Skip to main content

Evaluation of Metal Oxide Nanowire Materials With Temperature-Controlled Microsensor Substrates

  • Chapter
  • First Online:
Metal Oxide Nanomaterials for Chemical Sensors

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 2697 Accesses

Abstract

Nanomaterials are becoming increasingly important for next-generation chemical sensing devices. In particular, quasi-one-dimensional materials, such as nanowires, are attracting a great deal of interest. While early examples have demonstrated the promise offered by these nanoscale materials, challenges still remain for integration, systematic characterization and evaluation of such materials in operational devices. Here, a means to assess the performance of nanowire-based materials as chemical microsensors is illustrated with two examples. Polycrystalline nanowire sensing materials are integrated with microsensor substrates that feature an embedded heater, facilitating the use of temperature to interrogate the response characteristics of sensing materials. By changing the operating temperature, different effects are observed as a function of nanowire loading density (aligned tin oxide nanowires) or overall material morphology (tungsten oxide materials, including a thin film). Further, by using conventional signal processing and data analysis approaches, the sensitivity and selectivity of these materials as a function of material scale and morphology are characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Choi KJ, Jang HW (2010) One-dimensional oxide nanostructures as gas-sensing materials: review and issues. Sensors 10(4):4083–4099

    Article  CAS  Google Scholar 

  2. Kolmakov A, Moskovits M (2004) Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annu Rev Mater Res 34:151–180

    Article  CAS  Google Scholar 

  3. Comini E, Sberveglieri G (2010) Metal oxide nanowires as chemical sensors. Mater Today 13(7–8):28–36

    Google Scholar 

  4. Franke ME, Koplin TJ, Simon U (2006) Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2:36–50

    Article  CAS  Google Scholar 

  5. Benkstein KD, Martinez CJ, Li G, Meier DC, Montgomery CB, Semancik S (2006) Integration of nanostructured materials with MEMS microhotplate platforms to enhance chemical sensor performance. J Nanopart Res 8:809–822

    Article  Google Scholar 

  6. Comini E (2006) Metal oxide nano-crystals for gas sensing. Anal Chim Acta 568(1–2):28–40

    Article  CAS  Google Scholar 

  7. Donthu S, Alem N, Pan Z, Li S-Y, Shekhawat G, Dravid V, Benkstein KD, Semancik S (2008) Directed fabrication of ceramic nanostructures on fragile substrates using soft-electron beam lithography (soft-eBL). IEEE Trans Nanotech 7(3):338–343

    Article  Google Scholar 

  8. Evoy S, DiLello N, Deshpande V, Narayanan A, Liu H, Riegelman M, Martin BR, Hailer B, Bradley JC, Weiss W, Mayer TS, Gogotsi Y, Bau HH, Mallouk TE, Raman S (2004) Dielectrophoretic assembly and integration of nanowire devices with functional CMOS operating circuitry. Microelectron Eng 75(1):31–42

    Article  CAS  Google Scholar 

  9. Fan ZY, Ho JC, Takahashi T, Yerushalmi R, Takei K, Ford AC, Chueh YL, Javey A (2009) Toward the development of printable nanowire electronics and sensors. Adv Mater 21(37):3730–3743

    Article  CAS  Google Scholar 

  10. Li XP, Chin E, Sun HW, Kurup P, Gu ZY (2010) Fabrication and integration of metal oxide nanowire sensors using dielectrophoretic assembly and improved post-assembly processing. Sens Actuators B 148(2):404–412

    Google Scholar 

  11. Chen PC, Shen GZ, Zhou CW (2008) Chemical sensors and electronic noses based on 1-D metal oxide nanostructures. IEEE Trans Nanotech 7(6):668–682

    Article  Google Scholar 

  12. Semancik S, Xiang X-D, Takeuchi I (2003) Temperature-dependent materials research with micromachined array platforms. In combinatorial materials synthesis. Marcel Dekker, Inc., New York, pp 263–295

    Google Scholar 

  13. Taylor CJ, Semancik S (2002) Use of microhotplate arrays as microdeposition substrates for materials exploration. Chem Mater 14:1671–1677

    Google Scholar 

  14. Benkstein KD, Semancik S (2006) Mesoporous nanoparticle TiO2 thin films for conductometric gas sensing on microhotplate platforms. Sens Actuators B 113(1):445–453

    Google Scholar 

  15. Cavicchi RE, Walton RM, Aquino-Class M, Allen JD, Panchapakesan B (2001) Spin-on nanoparticle tin oxide for microhotplate gas sensors. Sens Actuators B Chem 77:145–154

    Article  Google Scholar 

  16. Martinez CJ, Hockey B, Montgomery CB, Semancik S (2005) Porous tin oxide nanostructured microspheres for sensor applications. Langmuir 21:7937–7944

    Article  CAS  Google Scholar 

  17. Benkstein KD, Raman B, Lahr DL, Bonevich JE, Semancik S (2009) Inducing analytical orthogonality in tungsten oxide-based microsensors using materials structure and dynamic temperature control. Sens Actuators B 137(1):48–55

    Google Scholar 

  18. Fort A, Mugnaini M, Rocchi S, Vignoli V, Comini E, Faglia G, Ponzoni A (2010) Metal-oxide nanowire sensors for CO detection: characterization and modeling. Sens Actuators B 148(1):283–291

    Google Scholar 

  19. Sysoev VV, Goschnick J, Schneider T, Strelcov E, Kolmakov A (2007) A gradient microarray electronic nose based on percolating SnO2 nanowire sensing elements. Nano Lett 7:3182–3188

    Google Scholar 

  20. Barth S, Hernandez-Ramirez F, Holmes JD, Romano-Rodriguez A (2010) Synthesis and applications of one-dimensional semiconductors. Prog Mater Sci 55(6):563–627

    Article  CAS  Google Scholar 

  21. Chun JY, Lee JW (2010) Various synthetic methods for one-dimensional semiconductor nanowires/nanorods and their applications in photovoltaic devices. Eur J Inorg Chem 27:4251–4263

    Article  Google Scholar 

  22. Wu XJ, Zhu F, Mu C, Liang YQ, Xu LF, Chen QW, Chen RZ, Xu DS (2010) Electrochemical synthesis and applications of oriented and hierarchically quasi-1D semiconducting nanostructures. Coord Chem Rev (9-10):1135–1150

    Google Scholar 

  23. Meulenkamp EA (1997) Mechanism of WO3 electrodeposition from peroxy-tungstate solution. J Electrochem Soc 144(5):1664–1671

    Article  CAS  Google Scholar 

  24. Yamanaka K, Oakamoto H, Kidou H, Kudo T (1986) Peroxotungstic acid coated films for electrochromic display devices. Jpn J Appl Phys 25(9):1420–1426

    Article  CAS  Google Scholar 

  25. Certain commercial equipment, instruments, or materials are identified in this document. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products identified are necessarily the best available for the purpose

    Google Scholar 

  26. Colton RJ, Rabalais JW (1976) Electronic structure to tungsten and some of its borides, carbides, nitrides, and oxides by x-ray electron spectroscopy. Inorg Chem 15(1):236–238

    Article  CAS  Google Scholar 

  27. Tian ML, Wang JG, Snyder J, Kurtz J, Liu Y, Schiffer P, Mallouk TE, Chan MHW (2003) Synthesis and characterization of superconducting single-crystal Sn nanowires. Appl Phys Lett 83(8):1620–1622

    Article  CAS  Google Scholar 

  28. Kolmakov A, Zhang YX, Moskovits M (2003) Topotactic thermal oxidation of Sn nanowires: intermediate suboxides and core-shell metastable structures. Nano Lett 3(8):1125–1129

    Article  CAS  Google Scholar 

  29. Lee AF, Lambert RM (1998) Oxidation of Sn overlayers and the structure and stability of Sn oxide films on Pd(111). Phys Rev B 58(7):4156

    Google Scholar 

  30. Wang D, Miller AC, Notis MR (1996) XPS study of the oxidation behavior of the Cu3Sn intermetallic compound at low temperatures. Surf Interface Anal 24(2):127–132

    Article  CAS  Google Scholar 

  31. Cox DF, Fryberger TB, Semancik S (1988) Oxygen vacancies and defect electronic states on the SnO2(110)-1 × 1 surface. Phys Rev B 38(3):2072

    Article  CAS  Google Scholar 

  32. Suehle JS, Cavicchi RE, Gaitan M, Semancik S (1993) Tin oxide gas sensor fabricated using CMOS micro-hotplates and in situ processing. IEEE Electron Device Lett 14(3):118–120

    Article  CAS  Google Scholar 

  33. Semancik S, Cavicchi RE, Gaitan M, Suehle JS (1994) Temperature-controlled micromachined arrays for chemical sensor fabrication and operation. US Patent 5 345 213, 6 Sept 1994

    Google Scholar 

  34. Semancik S, Cavicchi RE (1998) Kinetically controlled chemical sensing using micromachined structures. Acc Chem Res 31:279–287

    Google Scholar 

  35. Lucci M, Regoliosi R, Reale A, Di Carlo A, Orlanducci S, Tamburri E, Terranova ML, Lugli P, Di Natale C, D’Amico A, Paolesse R (2005) Gas sensing using single wall carbon nanotubes ordered with dielectrophoresis. Sens Actuators B 111:181–186

    Google Scholar 

  36. Shi L, Yu CH, Zhou JH (2005) Thermal characterization and sensor applications of one-dimensional nanostructures employing microelectromechanical systems. J Phys Chem B 109(47):22102–22111

    Google Scholar 

  37. Sysoev VV, Schneider T, Goschnick J, Kiselev I, Habicht W, Hahn H, Strelcov E, Kolmakov A (2009) Percolating SnO2 nanowire network as a stable gas sensor: direct comparison of long-term performance versus SnO2 nanoparticle films. Sens Actuators B 139(2):699–703

    Google Scholar 

  38. Berven CA, Dobrokhotov V, McIlroy DN, Chava S, Abdelrahaman R, Heieren A, Dick J, Barredo W (2008) Gas sensing with mats of gold-nanoparticle decorated GaN nanowires. IEEE Sens J 8(5–6):930–935

    Article  CAS  Google Scholar 

  39. Deb B, Desai S, Sumanasekera GU, Sunkara MK (2007) Gas sensing behaviour of mat-like networked tungsten oxide nanowire thin films. Nanotechnol 18(28):285501

    Article  Google Scholar 

  40. Kim ID, Jeon EK, Choi SH, Choi DK, Tuller HL (2010) Electrospun SnO2 nanofiber mats with thermo-compression step for gas sensing applications. J Electroceram 25(2–4):159–167

    Article  CAS  Google Scholar 

  41. Kunt TA, McAvoy TJ, Cavicchi RE, Semancik S (1998) Optimization of temperature programmed sensing for gas identification using micro-hotplate sensors. Sens Actuators B 53(1-2):24–43

    Google Scholar 

  42. Barsan N, Tomescu A (1995) The temperature-dependence of the response of SnO2-based gas-sensing layers to O-2, Ch4, and Co. Sens Actuators B 26(1-3):45–48

    Google Scholar 

  43. Cavicchi RE, Suehle JS, Kreider KG, Gaitan M, Chaparala P (1996) Optimized temperature-pulse sequences for the enhancement of chemically specific response patterns from micro-hotplate gas sensors. Sens Actuators B 33(1–3):142–146

    Google Scholar 

  44. Gaggiotti G, Galdikas A, Kaciulis S, Mattogno G, Setkus A (1995) Temperature dependencies of sensitivity and surface chemical-composition of Snox gas sensors. Sens Actuators B 25(1-3):516–519

    Google Scholar 

  45. Gutierrez-Osuna R, Gutierrez-Galvez A, Powar N (2003) Transient response analysis for temperature-modulated chemoresistors. Sens Actuators B 93(1–3):57–66

    Google Scholar 

  46. Duda R, Hart PE, Stork DG (2000) Pattern classification. Wiley-Interscience, New York

    Google Scholar 

  47. Raman B, Hertz JL, Benkstein KD, Semancik S (2008) Bioinspired methodology for artificial olfaction. Anal Chem 80(22):8364–8371

    Article  CAS  Google Scholar 

  48. Rogers PH, Semancik S (2011) Feedback-enabled discrimination enhancement for temperature-programmed chemiresistive microsensors. Sens Actuators B 158(1):111–116

    Google Scholar 

  49. Prades JD, Jimenez-Diaz R, Hernandez-Ramirez F, Cirera A, Romano-Rodriguez A, Morante JR (2010) Harnessing self-heating in nanowires for energy efficient, fully autonomous and ultra-fast gas sensors. Sens Actuators B 144(1):1–5

    Google Scholar 

Download references

Acknowledgments

We acknowledge C. S. Mungle for assistance in the dielectrophoretic alignment of the tin nanowires and the technical assistance of C.B. Montgomery in preparing the microsensor platforms and packaging. B. Raman was supported by a NIH–NIST Joint Postdoctoral Associateship Award and D. L. Lahr was supported by a NIST Postdoctoral Associateship Award, both administered through the National Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt D. Benkstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Benkstein, K.D., Raman, B., Lahr, D.L., Semancik, S. (2013). Evaluation of Metal Oxide Nanowire Materials With Temperature-Controlled Microsensor Substrates. In: Carpenter, M., Mathur, S., Kolmakov, A. (eds) Metal Oxide Nanomaterials for Chemical Sensors. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5395-6_14

Download citation

Publish with us

Policies and ethics