Skip to main content

Brentuximab Vedotin (SGN-35) for CD30-Positive Malignancies

  • Chapter
  • First Online:
Antibody-Drug Conjugates and Immunotoxins

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 2539 Accesses

Abstract

Although the prognosis of patients with Hodgkin’s lymphoma (HL) and anaplastic large cell lymphoma (ALCL) has improved over the past decade, there are still subpopulations of these patients with a poor prognosis including HL patients with chemotherapy-refractory disease, HL patients who fail or relapse with high-dose chemotherapy with autologous stem cell rescue and who have less than a 50 % overall survival at 10 years [1], HL patients who receive alternate salvage chemotherapy [2–5], and elderly patients with HL who often cannot tolerate aggressive combination therapy. Similarly, patients with relapsed or refractory systemic ALCL (approximately 40–65 % of adult patients) have few effective salvage therapies [6, 7]. Thus, there is an unmet medical need for these patients, and the effort is ongoing to develop novel therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moskowitz CH, Kewalramani T, Nimer SD, Gonzalez M, Zelenetz AD, Yahalom J (2004) Effectiveness of high dose chemoradiotherapy and autologous stem cell transplantation for patients with biopsy-proven primary refractory Hodgkin’s disease. Br J Haematol 124(5):645–652

    Article  PubMed  Google Scholar 

  2. Longo DL, Duffey PL, Young RC, Hubbard SM, Ihde DC, Glatstein E, Phares JC, Jaffe ES, Urba WJ, DeVita VT Jr (1992) Conventional-dose salvage combination chemotherapy in patients relapsing with Hodgkin’s disease after combination chemotherapy: the low probability for cure. J Clin Oncol 10(2):210–218

    PubMed  CAS  Google Scholar 

  3. Schmitz N, Haverkamp H, Josting A, Diehl V, Pfistner B, Carella AM, Haenel M, Boissevain F, Bokemeyer C, Goldstone AH (2005) Long term follow up in relapsed Hodgkin’s disease: updated results of the HD-R1 study comparing conventional chemotherapy to high-dose chemotherapy with autologous haemopoetic stem cell transplantation of the German Hodgkin Study Group and the Working Party Lymphoma of the European Group for Blood and Marrow Transplantation. J Clin Oncol 23(16s):Abstract 6508

    Google Scholar 

  4. Schmitz N, Pfistner B, Sextro M, Sieber M, Carella AM, Haenel M, Boissevain F, Zschaber R, Müller P, Kirchner H, Lohri A, Decker S, Koch B, Hasenclever D, Goldstone AH, Diehl V, German Hodgkin’s Lymphoma Study Group, Lymphoma Working Party of the European Group for Blood and Marrow Transplantation (2002) Aggressive conventional chemotherapy compared with high-dose chemotherapy with autologous haemopoietic stem-cell transplantation for relapsed chemosensitive Hodgkin’s disease: a randomised trial. Lancet 359(9323):2065–2071

    Article  PubMed  CAS  Google Scholar 

  5. Linch DC, Winfield D, Goldstone AH, Moir D, Hancock B, McMillan A, Chopra R, Milligan D, Hudson GV (1993) Dose intensification with autologous bone-marrow transplantation in relapsed and resistant Hodgkin’s disease: results of a BNLI randomised trial. Lancet 341(8852):1051–1054

    Article  PubMed  CAS  Google Scholar 

  6. Pileri S, Bocchia M, Baroni CD, Martelli M, Falini B, Sabattini E, Gherlinzoni F, Amadori S, Poggi S, Mazza P et al (1994) Anaplastic large cell lymphoma (CD30+/Ki-1+): results of a prospective clinico-pathological study of 69 cases. Br J Haematol 86(3):513–523

    Article  PubMed  CAS  Google Scholar 

  7. Pileri SA, Piccaluga A, Poggi S, Sabattini E, Piccaluga PP, De Vivo A, Falini B, Stein H (1995) Anaplastic large cell lymphoma: update of findings. Leuk Lymphoma 18(1–2):17–25

    Article  PubMed  CAS  Google Scholar 

  8. Reichert JM, Valge-Archer VE (2007) Development trends for monoclonal antibody cancer therapeutics. Nat Rev Drug Discov 6(5):349–356

    Article  PubMed  CAS  Google Scholar 

  9. Carter PJ (2006) Potent antibody therapeutics by design. Nat Rev Immunol 6(5):343–357

    Article  PubMed  CAS  Google Scholar 

  10. Schrama D, Reisfeld RA, Becker JC (2006) Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov 5(2):147–159

    Article  PubMed  CAS  Google Scholar 

  11. Weiner LM (2007) Building better magic bullets—improving unconjugated monoclonal antibody therapy for cancer. Nat Rev Cancer 7(9):701–706

    Article  PubMed  CAS  Google Scholar 

  12. Carter PJ, Senter PD (2008) Antibody-drug conjugates for cancer therapy. Cancer J 14(3):154–169

    Article  PubMed  CAS  Google Scholar 

  13. Teicher BA (2009) Antibody-drug conjugate targets. Curr Cancer Drug Targets 9(8):982–1004

    Article  PubMed  CAS  Google Scholar 

  14. Lambert JM (2005) Drug-conjugated monoclonal antibodies for the treatment of cancer. Curr Opin Pharmacol 5(5):543–549

    Article  PubMed  CAS  Google Scholar 

  15. Carter P, Smith L, Ryan M (2004) Identification and validation of cell surface antigens for antibody targeting in oncology. Endocr Relat Cancer 11(4):659–687

    Article  PubMed  CAS  Google Scholar 

  16. Wu AM, Senter PD (2005) Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 23(9):1137–1146

    Article  PubMed  CAS  Google Scholar 

  17. Xie H, Blättler WA (2006) In vivo behaviour of antibody-drug conjugates for the targeted treatment of cancer. Expert Opin Biol Ther 6(3):281–291

    Article  PubMed  CAS  Google Scholar 

  18. Kovtun YV, Goldmacher VS (2007) Cell killing by antibody-drug conjugates. Cancer Lett 255(2):232–240

    Article  PubMed  CAS  Google Scholar 

  19. Dürkop H, Latza U, Hummel M, Eitelbach F, Seed B, Stein H (1992) Molecular cloning and expression of a new member of the nerve growth factor receptor family that is characteristic for Hodgkin’s disease. Cell 68(3):421–427

    Article  PubMed  Google Scholar 

  20. Horie R, Watanabe T (1998) CD30: expression and function in health and disease. Semin Immunol 10(6):457–470

    Article  PubMed  CAS  Google Scholar 

  21. Dürkop H, Foss HD, Eitelbach F, Anagnostopoulos I, Latza U, Pileri S, Stein H (2000) Expression of the CD30 antigen in non-lymphoid tissues and cells. J Pathol 190(5):613–618

    Article  PubMed  Google Scholar 

  22. Pera MF, Bennett W, Cerretti DP (1997) Expression of CD30 and CD30 ligand in cultured cell lines from human germ-cell tumors. Lab Invest 76(4):497–504

    PubMed  CAS  Google Scholar 

  23. Muta H, Boise LH, Fang L, Podack ER (2000) CD30 signals integrate expression of cytotoxic effector molecules, lymphocyte trafficking signals, and signals for proliferation and apoptosis. J Immunol 165(9):5105–5111

    PubMed  CAS  Google Scholar 

  24. Wahl AF, Klussman K, Thompson JD, Chen JH, Francisco LV, Risdon G, Chace DF, Siegall CB, Francisco JA (2002) The anti-CD30 monoclonal antibody SGN-30 promotes growth arrest and DNA fragmentation in vitro and affects antitumor activity in models of Hodgkin’s disease. Cancer Res 62(13):3736–3742

    PubMed  CAS  Google Scholar 

  25. Borchmann P, Treml JF, Hansen H, Gottstein C, Schnell R, Staak O, Zhang HF, Davis T, Keler T, Diehl V, Graziano RF, Engert A (2003) The human anti-CD30 antibody 5F11 shows in vitro and in vivo activity against malignant lymphoma. Blood 102(10):3737–3742

    Article  PubMed  CAS  Google Scholar 

  26. Duckett CS, Gedrich RW, Gilfillan MC, Thompson CB (1997) Induction of nuclear factor kappaB by the CD30 receptor is mediated by TRAF1 and TRAF2. Mol Cell Biol 17(3):1535–1542

    PubMed  CAS  Google Scholar 

  27. Harlin H, Podack E, Boothby M, Alegre ML (2002) TCR-independent CD30 signaling selectively induces IL-13 production via a TNF receptor-associated factor/p38 mitogen-activated protein kinase-dependent mechanism. J Immunol 169(5):2451–2459

    PubMed  CAS  Google Scholar 

  28. Zheng B, Fiumara P, Li YV, Georgakis G, Snell V, Younes M, Vauthey JN, Carbone A, Younes A (2003) MEK/ERK pathway is aberrantly active in Hodgkin disease: a signaling pathway shared by CD30, CD40, and RANK that regulates cell proliferation and survival. Blood 102(3):1019–1027

    Article  PubMed  CAS  Google Scholar 

  29. Cerveny CG, Law CL, McCormick RS, Lenox JS, Hamblett KJ, Westendorf LE, Yamane AK, Petroziello JM, Francisco JA, Wahl AF (2005) Signaling via the anti-CD30 mAb SGN-30 sensitizes Hodgkin’s disease cells to conventional chemotherapeutics. Leukemia 19(9):1648–1655

    Article  PubMed  CAS  Google Scholar 

  30. Sutherland MS, Sanderson RJ, Gordon KA, Andreyka J, Cerveny CG, Yu C, Lewis TS, Meyer DL, Zabinski RF, Doronina SO, Senter PD, Law CL, Wahl AF (2006) Lysosomal trafficking and cysteine protease metabolism confer target-specific cytotoxicity by peptide-linked anti-CD30-auristatin conjugates. J Biol Chem 281(15):10540–10547

    Article  PubMed  CAS  Google Scholar 

  31. Francisco JA, Cerveny CG, Meyer DL, Mixan BJ, Klussman K, Chace DF, Rejniak SX, Gordon KA, DeBlanc R, Toki BE, Law CL, Doronina SO, Siegall CB, Senter PD, Wahl AF (2003) cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood 102(4):1458–1465

    Article  PubMed  CAS  Google Scholar 

  32. Fischer P, Nacheva E, Mason DY, Sherrington PD, Hoyle C, Hayhoe FG, Karpas A (1988) A Ki-1 (CD30)-positive human cell line (Karpas 299) established from a high-grade non-Hodgkin’s lymphoma, showing a 2;5 translocation and rearrangement of the T-cell receptor beta-chain gene. Blood 72(1):234–240

    PubMed  CAS  Google Scholar 

  33. Tian ZG, Longo DL, Funakoshi S, Asai O, Ferris DK, Widmer M, Murphy WJ (1995) In vivo antitumor effects of unconjugated CD30 monoclonal antibodies on human anaplastic large-cell lymphoma xenografts. Cancer Res 55(22):5335–5341

    PubMed  CAS  Google Scholar 

  34. Kapp U, Wolf J, von Kalle C, Tawadros S, Röttgen A, Engert A, Fonatsch C, Stein H, Diehl V (1992) Preliminary report: growth of Hodgkin’s lymphoma derived cells in immune compromised mice. Ann Oncol 3(Suppl 4):21–23

    Article  PubMed  Google Scholar 

  35. Younes A, Bartlett NL, Leonard JP, Kennedy DA, Lynch CM, Sievers EL, Forero-Torres A (2010) Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med 363(19):1812–1821

    Article  PubMed  CAS  Google Scholar 

  36. Fanale M, Bartlett NL, Forero-Torres A, Rosenblatt J, Horning SJ, Franklin AR, Lynch CM, Sievers EL, Kennedy DA (2009) The antibody-drug conjugate Brentuximab Vedotin (SGN-35) induced multiple objective responses in patients with relapsed or refractory CD30-positive lymphomas in a phase 1 weekly dosing study. ASH 2009 annual meeting (Abstract #2731)

    Google Scholar 

  37. Bartlett N, Grove LE, Kennedy DA, Sievers EL, Forero-Torres A (2010) Objective responses with Brentuximab Vedotin (SGN-35) retreatment in CD30-positive hematologic malignancies: a case series. J Clin Oncol 28:15s (Abstract #8062)

    Google Scholar 

  38. Cheson BD, Pfistner B, Juweid ME et al (2007) Revised Response Criteria for Malignant Lymphoma. J Clin Oncol 25:579

    Google Scholar 

  39. Younes A, Gopal AK, Smith SE, Ansell SM, Rosenblatt JD, Savage KJ, Ramchandren R, Bartlett NL, Cheson BD, de Vos S, Forero-Torres A, Moskowitz CH, Connors JM, Engert A, Larsen EK, Kennedy DA, Sievers EL, Chen R (2012) Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol 30(18):2183–2189

    Article  PubMed  CAS  Google Scholar 

  40. Pro B, Advani R, Brice P, Bartlett NL, Rosenblatt JD, Illidge T, Matous J, Ramchandren R, Fanale M, Connors JM, Yang Y, Sievers EL, Kennedy DA, Shustov A (2012) Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J Clin Oncol 30(18):2190–2196

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andres Forero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Forero, A., Vaklavas, C., LoBuglio, A.F. (2013). Brentuximab Vedotin (SGN-35) for CD30-Positive Malignancies. In: Phillips, G. (eds) Antibody-Drug Conjugates and Immunotoxins. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5456-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5456-4_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5455-7

  • Online ISBN: 978-1-4614-5456-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics