Skip to main content

Physiology and Anatomy of the Liver

  • Chapter
  • First Online:
Liver Anesthesiology and Critical Care Medicine

Abstract

This chapter will review the anatomy and physiology of the liver relevant to anesthetic management during complex liver surgery. Anesthetic management of the patient with chronic liver disease requires an understanding of the alterations induced in cirrhosis that affect many organ systems. Liver surgery for ablation of tumors may reduce the functional mass of the liver resulting in systemic changes that alter hemodynamics and renal function. In liver transplantation, the body is deprived of all liver function during the implantation and may receive a new liver with impaired initial function. All types of liver surgery may accentuate hepatic ischemia with reperfusion, inducing systemic changes both acute and chronic. Thus, an understanding of the liver, and its structure and function, is critical in managing the changes of the liver induced during surgery. This knowledge, applied throughout the perioperative period by anesthesiologists with interest in liver disease, has been a major factor in the markedly improved outcomes of liver surgery during the past 50 years, and especially since the era of liver transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ankoma-Sey V. Hepatic regeneration-revisiting the myth of prometheus. News Physiol Sci. 1999;14:149–55.

    PubMed  CAS  Google Scholar 

  2. Lemaigre FP. Mechanisms of liver development: ­concepts for understanding liver disorders and design of novel therapies. Gastroenterology. 2009;137(1):62–79.

    Article  PubMed  CAS  Google Scholar 

  3. Kaestner KH. The making of the liver: developmental competence in foregut endoderm and induction of the hepatogenic program. Cell Cycle. 2005;4(9):1146–8.

    Article  PubMed  CAS  Google Scholar 

  4. Collardeau-Frachon S, Scoazec JY. Vascular development and differentiation during human liver organogenesis. Anat Rec (Hoboken). 2008;291(6):614–27.

    Article  Google Scholar 

  5. Tanimizu N, Miyajima A. Molecular mechanism of liver development and regeneration. Int Rev Cytol. 2007;259:1–48.

    Article  PubMed  CAS  Google Scholar 

  6. Zhao R, Duncan SA. Embryonic development of the liver. Hepatology. 2005;41(5):956–67.

    Article  PubMed  CAS  Google Scholar 

  7. Bismuth H. Surgical anatomy and anatomical surgery of the liver. World J Surg. 1982;6(1):3–9.

    Article  PubMed  CAS  Google Scholar 

  8. Racanelli V, Rehermann B. The liver as an immunological organ. Hepatology. 2006;43(2 Suppl 1):S54–62.

    Article  PubMed  CAS  Google Scholar 

  9. Michalopoulos GK. Liver regeneration after partial hepatectomy: critical analysis of mechanistic dilemmas. Am J Pathol. 2010;176(1):2–13.

    Article  PubMed  CAS  Google Scholar 

  10. Reynaert H, Thompson MG, Thomas T, Geerts A. Hepatic stellate cells: role in microcirculation and pathophysiology of portal hypertension. Gut. 2002;50(4):571–81.

    Article  PubMed  CAS  Google Scholar 

  11. Ito T. Cytological studies on stellate cells of Kupffer and fat-storing cells in the capillary wall of human liver. Acta Anat Jpn. 1951;26(42):42–74.

    Google Scholar 

  12. Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev. 2008;88(1):125–72.

    Article  PubMed  CAS  Google Scholar 

  13. Soon RK Jr, Yee HF Jr. Stellate cell contraction: role, regulation, and potential therapeutic target. Clin Liver Dis. 2008;12(4):791–803, viii.

    Google Scholar 

  14. De Gottardi A, Shaw S, Sagesser H, Reichen J. Type A but not type B, endothelin receptor antagonists significantly decrease portal pressure in portal hypertensive rats. J Hepatol. 2000;33(5):733–7.

    Article  PubMed  Google Scholar 

  15. Merigan Jr TC, Plotkin GR, Davidson CS. Effect of intravenously administered posterior pituitary extract on hemorrhage from bleeding esophageal varices. A controlled evaluation. N Engl J Med. 1962;266:134–5.

    Article  PubMed  Google Scholar 

  16. Chojkier M, Groszmann RJ, Atterbury CE, et al. A controlled comparison of continuous intraarterial and intravenous infusions of vasopressin in hemorrhage from esophageal varices. Gastroenterology. 1979;77(3):540–6.

    PubMed  CAS  Google Scholar 

  17. Schneider AW, Kalk JF, Klein CP. Effect of losartan, an angiotensin II receptor antagonist, on portal pressure in cirrhosis. Hepatology. 1999;29(2):334–9.

    Article  PubMed  CAS  Google Scholar 

  18. Gonzalez-Abraldes J, Albillos A, Banares R, et al. Randomized comparison of long-term losartan versus propranolol in lowering portal pressure in cirrhosis. Gastroenterology. 2001;121(2):382–8.

    Article  PubMed  CAS  Google Scholar 

  19. Shah V, Haddad FG, Garcia-Cardena G, et al. Liver sinusoidal endothelial cells are responsible for nitric oxide modulation of resistance in the hepatic sinusoids. J Clin Invest. 1997;100(11):2923–30.

    Article  PubMed  CAS  Google Scholar 

  20. McCuskey RS. The hepatic microvascular system in health and its response to toxicants. Anat Rec (Hoboken). 2008;291(6):661–71.

    Article  Google Scholar 

  21. Wiest R, Groszmann RJ. The paradox of nitric oxide in cirrhosis and portal hypertension: too much, not enough. Hepatology. 2002;35(2):478–91.

    Article  PubMed  CAS  Google Scholar 

  22. Groszmann RJ, Abraldes JG. Portal hypertension: from bedside to bench. J Clin Gastroenterol. 2005;39(4 Suppl 2):S125–30.

    Article  PubMed  Google Scholar 

  23. Fernandez M, Mejias M, Angermayr B, Garcia-Pagan JC, Rodes J, Bosch J. Inhibition of VEGF receptor-2 decreases the development of hyperdynamic splanchnic circulation and portal-systemic collateral vessels in portal hypertensive rats. J Hepatol. 2005;43(1):98–103.

    Article  PubMed  CAS  Google Scholar 

  24. Moreau R. VEGF-induced angiogenesis drives collateral circulation in portal hypertension. J Hepatol. 2005;43(1):6–8.

    Article  PubMed  CAS  Google Scholar 

  25. Gao B, Jeong WI, Tian Z. Liver: an organ with predominant innate immunity. Hepatology. 2008;47(2):729–36.

    Article  PubMed  CAS  Google Scholar 

  26. Teoh NC, Farrell GC. Hepatic ischemia reperfusion injury: pathogenic mechanisms and basis for hepatoprotection. J Gastroenterol Hepatol. 2003;18(8): 891–902.

    Article  PubMed  CAS  Google Scholar 

  27. Cataldegirmen G, Zeng S, Feirt N, et al. RAGE limits regeneration after massive liver injury by coordinated suppression of TNF-alpha and NF-kappaB. J Exp Med. 2005;201(3):473–84.

    Article  PubMed  CAS  Google Scholar 

  28. Lau AH, Thomson AW. Dendritic cells and immune regulation in the liver. Gut. 2003;52(2):307–14.

    Article  PubMed  CAS  Google Scholar 

  29. Katz NR. Methods for the study of liver cell heterogeneity. Histochem J. 1989;21(9–10):517–29.

    Article  PubMed  CAS  Google Scholar 

  30. Gebhardt R. Metabolic zonation of the liver: regulation and implications for liver function. Pharmacol Ther. 1992;53(3):275–354.

    Article  PubMed  CAS  Google Scholar 

  31. Katz NR. Metabolic heterogeneity of hepatocytes across the liver acinus. J Nutr. 1992;122(3 Suppl): 843–9.

    PubMed  CAS  Google Scholar 

  32. Hepatic zonation of carbohydrate metabolism. Nutr Rev. 1989;47(7):219–21.

    Google Scholar 

  33. Weiler-Normann C, Rehermann B. The liver as an immunological organ. J Gastroenterol Hepatol. 2004;19(7):279–83.

    Article  Google Scholar 

  34. Sheth K, Bankey P. The liver as an immune organ. Curr Opin Crit Care. 2001;7(2):99–104.

    Article  PubMed  CAS  Google Scholar 

  35. Crispe IN. The liver as a lymphoid organ. Annu Rev Immunol. 2009;27:147–63.

    Article  PubMed  CAS  Google Scholar 

  36. Anderson D, Billingham RE, Lampkin GH, Medawar PB. The use of skin grafting to distinguish between monozygotic and dizygotic twins in cattle. Heredity. 1951;5(3):379–97.

    Article  Google Scholar 

  37. Billingham RE, Lampkin GH, Medawar PB, Williams HL. Tolerance to homografts, twin diagnosis, and the freemartin condition in cattle. Heredity. 1952;6(2): 201–12.

    Article  Google Scholar 

  38. Owen RD. Immunogenetic consequences of vascular anastomoses between bovine twins. Science. 1945;102:400–1.

    Article  PubMed  CAS  Google Scholar 

  39. Calne RY, Sells RA, Pena JR, et al. Induction of immunological tolerance by porcine liver allografts. Nature. 1969;223(5205):472–6.

    Article  PubMed  CAS  Google Scholar 

  40. Thomson AW, Lu L. Are dendritic cells the key to liver transplant tolerance? Immunol Today. 1999;20(1): 27–32.

    Article  PubMed  CAS  Google Scholar 

  41. Crispe IN, Giannandrea M, Klein I, John B, Sampson B, Wuensch S. Cellular and molecular mechanisms of liver tolerance. Immunol Rev. 2006;213:101–18.

    Article  PubMed  Google Scholar 

  42. Lautt WW. Regulatory processes interacting to maintain hepatic blood flow constancy: vascular compliance, hepatic arterial buffer response, hepatorenal reflex, liver regeneration, escape from vasoconstriction. Hepatol Res. 2007;37(11):891–903.

    Article  PubMed  Google Scholar 

  43. Lautt WW, Greenway CV. Hepatic venous compliance and role of liver as a blood reservoir. Am J Physiol. 1976;231(2):292–5.

    PubMed  CAS  Google Scholar 

  44. Guyton AC, Hall JE. Textbook of medical physiology. 11th ed. Philadelphia: Elsevier Saunders; 2006.

    Google Scholar 

  45. Reynolds TB, Balfour Jr DC, Levinson DC, Mikkelsen WP, Pattison AC. Comparison of wedged hepatic vein pressure with portal vein pressure in human subjects with cirrhosis. J Clin Invest. 1955;34(2):213–8.

    Article  PubMed  CAS  Google Scholar 

  46. Bosch J, Garcia-Pagan JC, Berzigotti A, Abraldes JG. Measurement of portal pressure and its role in the management of chronic liver disease. Semin Liver Dis. 2006;26(4):348–62.

    Article  PubMed  Google Scholar 

  47. Parikh S. Hepatic venous pressure gradient: worth another look? Dig Dis Sci. 2009;54(6):1178–83.

    Article  PubMed  Google Scholar 

  48. Lautt WW. Mechanism and role of intrinsic regulation of hepatic arterial blood flow: hepatic arterial buffer response. Am J Physiol. 1985;249(5 Pt 1):G549–56.

    PubMed  CAS  Google Scholar 

  49. Lautt WW. Control of hepatic arterial blood flow: independence from liver metabolic activity. Am J Physiol. 1980;239(4):H559–64.

    PubMed  CAS  Google Scholar 

  50. Lautt WW, Legare DJ, D’lmeida MS. Adenosine as putative regulator of hepatic arterial flow (the buffer response). Am J Physiol. 1985;248(3 Pt 2):H331–8.

    PubMed  CAS  Google Scholar 

  51. Ezzat WR, Lautt WW. Hepatic arterial pressure-flow autoregulation is adenosine mediated. Am J Physiol. 1987;252(4 Pt 2):H836–45.

    PubMed  CAS  Google Scholar 

  52. Emond JC, Renz JF, Ferrell LD, et al. Functional analysis of grafts from living donors. Implications for the treatment of older recipients. Ann Surg. 1996;224(4):544–52; discussion 544–52.

    Google Scholar 

  53. Kiuchi T, Kasahara M, Uryuhara K, et al. Impact of graft size mismatching on graft prognosis in liver transplantation from living donors. Transplantation. 1999;67(2):321–7.

    Article  PubMed  CAS  Google Scholar 

  54. Man K, Lo CM, Ng IO, et al. Liver transplantation in rats using small-for-size grafts: a study of hemodynamic and morphological changes. Arch Surg. 2001;136(3):280–5.

    Article  PubMed  CAS  Google Scholar 

  55. Ito T, Kiuchi T, Yamamoto H, et al. Changes in portal venous pressure in the early phase after living donor liver transplantation: pathogenesis and clinical implications. Transplantation. 2003;75(8):1313–7.

    Article  PubMed  Google Scholar 

  56. Smyrniotis V, Kostopanagiotou G, Kondi A, et al. Hemodynamic interaction between portal vein and hepatic artery flow in small-for-size split liver transplantation. Transpl Int. 2002;15(7):355–60.

    Article  PubMed  Google Scholar 

  57. Kelly DM, Zhu X, Shiba H, et al. Adenosine restores the hepatic artery buffer response and improves survival in a porcine model of small-for-size syndrome. Liver Transpl. 2009;15(11):1448–57.

    Article  PubMed  Google Scholar 

  58. Wilkinson GR. Drug metabolism and variability among patients in drug response. N Engl J Med. 2005;352(21):2211–21.

    Article  PubMed  CAS  Google Scholar 

  59. Glue P, Clement RP. Cytochrome P450 enzymes and drug metabolism—basic concepts and methods of assessment. Cell Mol Neurobiol. 1999;19(3):309–23.

    Article  PubMed  CAS  Google Scholar 

  60. Goodman LS, Gilman A, Brunton LL, Lazo JS, Parker KL. Goodman & Gilman’s the pharmacological basis of therapeutics. 11th ed. New York: McGraw-Hill; 2006.

    Google Scholar 

  61. Lee WM. Drug-induced hepatotoxicity. N Engl J Med. 2003;349(5):474–85.

    Article  PubMed  CAS  Google Scholar 

  62. Bromley PN, Cottam SJ, Hilmi I, et al. Effects of intraoperative N-acetylcysteine in orthotopic liver transplantation. Br J Anaesth. 1995;75(3):352–4.

    Article  PubMed  CAS  Google Scholar 

  63. Thies JC, Teklote J, Clauer U, et al. The efficacy of N-acetylcysteine as a hepatoprotective agent in liver transplantation. Transpl Int. 1998;11 Suppl 1:S390–2.

    PubMed  Google Scholar 

  64. Hilmi IA, Peng Z, Planinsic RM, et al. N-acetylcysteine does not prevent hepatorenal ischaemia-reperfusion injury in patients undergoing orthotopic liver transplantation. Nephrol Dial Transplant. 2010;25(7): 2328–33.

    Article  PubMed  CAS  Google Scholar 

  65. Gilard M, Arnaud B, Cornily JC, et al. Influence of omeprazole on the antiplatelet action of clopidogrel associated with aspirin: the randomized, double-blind OCLA (Omeprazole CLopidogrel Aspirin) study. J Am Coll Cardiol. 2008;51(3):256–60.

    Article  PubMed  CAS  Google Scholar 

  66. Stockl KM, Le L, Zakharyan A, et al. Risk of rehospitalization for patients using clopidogrel with a proton pump inhibitor. Arch Intern Med. 2010;170(8):704–10.

    Article  PubMed  CAS  Google Scholar 

  67. Gilard M, Arnaud B, Le Gal G, Abgrall JF, Boschat J. Influence of omeprazol on the antiplatelet action of clopidogrel associated to aspirin. J Thromb Haemost. 2006;4(11):2508–9.

    Article  PubMed  CAS  Google Scholar 

  68. Preissner S, Kroll K, Dunkel M, et al. Cytochrome P450 Database. http://bioinformatics.charite.de/supercyp/index.php?site=home. Accessed http://medicine.iupui.edu/clinpharm/ddis/table.aspx.

  69. Flockhart DA. Drug interactions: Cytochrome P450 drug interaction table; 2010. http://medicine.iupui.edu/clinpharm/ddis/table.aspx. Accessed 5 December 2012.

  70. Rendic S, Di Carlo FJ. Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev. 1997;29(1–2):413–580.

    Article  PubMed  CAS  Google Scholar 

  71. Preissner S, Kroll K, Dunkel M, et al. SuperCYP: a comprehensive database on cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010;38(Database issue):D237–43.

    Article  PubMed  CAS  Google Scholar 

  72. Lemberg A, Fernandez MA. Hepatic encephalopathy, ammonia, glutamate, glutamine and oxidative stress. Ann Hepatol. 2009;8(2):95–102.

    PubMed  Google Scholar 

  73. Detry O, De Roover A, Honore P, Meurisse M. Brain edema and intracranial hypertension in fulminant hepatic failure: pathophysiology and management. World J Gastroenterol. Dec 14 2006;12(46):7405–12.

    PubMed  Google Scholar 

  74. Ranjan P, Mishra AM, Kale R, Saraswat VA, Gupta RK. Cytotoxic edema is responsible for raised intracranial pressure in fulminant hepatic failure: in vivo demonstration using diffusion-weighted MRI in human subjects. Metab Brain Dis. Sep 2005;20(3):181–19.

    Article  PubMed  CAS  Google Scholar 

  75. Masoro EJ. Lipids and lipid metabolism. Annu Rev Physiol. 1977;39:301–21.

    Article  PubMed  CAS  Google Scholar 

  76. Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41(6):1313–21.

    Article  PubMed  Google Scholar 

  77. Tessari P, Coracina A, Cosma A, Tiengo A. Hepatic lipid metabolism and non-alcoholic fatty liver ­disease. Nutr Metab Cardiovasc Dis. 2009;19(4):291–302.

    Article  PubMed  CAS  Google Scholar 

  78. Alberti KG, Zimmet P, Shaw J. The metabolic syndrome—a new worldwide definition. Lancet. 2005;366(9491):1059–62.

    Article  PubMed  Google Scholar 

  79. Marchesini G, Brizi M, Bianchi G, et al. Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes. 2001;50(8):1844–50.

    Article  PubMed  CAS  Google Scholar 

  80. Sheth SG, Gordon FD, Chopra S. Nonalcoholic steatohepatitis. Ann Intern Med. 1997;126(2):137–45.

    PubMed  CAS  Google Scholar 

  81. Amitrano L, Guardascione MA, Brancaccio V, Balzano A. Coagulation disorders in liver disease. Semin Liver Dis. 2002;22(1):83–96.

    Article  PubMed  CAS  Google Scholar 

  82. Caldwell SH, Hoffman M, Lisman T, et al. Coagulation disorders and hemostasis in liver disease: pathophysiology and critical assessment of current management. Hepatology. 2006;44(4):1039–46.

    Article  PubMed  CAS  Google Scholar 

  83. Kaul VV, Munoz SJ. Coagulopathy of liver disease. Curr Treat Options Gastroenterol. 2000;3(6):433–8.

    Article  PubMed  Google Scholar 

  84. Sogaard KK, Horvath-Puho E, Gronbaek H, Jepsen P, Vilstrup H, Sorensen HT. Risk of venous thromboembolism in patients with liver disease: a nationwide population-based case–control study. Am J Gastro-enterol. 2009;104(1):96–101.

    Article  PubMed  Google Scholar 

  85. Tripodi A, Chantarangkul V, Mannucci PM. Acquired coagulation disorders: revisited using global coagulation/anticoagulation testing. Br J Haematol. 2009;147(1):77–82.

    Article  PubMed  Google Scholar 

  86. Tripodi A. The coagulopathy of chronic liver disease: is there a causal relationship with bleeding? No. Eur J Intern Med. 2010;21(2):65–9.

    Article  PubMed  Google Scholar 

  87. Basili S, Raparelli V, Violi F. The coagulopathy of chronic liver disease: is there a causal relationship with bleeding? Yes. Eur J Intern Med. 2010;21(2): 62–4.

    Article  PubMed  Google Scholar 

  88. Dhainaut JF, Marin N, Mignon A, Vinsonneau C. Hepatic response to sepsis: interaction between coagulation and inflammatory processes. Crit Care Med. 2001;29(7 Suppl):S42–7.

    Article  PubMed  CAS  Google Scholar 

  89. Bernard GR, Vincent JL, Laterre PF, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med. 2001;344(10): 699–709.

    Article  PubMed  CAS  Google Scholar 

  90. Peck-Radosavljevic M, Zacherl J, Meng YG, et al. Is inadequate thrombopoietin production a major cause of thrombocytopenia in cirrhosis of the liver? J Hepatol. 1997;27(1):127–31.

    Article  PubMed  CAS  Google Scholar 

  91. Peck-Radosavljevic M, Wichlas M, Zacherl J, et al. Thrombopoietin induces rapid resolution of thrombocytopenia after orthotopic liver transplantation through increased platelet production. Blood. 2000;95(3):795–801.

    PubMed  CAS  Google Scholar 

  92. Nemeth E, Baird AW, O’Farrelly C. Microanatomy of the liver immune system. Semin Immunopathol. 2009;31(3):333–43.

    Article  PubMed  Google Scholar 

  93. Si-Tayeb K, Lemaigre FP, Duncan SA. Organogenesis and development of the liver. Dev Cell. 2010;18(2): 175–89.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean C. Emond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mulaikal, T.A., Emond, J.C. (2012). Physiology and Anatomy of the Liver. In: Wagener, G. (eds) Liver Anesthesiology and Critical Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5167-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5167-9_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5166-2

  • Online ISBN: 978-1-4614-5167-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics