., Lu, G. (2013). Construction of Human Embryonic Stem Cell Banks: Prospects for Tissue Matching. In: Fairchild, P. (eds) The Immunological Barriers to Regenerative Medicine. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-5480-9_7

Download citation

Publish with us

Policies and ethics