Skip to main content

Lazarsfeld–Mukai Bundles and Applications

  • Chapter
  • First Online:
Commutative Algebra

Abstract

We survey the development of the notion of Lazarsfeld-Mukai bundles together with various applications, from the classification of Mukai manifolds to Brill-Noether theory and syzygies of K3 sections. To see these techniques at work, we present a short proof of a result of M. Reid on the existence of elliptic pencils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In fact, we do have a Harder–Narasimhan filtration, but we cannot control all the factors.

  2. 2.

    This ingenious procedure is an efficient replacement of the base-point-free pencil trick; “it has killed the base-point-free pencil trick,” to quote Enrico Arbarello.

  3. 3.

    Some authors consider that Mukai manifolds have dimension four or more.

  4. 4.

    In genus 11, it is actually birational [25].

  5. 5.

    The gonality gon(C) of a curve C is the minimal degree of a morphism from C to the projective line.

  6. 6.

    It is conjectured that the only other examples should be some half-canonical curves of even genus and maximal gonality [8]; however, this conjecture seems to be very difficult.

  7. 7.

    The indices p and q are usually forgotten when defining Koszul cohomology.

  8. 8.

    The dimension of K 1, q indicates the number of generators of degree (q + 1) in the homogeneous ideal.

  9. 9.

    Duality for Koszul cohomology of curves follows from Serre’s duality. For higher-dimensional manifolds, some supplementary vanishing conditions are required [11, 13].

  10. 10.

    Voisin’s and Teixidor’s cases complete each other quite remarkably.

  11. 11.

    A curvilinear subscheme is defined locally, in the classical topology, by \(x_{1} = \cdots = x_{s-1} = x_{s}^{k} = 0\); equivalently, it is locally embedded in a smooth curve.

  12. 12.

    The connectedness of X c [n] follows from the observation that a curvilinear subscheme is a deformation of a reduced subscheme.

  13. 13.

    We see one advantage of working on X c [n]: subtraction makes sense only for curvilinear subschemes.

  14. 14.

    The gonality for a singular stable curve is defined in terms of admissible covers [14].

  15. 15.

    Higher-rank Brill–Noether theory is a major, rapidly growing research field, and it deserves a separate dedicated survey.

  16. 16.

    For any line bundle A, we have γ(A  ⊕ n) = Cliff(A).

References

  1. Aprodu, M.: Remarks on syzygies of d-gonal curves. Math. Res. Lett. 12(3), 387–400 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Aprodu, M., Nagel, J.: Koszul cohomology and algebraic geometry. University Lecture Series, vol. 52. American Mathematical Society, Providence (2010)

    Google Scholar 

  3. Aprodu, M., Farkas, G.: Green’s conjecture for curves on arbitrary K3 surfaces. Compositio Math. 147, 839–851 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J.: Geometry of algebraic curves, vol. I. Grundlehren der Mathematischen Wissenschaften, vol. 267. Springer, New York (1985)

    Google Scholar 

  5. Ciliberto, C., Pareschi, G.: Pencils of minimal degree on curves on a K3 surface. J. Reine Angew. Math. 460, 15–36 (1995)

    MathSciNet  MATH  Google Scholar 

  6. Donagi, R., Morrison, D.R.: Linear systems on K3 sections. Diff. J. Geom. 29 49–64 (1989)

    MathSciNet  MATH  Google Scholar 

  7. Eisenbud, D.: Geometry of syzygies. Graduate Texts in Mathematics, vol. 229. Springer, New York (2005)

    Google Scholar 

  8. Eisenbud, D., Lange, H., Martens, G., Schreyer, F.-O.: The Clifford dimension of a projective curve. Compositio Math. 72, 173–204 (1989)

    MathSciNet  MATH  Google Scholar 

  9. Ellingsrud, G., Göttsche, L., Lehn, M.: On the cobordism class of the Hilbert scheme of a surface. Alg. J.: Geom. 10, 81–100 (2001)

    Google Scholar 

  10. Farkas, G., Ortega, A.: Higher-rank Brill–Noether theory on sections of K3 surfaces. Internat. J. Math. 23(7), 1250075, 18 (2012)

    Google Scholar 

  11. Green, M.: Koszul cohomology and the geometry of projective varieties. Diff. J. Geom. 19, 125–171 (1984)

    MATH  Google Scholar 

  12. Green, M., Lazarsfeld, R.: Special divisors on curves on a K3 surface. Inventiones Math. 89, 73–90 (1987)

    Article  MathSciNet  Google Scholar 

  13. Green, M.: Koszul cohomology and geometry. In: Cornalba, M., et al. (eds.) Proceedings of the First College on Riemann Surfaces Held in Trieste, Italy, November 1987, pp. 177–200. World Scientific, Singapore (1989)

    Google Scholar 

  14. Harris, J., Mumford, D.: On the Kodaira dimension of the moduli space of curves. Inventiones Math. 67, 23–86 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hirschowitz, A., Ramanan, S.: New evidence for Greens conjecture on syzygies of canonical curves. Ann. Sci. École Norm. Sup. 31, 145–152 (1998)

    MathSciNet  MATH  Google Scholar 

  16. Iskovskih, V.A., Prokhorov, Yu.: Fano varieties. In: Parshin, A.N., Shafarevich, I.R. (eds.) Algebraic Geometry V. Encyclopedia of Mathematical Science. Springer, New York (1999)

    Google Scholar 

  17. Knutsen, A.: On two conjectures for curves on K3 surfaces. Internat. Math. J. 20, 1547–1560 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lazarsfeld, R.: Brill–Noether–Petri without degenerations. Diff. J. Geom. 23, 299–307 (1986)

    MathSciNet  MATH  Google Scholar 

  19. Lazarsfeld, R.: A sampling of vector bundle techniques in the study of linear series. In: Cornalba, M., et al. (eds.) Proceedings of the first college on Riemann surfaces held in Trieste, Italy, November 1987, pp. 500–559. World Scientific, Singapore (1989)

    Google Scholar 

  20. Lelli-Chiesa, M.: Stability of rank-3 Lazarsfeld–Mukai bundles on K3 surfaces. Preprint arXiv:1112.2938.

    Google Scholar 

  21. Loose, F.: On the graded Betti numbers of plane algebraic curves. Manuscr. Math. 64, 503–514 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mercat, V.: Clifford’s theorem and higher rank vector bundles. Internat. Math. J.: 13, 785–796 (2002)

    Google Scholar 

  23. Mukai, S.: Biregular classification of Fano 3-folds and Fano manifolds of coindex 3. Proc. Natl. Acad. Sci. USA 86, 3000–3002 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mukai, S.: Fano 3-folds. London Math. Soc. Lect. Note Ser. 179, 255–263 (1992)

    MathSciNet  Google Scholar 

  25. Mukai, S.: Curves and K3 surfaces of genus eleven. In: Moduli of Vector Bundles. Lecture Notes in Pure Applied Mathematics, vol. 179, pp. 189–197. Dekker, New York (1996)

    Google Scholar 

  26. Pareschi, G.: A proof of Lazarsfeld’s theorem on curves on K3 surfaces. Alg. J. Geom. 4, 195–200 (1995)

    MathSciNet  MATH  Google Scholar 

  27. Reid, M.: Special linear systems on curves lying on K3 surfaces. J. London Math. Soc. (2) 13, 454–458 (1976)

    Google Scholar 

  28. Saint-Donat, B.: Projective models of K3 surfaces. American J. Math. 96(4), 602–639 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schreyer, F.-O.: Green’s conjecture for general p-gonal curves of large genus. Algebraic curves and projective geometry (Trento, 1988), pp. 254–260. Lecture Notes in Mathematics, vol. 1389. Springer, Berlin (1989)

    Google Scholar 

  30. Teixidor i Bigas, M.: Green’s conjecture for the generic r-gonal curve of genus g ≥ 3r − 7. Duke Math. J. 111, 195–222 (2002)

    Google Scholar 

  31. Voisin, C.: Green’s generic syzygy conjecture for curves of even genus lying on a K3 surface. J. European Math. Soc. 4, 363–404 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Voisin, C.: Green’s canonical syzygy conjecture for generic curves of odd genus. Compositio Math. 141, 1163–1190 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I am grateful to S. Druel, G. Farkas, and A. Ortega for useful discussions on this subject. This work was partly supported by the grant “Vector bundle techniques in the geometry of complex varieties,” PN-II-ID-PCE-2011-3-0288, contract no. 132/05.10.2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Aprodu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Aprodu, M. (2013). Lazarsfeld–Mukai Bundles and Applications. In: Peeva, I. (eds) Commutative Algebra. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5292-8_1

Download citation

Publish with us

Policies and ethics