Skip to main content

Mycoheterotrophy: An Introduction

  • Chapter
  • First Online:
Mycoheterotrophy

Abstract

“Mycoheterotrophy” is a term for a plant’s ability to obtain carbon from associated fungi. Many plants are capable of mycoheterotrophy, including liverworts, lycophytes, ferns, and angiosperms. Some plants completely depend on mycoheterotrophy during their entire life cycle; others rely on mycoheterotrophy only at a particular stage of their development or are able to perform mycoheterotrophy and autotrophy simultaneously. In this introductory part, I discuss the basic concepts of mycoheterotrophy as well as the terminology and definitions used in this book. Since an understanding of mycoheterotrophy relies heavily on general concepts of the mycorrhizal symbiosis, I provide a basic introduction into mycorrhizal associations, with emphasis on plant–fungus interactions capable of mycoheterotrophy. This chapter ends with a short historical overview of scientific research on mycoheterotrophy that has led to our current understanding of this fascinating phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Based on recent genetic evidence, we place Monotropa hypopitys its own genus, Hypopitys, with the single species Hypopitys monotropa (see Chap. 2).

  2. 2.

     In a broad sense, autotrophy includes both phototrophy, in which light is used as an energy source (photosynthesis), and lithotrophy (or chemoautotrophy), in which inorganic compounds are oxidized (chemosynthesis). In the context of plants, autotrophy is restricted to phototrophy.

References

  • Abadie J, Püttsepp Ü, Gebauer G, Faccio A, Bonfante P, Selosse MA (2006) Cephalanthera longifolia (Neottieae, Orchidaceae) is mixotrophic: a comparative study between green and nonphotosynthetic individuals. Can J Bot 84:1462–1477

    Article  CAS  Google Scholar 

  • Alexander C, Hadley G (1985) Carbon movement between host and mycorrhizal endophyte during development of the orchid Goodyera repens. New Phytol 101:657–665

    Article  Google Scholar 

  • Bachar A, Achituv Y, Pastemak Z, Dubinsky Z (2007) Autotrophy versus heterotrophy: the origin of carbon determines its fate in a symbiotic sea anemone. J Exp Mar Biol Ecol 349:295–298

    Article  CAS  Google Scholar 

  • Barkman TJ, McNeal JR, Lim S-H, Coat G, Croom HB, Young ND, dePamphilis CW (2007) Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants. BMC Evol Biol 7:248

    Article  PubMed  CAS  Google Scholar 

  • Beatty GE, Provan J (2011) High clonal diversity in threatened peripheral populations of the yellow bird’s nest (Hypopitys monotropa; syn. Monotropa hypopitys). Ann J Bot 107:663–670

    Article  Google Scholar 

  • Berch SM, Massicotte HB, Tackaberry LE (2005) Re-publication of a translation of ‘The vegetative organs of Monotropa hypopitys L.’ published by F. Kamienski in 1882, with an update on Monotropa mycorrhizas. Mycorrhiza 15:323–332

    Article  PubMed  CAS  Google Scholar 

  • Bernard N (1899) Sur la germination du Neottia nidus-avis. C R Hebd Seances Acad Sci 128:1253–1255

    Google Scholar 

  • Bever JD, Richardson SC, Lawrence BM, Holmes J, Watson M (2009) Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecol Lett 12:13–21

    Article  PubMed  Google Scholar 

  • Bidartondo MI (2005) The evolutionary ecology of myco-heterotrophy. New Phytol 167:335–352

    Article  PubMed  Google Scholar 

  • Bidartondo MI, Burghardt B, Gebauer G, Bruns TD, Read D (2004) Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc R Soc B 271:1799–1806

    Article  PubMed  CAS  Google Scholar 

  • Bidartondo MI, Bruns TD (2001) Extreme specificity in epiparasitic Monotropoideae (Ericaceae): widespread phylogenetic and geographic structure. Mol Ecol 10:2285–2295

    Article  PubMed  CAS  Google Scholar 

  • Bidartondo MI, Bruns TD (2002) Fine-level mycorrhizal specificity in the Monotropoideae (Ericaceae): specificity for fungal species groups. Mol Ecol 11:557–569

    Article  PubMed  CAS  Google Scholar 

  • Bidartondo MI, Bruns TD, Weiß M, Sérgio C, Read DJ (2003) Specialized cheating of the ectomycorrhizal symbiosis by an epiparasitic liverwort. Proc R Soc Lond B 270:835–842

    Article  Google Scholar 

  • Bidartondo MI, Kretzer AM, Pine EM, Bruns TD (2000) High root concentration and uneven ectomycorrhizal diversity near Sarcodes sanguinea (Ericaceae): a cheater that stimulates its victims? Am J Bot 87:1783–1788

    Article  PubMed  CAS  Google Scholar 

  • Bidartondo MI, Read DJ, Trappe JM, Merckx V, Ligrone R, Duckett JG (2011) The dawn of symbiosis between plants and fungi. Biol Lett 7:574–577

    Article  PubMed  Google Scholar 

  • Bidartondo MI, Redecker D, Hijiri I, Wiemken A, Bruns TD, Dominguez LS, Sérsic A, Leake JR, Read DJ (2002) Epiparasitic plants specialized on arbuscular mycorrhizal fungi. Nature 419:389–392

    Article  PubMed  CAS  Google Scholar 

  • Björkman E (1960) Monotropa hypopitys L.—an epiparasite on tree roots. Physiol Plant 13:308–327

    Article  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48

    Article  PubMed  CAS  Google Scholar 

  • Bronstein JL (1994) Conditional outcomes in mutualistic interactions. Trends Ecol Evol 9:214–217

    Article  PubMed  CAS  Google Scholar 

  • Bronstein JL (2001) The exploitation of mutualisms. Ecol Lett 4:277–287

    Article  Google Scholar 

  • Bruns TD, Shefferson RP (2004) Evolutionary studies of ectomycorrhizal fungi: recent advances and future directions. Can J Bot 82:1122–1132

    Article  CAS  Google Scholar 

  • Burgeff H (1909) Die wurzelpiltze der orchideen. Gustav Fisher, Jena, Germany

    Google Scholar 

  • de Bary HA (1879) Die erscheinung der Symbiose. Trübner, Strassburg, Germany

    Google Scholar 

  • Caddick LR, Rudall PJ, Wilkin P, Chase MW (2000) Yams and their allies: systematics of Dioscoreales. In: Wilson KJ, Morrison DA (eds) Monocots: systematics and evolution. CSIRO Publishing, Melbourne, pp 475–487

    Google Scholar 

  • Caddick LR, Rudall PJ, Wilkin P, Hedderson TA, Chase MW (2002) Phylogenetics of Dioscoreales based on combined analyses of morphological and molecular data. Bot J Linn Soc 138:123–144

    Article  Google Scholar 

  • Cameron DD, Johnson I, Read DJ, Leake JR (2008) Giving and receiving: measuring the carbon cost of mycorrhizas in the green orchid, Gooyera repens. New Phytol 180:176–184

    Article  PubMed  CAS  Google Scholar 

  • Cameron DD, Leake JR (2007) A different kind of parasitic plant: a brief history of mycoheterotrophy and parasitism. Haustorium 50:4–6

    Google Scholar 

  • Cameron DD, Preiss K, Gebauer G, Read DJ (2009) The chlorophyll-containing orchid Corallorhiza trifida derives little carbon through photosynthesis. New Phytol 183:358–364

    Article  PubMed  CAS  Google Scholar 

  • Cameron KM, Chase MW, Rudall P (2003) Recircumscription of the monocotyledonous family Petrosaviaceae to include Japonolirion. Brittonia 55:214–225

    Article  Google Scholar 

  • Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD, Duvall MR, Price RA, Hills HG, Qiu Y-L, Kron KA, Rettig JH, Conti E, Palmer JD, Manhart JR, Sytsma KJ, Michaels HJ, Kress WJ, Karol KG, Clark WD, Hedrén M, Gaut BS, Jansen RK, Kim K-J, Wimpee CF, Smith JF, Furnier GR, Strauss SH, Xiang Q-Y, Plunkett GM, Soltis PS, Swensen SM, Williams SE, Gadek PA, Quinn CJ, Equiarte LE, Golenberg E, Learn GH, Graham SW, Barrett SCH, Dayanandan S, Albert VA (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann Missouri Bot Gard 80:528

    Article  Google Scholar 

  • Courty P-E, Walder F, Boller T, Ineichen K, Wiemken A, Rousteau A, Selosse M-A (2011) C and N metabolism in mycorrhizal networks and mycoheterotrophic plants of tropical forests: a stable isotope analysis. Plant Physiol 156:952–961

    Google Scholar 

  • Cullings KW, Szaro TM, Bruns TD (1996) Evolution of extreme specialization within a lineage of ectomycorrhizal epiparasites. Nature 379:63–66

    Article  CAS  Google Scholar 

  • Delannoy E, Fujii S, Colas des Francs C, Brundrett M, Small I (2011) Rampant gene loss in the underground orchid Rhizanthella gardneri highlights evolutionary constraints on plastid genomes. Mol Bio Evol 28:2077–2086

    Article  CAS  Google Scholar 

  • dePamphilis CW, Palmer JD (1990) Loss of photosynthetic and chlororespiratory genes from the plastid genome of a nonphotosynthetic plant. Nature 348:337–339

    Article  PubMed  CAS  Google Scholar 

  • Domínguez LS, Melville L, Sérsic A, Faccio A, Peterson RL (2009) The mycoheterotroph Arachnitis uniflora has a unique association with arbuscular mycorrhizal fungi. Botany 87:1198–1208

    Article  CAS  Google Scholar 

  • Dowie NJ, Hemenway JJ, Trowbridge SM, Miller SL (2011) Mycobiont overlap between two mycoheterotrophic genera of Monotropoideae (Pterospora andromedea and Sarcodes sanguinea) found in the Greater Yellowstone Ecosystem. Symbiosis 54:29–36

    Article  Google Scholar 

  • Drude O (1873) Die Biologie von Monotropa Hypopitys L. und Neottia-nidus-avis L. unter vergleichender Hinzuziehung anderer Orchideen. Unversität Göttingen Preisgerkrönte Schrift, Göttingen, Germany

    Google Scholar 

  • Egger KN, Hibbett DS (2004) The evolutionary implications of exploitation in mycorrhizas. Can J Bot 82:1110–1121

    Article  Google Scholar 

  • Eiler A (2006) Evidence for the ubiquity of mixotrophic bacteria in the upper ocean: implications and consequences. Appl Environ Microbiol 72:7431–7437

    Article  PubMed  CAS  Google Scholar 

  • Eriksson O, Kainulainen K (2011) The evolutionary ecology of dust seeds. Perspect Plant Ecol Evol Systemat 13:73–87

    Article  Google Scholar 

  • Francke H-L (1934) Beiträge zur Kenntnis der Mykorrhiza von Monotropa hypopitys L. Analyse und Synthese der Symbiose. Flora 129:1–52

    Google Scholar 

  • Gebauer G (2005) Partnertausch im dunklen Wald–Stabile Isotope geben neue Einblicke in das Ernährungsverhalten von Orchideen. In Rundgespräche der Kommission für Ökologie, vol 30 (ed. Bayerische Akademie der Wissenschaften). Verlag Dr. Friedrich Pfeil, München, Germany, p 55–67

    Google Scholar 

  • Gebauer G, Dietrich P (1993) Nitrogen isotope ratios in different compartments of a mixed stand of spruce, larch and beech trees and of understorey vegetation including fungi. Isotopenpraxis 29:35–44

    Article  CAS  Google Scholar 

  • Gebauer G, Meyer M (2003) 15N and 13C natural abundance of autotrophic and myco-heterotrophic orchids provides insight into nitrogen and carbon gain from fungal association. New Phytol 160:209–223

    Article  CAS  Google Scholar 

  • Giovannetti M, Sbrana C, Avio L, Strani P (2004) Patterns of below-ground plant interconnections established by means of arbuscular mycorrhizal networks. New Phytol 164:175–181

    Article  Google Scholar 

  • Gleixner G, Danier H-J, Werner RA, Schmidt H-L (1993) Correlations between the 13C content of primary and secondary plant products in different cell compartments and that in decomposing basidiomycetes. Plant Physiol 102:1287–1290

    PubMed  CAS  Google Scholar 

  • Hamada M (1939) Studien über die Mykorrhiza von Galeola septentrionalis Reichb. F.—ein neuer Fall der Mykorrhiza-Bildung durch intraradicale Rhizomorpha. Jap J Bot 10:151–211

    Google Scholar 

  • Heide-Jørgensen HS (2008) Parasitic flowering plants. Koninklijke Brill NV, Leiden, The Netherlands

    Book  Google Scholar 

  • Hentrich H, Kaiser R, Gottsberger G (2010) The reproductive biology of Voyria (Gentianaceae) species in French Guiana. Taxon 59:867–880

    Google Scholar 

  • Herre EA, Knowlton N, Mueller UG, Rehner SA (1999) The evolution of mutualisms: exploring the paths between conflict and cooperation. Trends Ecol Evol 14:49–53

    Article  PubMed  Google Scholar 

  • Hibbett DS, Matheny PB (2009) The relative ages of ectomycorrhizal mushrooms and their plant hosts estimated using Bayesian relaxed clock analyses. BMC Evol Biol 7:13

    Article  Google Scholar 

  • Hynson NA, Mambelli S, Amend AS, Dawson TE (2011) Measuring carbon gains from fungal networks in understory plants from the tribe Pyroleae (Ericaceae): a field manipulation and stable isotope approach. Oecologia 169:307–317

    Article  PubMed  Google Scholar 

  • Imhof S (1999) Anatomy and mycotrophy of the achlorophyllous Afrothismia winkleri. New Phytol 144:533–540

    Article  Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–586

    Article  Google Scholar 

  • Julou T, Burghardt B, Gebauer C, Berveiller D, Damesin C, Selosse MA (2005) Mixotrophy in orchids: insights from a comparative study of green individuals and nonphotosynthetic individuals of Cephalanthera damasonium. New Phytol 166:639–653

    Article  PubMed  CAS  Google Scholar 

  • Kamienski F (1882) Les organs végétatifs du Monotropa hypopitys L. Mémoires de la Société Nationale des Sciences Naturelles et Mathématiques de Cherbourg 24:5–40

    Google Scholar 

  • Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301

    Article  Google Scholar 

  • Klooster MR, Culley TM (2009) Comparative analysis of the reproductive ecology of Monotropa and Monotropsis: two mycoheterotrophic genera in the Monotropoideae (Ericaceae). Am J Bot 96:1337–1347

    Article  PubMed  Google Scholar 

  • Klooster MR, Culley TM (2010) Population genetic structure of the mycoheterotroph Monotropa hypopitys L. (Ericaceae) and differentiation between red and yellow color forms. Int J Plant Sci 171:167–174

    Article  Google Scholar 

  • Kretzer AM, Bidartondo MI, Szaro TM, Grubisha L, Bruns TD (2000) Regional specialization of Sarcodes sanguinea on a single fungal symbiont from the Rhizopogon ellenae species complex. Am J Bot 87:1778–1783

    Article  PubMed  CAS  Google Scholar 

  • Kristiansen KA, Freudenstein JV, Rasmussen FH, Rasmussen HN (2004) Molecular identification of mycorrhizal fungi in Neuwiedia veratrifolia (Orchidaceae). Mol Phylogenet Evol 33:251–258

    Article  PubMed  CAS  Google Scholar 

  • Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A (2011) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984

    Article  PubMed  Google Scholar 

  • Kusano S (1911) Gastrodia elata and its symbiotic association with Armillaria mellea. J Coll Agr Imp Univ Tokyo 4:1–65

    Google Scholar 

  • Le Page BA, Currah RS, Stockey RA, Rothwell GW (1997) Fossil ectomycorrhizae from the Middle Eocene. Am J Bot 84:410–412

    Article  Google Scholar 

  • Leake JR (1994) The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytol 127:171–216

    Article  Google Scholar 

  • Leake JR (2005) Plants parasitic on fungi: unearthing the fungi in myco-heterotrophs and debunking the ‘saprophytic’ plant myth. Mycologist 19:113–122

    Google Scholar 

  • Leake JR, Cameron DD (2010) Physiological ecology of mycoheterotrophy. New Phytol 185:601–605

    Article  PubMed  CAS  Google Scholar 

  • Leake JR, Cameron DD, Beerling BJ (2008) Fungal fidelity in the myco-heterotroph-to-autotroph life cycle of Lycopodiaceae: a case of parental nurture? New Phytol 177:572–576

    Article  PubMed  Google Scholar 

  • Logacheva MD, Schelkunov MI, Penin AA (2011) Sequencing and analysis of plastid genome in mycoheterotrophic orchid Neottia nidus-avis. Genome Biol Evol 3:1296–1303

    Article  PubMed  Google Scholar 

  • MacDougal DT (1899) Symbiotic saprophytism. Ann Bot 13:1–47

    Google Scholar 

  • Martos F, Dulormne M, Pailler T, Bonfante P, Faccio A, Fournel J, Dubois M-P, Selosse M-A (2009) Independent recruitment of saprotrophic fungi as mycorrhizal partners by tropical achlorophyllous orchids. New Phytol 184:668–681

    Article  PubMed  CAS  Google Scholar 

  • Massicotte HB, Melville LH, Peterson RL (2005) Structural features of mycorrhizal associations in two members of the Monotropoideae, Monotropa uniflora and Pterospora andromedea. Mycorrhiza 15:101–110

    Article  PubMed  CAS  Google Scholar 

  • McKendrick SL, Leake JR, Read DJ (2000a) Symbiotic germination and development of myco-heterotrophic plants in nature: transfer of carbon from ectomycorrhizal Salix repens and Betula pendula to the orchid Corallorhiza trifida through shared hyphal connections. New Phytol 145:539–548

    Article  Google Scholar 

  • McKendrick SL, Leake JR, Taylor DL, Read DJ (2000b) Symbiotic germination and development of myco-heterotrophic plants in nature: ontogeny of Corallorhiza trifida and characterization of its mycorrhizal fungi. New Phytol 145:523–537

    Article  Google Scholar 

  • McKendrick SL, Leake JR, Taylor DL, Read DJ (2002) Symbiotic germination and development of the myco-heterotrophic orchid Neottia nidus-avis in nature and its requirement for locally distributed Sebacina spp. New Phytol 154:233–247

    Article  Google Scholar 

  • Merckx V, Chatrou LW, Lemaire B, Sainge MN, Huysmans S, Smets E (2008) Diversification of myco-heterotrophic angiosperms: evidence from Burmanniaceae. BMC Evol Biol 8:178

    Article  PubMed  CAS  Google Scholar 

  • Merckx V, Stöckel M, Fleischmann A, Bruns TD, Gebauer G (2010) 15N and 13C natural abundance of two mycoheterotrophic and a putative partially mycoheterotrophic species associated with arbuscular mycorrhizal fungi. New Phytol 188:590–596

    Article  PubMed  CAS  Google Scholar 

  • Molvray M, Kores PJ, Chase MW (2000) Polyphyly of mycoheterotrophic orchids and functional influences of floral and molecular characters. In: Wilson KL, Morrison DA (eds) Monocots: systematics and evolution. CSIRO Publishing, Collingwood, Australia, pp 441–448

    Google Scholar 

  • Moyersoen B (2006) Pakaraimaea dipterocarpaceae is ectomycorrhizal, indicating an ancient Gondwanaland origin of the ectomycorrhizal habit in Dipterocarpaceae. New Phytol 172:753–762

    Article  PubMed  Google Scholar 

  • Muir J (1912) The Yosemite. The Century Co, New York, USA

    Google Scholar 

  • Nais J (2001) Rafflesia of the world. Natural History Publications, Kota Kinabalu, Malaysia

    Google Scholar 

  • Ogura-Tsujita Y, Gebauer G, Hashimoto T, Umata H, Yukawa T (2009) Evidence for novel and specialized mycorrhizal parasitism: the orchid Gastrodia confusa gains carbon from saprotrophic Mycena. Proc R Soc Lond B 22:761–767

    Article  CAS  Google Scholar 

  • Ogura-Tsujita Y, Yukawa T (2008) High mycorrhizal specificity in a widespread mycoheterotrophic plant, Eulophia zollingeri (Orchidaceae). Am J Bot 95:93–97

    Article  PubMed  Google Scholar 

  • Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier Ü, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer W (1877) Über fleischfressende Planzen und über die Ernährung durch Aufnahme organischer Stoffe überhaupt. Landwirtschaftliche Jahrbücher 6:969–988

    Google Scholar 

  • Preiss K, Adam IK, Gebauer G (2010) Irradiance governs exploitation of fungi: fine-tuning of carbon gain by two partially myco-heterotrophic orchids. Proc R Soc Lond B 277:1333–1336

    Article  Google Scholar 

  • Prillieux E (1856) De la structure anatomique et du mode de végétation du Neottia nidus-avis. Ann des Sci Naturelles Series 4:267–282

    Google Scholar 

  • Rasmussen HN (1995) Terrestrial orchids: from seed to mycotrophic plant. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Rasmussen HN, Whigham DF (1998) The underground phase: a special challenge in studies of terrestrial orchid populations. Bot J Linn Soc 126:49–64

    Article  Google Scholar 

  • Rayner MC (1927) Mycorrhiza: an account of non-pathogenic infection by fungi in vascular plants and bryophytes. New Phytologist Reprint no. 15. Wheldon & Wesley, London, UK

    Google Scholar 

  • Reinke J (1873) Zur Kenntnis des Rhizomes von Corallorhiza und Epipogon. Flora 56:161–167

    Google Scholar 

  • Reissek S (1847) Über endophyten der Pflanzenzelle, eine gesetzmässige den Samenfaden oder beweglichen Spiralfasern analoge Erscheinung. Naturwissenschaftlige Abhandlungen 1:3146

    Google Scholar 

  • Reynolds HL, Hartley AE, Vogelsang KM, Bever JD, Schultz PA (2005) Arbuscular mycorrhizal fungi do not enhance nitrogen acquisition and growth of old-field perrenials under low nitrogen supply in glasshouse culture. New Phytol 167:869–880

    Article  PubMed  CAS  Google Scholar 

  • Rylands TG (1842) On the mode of growth of Monotropa hypopitys. Phytologist 16:329–330

    Google Scholar 

  • Saari SK, Campbell CD, Russell J, Alexander IJ, Anderson IC (2005) Pine microsatellite markers allow roots and ectomycorrhizas to be linked to individual trees. New Phytol 165:295–304

    Article  PubMed  CAS  Google Scholar 

  • Sachs JL, Simms EL (2006) Pathways to mutualism breakdown. Trends Ecol Evol 21:585–592

    Article  PubMed  Google Scholar 

  • Schacht H (1854) Pilzfaden im Innern der Zellen und der Starkmehlkörner vor. Flora 39:618–624

    Google Scholar 

  • Selosse MA, Roy M (2009) Green plants that feed on fungi: facts and questions about mixotrophy. Trends Plant Sci 14:64–70

    Article  PubMed  CAS  Google Scholar 

  • Simon L, Bousquet J, Lévesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67–69

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London, UK

    Google Scholar 

  • Stevens PF (2012) Angiosperm Phylogeny Website. Version 9, June 2008 [and more or less continuously updated since]

    Google Scholar 

  • Taylor DL, Bruns TD (1997) Independent, specialized invasions of the ectomycorrhizal mutualism by two non-photosynthetic orchids. Proc Natl Acad Sci USA 94:4510–4515

    Article  PubMed  CAS  Google Scholar 

  • Taylor DL, Bruns TD, Hodges SA (2004) Evidence for mycorrhizal races in a cheating orchid. Proc R Soc Lond B 271:35–43

    Article  Google Scholar 

  • Taylor DL, Bruns TD, Leake JR, Read DJ (2002) Mycorrhizal specificity and function in myco-heterotrophic plants. In: Van der Heijden MGA, Sanders I (eds) Mycorrhizal ecology. Springer, Berlin, Germany, pp 375–413

    Chapter  Google Scholar 

  • Tedersoo L, May T, Smith M (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263

    Article  PubMed  Google Scholar 

  • Tedersoo L, Pellet P, Kõljalg U, Selosse MA (2007) Parallel evolutionary paths to mycoheterotrophy in understorey Ericaceae and Orchidaceae: ecological evidence for mixotrophy in Pyroleae. Oecologia 151:206–217

    Article  PubMed  Google Scholar 

  • Thingstad TF, Havskum H, Garde K, Riemann B (1996) On the strategy of “eating your competitor”: a mathematical analysis of algal mixotrophy. Ecology 77:2108–2118

    Article  Google Scholar 

  • Trudell SA, Rygiewicz PT, Edmonds RL (2003) Nitrogen and carbon stable isotope abundances support the myco-heterotrophic nature and host-specificity of ­certain achlorophyllous plants. New Phytol 160:391–401

    Article  CAS  Google Scholar 

  • Wickett NJ, Fan Y, Lewis PO, Goffinet B (2008) Distribution and evolution of pseudogenes, gene losses, and a gene rearrangement in the plastid genome of the nonphotosynthetic liverwort, Aneura mirabilis (Metzgeriales, Jungermanniopsida). J Mol Evol 67:111–122

    Article  PubMed  CAS  Google Scholar 

  • Yamato M (2001) Identification of a mycorrhizal fungus in the roots of achlorophyllous Sciaphila tosaensis Makino (Triuridaceae). Mycorrhiza 11:83–88

    Article  CAS  Google Scholar 

  • Yamato M, Yagame T, Suzuki A, Iwase K (2005) Isolation and identification of mycorrhizal fungi associating with an achlorophyllous plant, Epipogium roseum (Orchidaceae). Mycoscience 46:73–77

    Article  CAS  Google Scholar 

  • Yukawa T, Ogura-Tsujita Y, Shefferson R, Yokoyama J (2009) Mycorrhizal diversity in Apostasia (Orchidaceae) indicates the origin and evolution of orchid mycorrhiza. Am J Bot 96:1997–2009

    Article  PubMed  Google Scholar 

  • Zimmer K, Hynson NA, Gebauer G, Allen EB, Allen MF, Read DJ (2007) Wide geographical and ecological distribution of nitrogen and carbon gains from fungi in pyroloids and monotropoids (Ericaceae) and in orchids. New Phytol 175:166–175

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent S. F. T. Merckx .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Merckx, V.S.F.T. (2013). Mycoheterotrophy: An Introduction. In: Merckx, V. (eds) Mycoheterotrophy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5209-6_1

Download citation

Publish with us

Policies and ethics