Skip to main content

The Mechanism and Phenomena of Adaptive Human Behavior During an Epidemic and the Role of Information

  • Chapter
  • First Online:
Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases

Abstract

Disease transmission can be described phenomenologically at the population level or mechanistically as the aggregate result of individual behaviors. To explain why epidemics evolve as they do in response to information, a mechanistic approach is required. However, taking a mechanistic approach reveals that information can be parsed in terms of forecasting models or the approach to forming expectations, timeliness or quality of information, and information processing and how the information is used to make trade-offs. We develop a mechanistic model that uses microeconomic theory to describe adaptive or strategic human behavior. We show that phenomenological forecasting models and forecasting models based on classical epidemiological theory guide human behavior towards similar biological results, but different social well-being results. Moreover, we find that assumptions about information processing method, i.e., the utility function of individuals, may have a substantial influence on an epidemic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Agent-based [36], network [45], and distributed parameters [49] can be seen as generalization to the compartmental modeling framework.

  2. 2.

    Our notation and model development follows [20]. The framework is easily adapted to handle disease-induced mortality, but this requires tracking changes in the total population thereby adding an additional state variable. It is also possible to include population turnover (see supplemental material in [20]). However, our primary goal is to consider adaptive behavior during an epidemic such as flu and such epidemics are often managed as if they will eventually die out (see [21] for a similar treatment).

  3. 3.

    Conversely, the specification has the disadvantage of not modeling time allocation directly since contacts are not actual goods that are consumed. Bridging this divide is an active area of research.

  4. 4.

    The partial derivative in Eq. (6) is only taken with respect to C s. However, C s is substituted for \(\bar{{C}}^{s}\) after the derivative is taken prior to solving Eq. (6) for the optimal C s. This ensures that all individuals in the same class behave the same but do not consider the homogeneity of behavior when making behavioral choices.

  5. 5.

    Such an approach has a history in economics, and is not always differentiated from classical adaptive expectations [13, 37].

  6. 6.

    We do not consider rational expectations because the necessary market assumptions to impose as if rational behavior do not exist.

  7. 7.

    Minimum contacts are also greater than unit elastic in absolute value to the transmission parameter β for two of the forecasting models.

  8. 8.

    These authors point out that consumption smoothing associated with borrowing and savings over an epidemic shock implies that in the long run epidemics may have little effect on the level of economic activity in developed countries. The results of an epidemic in developing countries may be more sever [10], and there may long-run lasting effects on human capital from infection [1, 2].

References

  1. Almond, D.: J. Polit. Econ. 114, 672–712 (2006)

    Article  Google Scholar 

  2. Almond, D., Mazumder, B.: Am. Econ. Rev. 95, 258–262 (2005)

    Article  Google Scholar 

  3. Anderson, R.M., May, R.M.: Nature 280, 361-367 (1979)

    Article  Google Scholar 

  4. Aparicio, J.P., Pascual, M.: Proceedings of the Royal Society, London B. Vol. 274, pp. 505–512 (2007)

    Google Scholar 

  5. Auld, M.C.: J. Health Econ. 22, 361-377 (2003)

    Article  Google Scholar 

  6. Begon, M., Bennett, M., Bowers, R.G., French, N.P., Hazel, S.M., Turner, J.: Epidemiol. Infect. 129, 147–153 (2002)

    Article  Google Scholar 

  7. Boulier, B.L., Satta, T.S., Goldfarb, R.S.: The B.E. J. Econ. Anal. Policy 7 (2007)

    Google Scholar 

  8. Caley, P., Philips, D.J., Mccracken, K.: J. Roy. Soc. Interface 5, 631–639 (2007)

    Article  Google Scholar 

  9. Capasso, V., Serio, G.: Math. Biosci. 42, 43–61 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chakraborty, S., Papageorgiou, C., Sebastian, F.P.: J. Monetary Econ. 57, 859–872 (2010)

    Article  Google Scholar 

  11. Chen, F., Jiang, M., Rabidoux, S., Tobinson, S.: J. Theor. Biol. 278, 107–119 (2011)

    Article  Google Scholar 

  12. Chen, F.H.: Math. Biosci. 217, 125–133 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chow, G.C.: The Rev. Econ. Stat. 71, 376–384 (1989)

    Article  Google Scholar 

  14. Chowell, G., Bertozzi, S.M., Colchero, M.A., Alpuche-Aranda, C., Hernandez, M., Miller, M.A.: The New Engl. J. Med. 361, 674–679 (2009)

    Article  Google Scholar 

  15. Chowell, G., Brauer, F.: The basic reproduction number of infectious diseases: Computation and estimation using compartmental epidemic models. In: Chowell, G., Hyman, J.M., Bettencourt, L.M.A., Castillo-Chavez, C. (eds.) Mathematical and Statistical Estimation Approaches in Epidemiology. Springer, New York (2009)

    Chapter  Google Scholar 

  16. Cohen, J.E., Enserink, M.: Science 324, 572–573 (2009)

    Article  Google Scholar 

  17. Cui, J., Sun, Y., Zhu, H.: J. Dyn. Diff. Equat. 20, 31–53 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. d’Onofrio, A., Manfredi, P.: J. Theor. Biol. 256, 473-478 (2009)

    Google Scholar 

  19. Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J.: J. Math. Biol. 28, 365–382 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fenichel, E.P., Castillo-Chaves, C., Ceddia, M.G., Chowell, G., Gonzalez Parra, P.A., Hickling, G.J., Holloway, G., Horan, R., Morin, B., Perrings, C., Springborn, M., Velazquez, L., Villalobos, C.: Proceedings of the National Academy of Sciences. Vol. 108, pp. 6306–6311 (2011)

    Google Scholar 

  21. Francis, P.J.: Dynamic epidemiology and the market for vaccinations. J. Public Econ. 63, 383–406 (1997)

    Article  Google Scholar 

  22. Francis, P.J.: J. Econ. Dyn. Control 28, 2037–2054 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Funk, S., Salathe, M., Jansen, V.A.A.: J. Roy. Soc. Interface 7, 1247–1256 (2010)

    Article  Google Scholar 

  24. Galvani, A.P., Reluga, T.C., Chapman, G.B.: Proceedings of the National Academy of Sciences. Vol. 104, pp. 5692–5697 (2007)

    Google Scholar 

  25. Geoffard, P.Y., Philipson, T.: Int. Econ. Rev. 37, 603–624 (1996)

    Article  MATH  Google Scholar 

  26. Geoffard, P., Philipson, T.: Biometrika 82, 101–111 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Glass, R.J., Glass, L.M., Beyeler, W.E., Min, H.J.: Emerg. Infect. Dis. 12, 1671–1681 (2006)

    Article  Google Scholar 

  28. Heesterbeek, J.A.P., Roberts, M.G.: Math. Biosci. 206, 3–10 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Heffernan, J.M., Smith, R.J., Wahl, L.M.: J. Roy. Soc. Interface 2, 281–293 (2005)

    Article  Google Scholar 

  30. Hethcote, H.W.: SIAM Rev. 42, 599–653 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Keeling, M.J., Grenfell, B.T.: J. Theor. Biol. 203, 51–61 (2000)

    Article  Google Scholar 

  32. Keogh-Brown, M.R., Wren-Lewis, S., Edmunds, W.J., Beutels, P., Smith, R.D.: Health Econ. 19, 1345–1360 (2010)

    Article  Google Scholar 

  33. Kermack, W.O., McKendrick, A.G.: Proceedings of the Royal Society, London Series A. Vol. 115, pp. 700–721 (1929)

    Article  Google Scholar 

  34. Korobeinikov, A., Maini, P.K.: Math. Med. Biol. 22, 113–128 (2005)

    Article  MATH  Google Scholar 

  35. Kremer, M.: The Q. J. Econ. 111, 549–573 (1996)

    Article  MATH  Google Scholar 

  36. Longini, I.M., Halloran, M.E., Nizam, A., Yang, Y.: Am. J. Epidemiol. 169, 623–633 (2004)

    Article  Google Scholar 

  37. Marcet, A., Sargent, T.J.: Am. Econ. Rev. 78, 168–172 (1988)

    Google Scholar 

  38. Mccallum, H.I., Barlow, N., Hone, J.: TRENDS Ecol. Evol. 16, 295–300 (2001)

    Article  Google Scholar 

  39. Mesnard, A., Seabright, P.: J. Public Econ. 93, 931–938 (2009)

    Article  Google Scholar 

  40. Mitchell, M.: Complexity: A Guided Tour. Oxford University Press, New York (2009)

    MATH  Google Scholar 

  41. Nishiura, H., Castillo-Chaves, C., Safan, M., Chowell, G.: Eurosurveillance 14, 1–4 (2009)

    Google Scholar 

  42. Philipson, T.: Econ. Epidemiol. Infect. Dis. 1, 1761–1799 (2000)

    Google Scholar 

  43. Reluga, T.C.: PLoS Comput. Biol. 6, e1000793 (2010)

    Article  MathSciNet  Google Scholar 

  44. Roberts, M.G.: J. Roy. Soc. Interface. 4, 949–961 (2007)

    Article  Google Scholar 

  45. Shaw, L., Schwartz, I.B.: Enhanced vaccine control of epidemics in adaptive networks. Phys. Rev. E 81, 046120 (2010)

    Article  Google Scholar 

  46. Shogren, J.F., Crocker, T.D.: J. Environ. Econ. Manag. 37, 44–51 (1999)

    Article  MATH  Google Scholar 

  47. Smith, R.D., Keogh-Brown, M.R., Barnett, T., Tait, J.: BMJ 339, b4571 (2009)

    Article  Google Scholar 

  48. Varian, H.R.: Microeconomic Analysis 3rd. W.W. Norton and Company, New York (1992)

    Google Scholar 

  49. Veliov, V.M.: J. Math. Biol. 51, 123–143 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  50. World Health Organization. Emerg. Infect. Dis. 12, 88–94 (2006)

    Google Scholar 

Download references

Acknowledgment

This research was made possible by grant 1R01GM100471-01 from the National Institute of General Medical Sciences (NIGMS) at the National Institutes of Health, and by grants from the National Science Foundation (NSF - Grant DMPS-0838705), the National Security Agency (NSA - Grant H98230-09-1-0104), and support from the Office of the Provost of Arizona State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eli P. Fenichel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fenichel, E.P., Wang, X. (2013). The Mechanism and Phenomena of Adaptive Human Behavior During an Epidemic and the Role of Information. In: Manfredi, P., D'Onofrio, A. (eds) Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5474-8_10

Download citation

Publish with us

Policies and ethics