Skip to main content

New Pain Management Vistas in Palliative Care

  • Chapter
  • First Online:
Essentials of Palliative Care

Abstract

It is an exciting time in medicine and this is true in Palliative Care. Evolving technological advances and novel therapeutic agents have provided hope and promise in managing the often complicated Palliative Care patient. This chapter focuses on new agents in various stages of development that potentially may provide therapeutic benefits in the Palliative Care environment. Advances in drug delivery are presented in this review and it is certain this will impact health care delivery in many settings, including Palliative Care. Further, a detailed discussion of local anesthetics, including pharmacology, toxicity, common and advanced techniques, and evolving technological advances with ultrasound and continuous catheters is presented for the clinician managing Palliative Care patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Indo Y. Nerve growth factor, pain, itch and inflammation: lessons from congenital insensitivity to pain with anhidrosis. Expert Rev Neurother. 2010;10(11):1707–24.

    Article  PubMed  Google Scholar 

  2. Mantyh PW, et al. Antagonism of nerve growth factor-TrkA signaling and the relief of pain. Anesthesiology. 2011;115(1):189–204.

    Article  PubMed  Google Scholar 

  3. FDA. FDA Arthritis Advisory Committee Meeting to Discuss Safety Issues Related to the Anti-Nerve Growth Factor Agents. http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/ArthritisDrugsAdvisoryCommittee/UCM295202.pdf 2012; FDA.gov.

  4. Cox JJ, et al. An SCN9A channelopathy causes congenital inability to experience pain. Nature. 2006;444(7121):894–8.

    Article  PubMed  CAS  Google Scholar 

  5. Heinzmann S, McMahon SB. New molecules for the treatment of pain. Curr Opin Support Palliat Care. 2011;5(2):111–5.

    Article  PubMed  Google Scholar 

  6. Derry S, et al. Topical capsaicin for chronic neuropathic pain in adults. Cochrane Database Syst Rev. 2009;(4):CD007393.

    Google Scholar 

  7. Anand P, Bley K. Topical capsaicin for pain management: therapeutic potential and mechanisms of action of the new high-concentration capsaicin 8% patch. Br J Anaesth. 2011;107(4):490–502.

    Article  PubMed  CAS  Google Scholar 

  8. Backonja MM, et al. NGX-4010, a high-concentration capsaicin patch, for the treatment of postherpetic neuralgia: a randomized, double-blind, controlled study with an open-label extension. Pain Med. 2010;11(4):600–8.

    Article  PubMed  Google Scholar 

  9. Clifford DB, et al. A randomized, double-blind, controlled study of NGX-4010, a capsaicin 8% dermal patch, for the treatment of painful HIV-associated distal sensory polyneuropathy. J Acquir Immune Defic Syndr. 2012;59(2):126–33.

    Article  PubMed  CAS  Google Scholar 

  10. Irving GA, et al. NGX-4010, a capsaicin 8% dermal patch, administered alone or in combination with systemic neuropathic pain medications, reduces pain in patients with postherpetic neuralgia. Clin J Pain. 2012;28(2):101–7.

    Article  PubMed  Google Scholar 

  11. Irving GA, et al. A multicenter, randomized, double-blind, controlled study of NGX-4010, a high-concentration capsaicin patch, for the treatment of postherpetic neuralgia. Pain Med. 2011;12(1):99–109.

    Article  PubMed  Google Scholar 

  12. Peppin JF, et al. Tolerability of NGX-4010, a capsaicin 8% patch for peripheral neuropathic pain. J Pain Res. 2011;4:385–92.

    Article  PubMed  CAS  Google Scholar 

  13. Simpson DM, et al. Long-term safety of NGX-4010, a high-concentration capsaicin patch, in patients with peripheral neuropathic pain. J Pain Symptom Manage. 2010;39(6):1053–64.

    Article  PubMed  CAS  Google Scholar 

  14. Perret D, Luo ZD. Targeting voltage-gated calcium channels for neuropathic pain management. Neurotherapeutics. 2009;6(4):679–92.

    Article  PubMed  CAS  Google Scholar 

  15. Li JX, Zhang Y. Emerging drug targets for pain treatment. Eur J Pharmacol. 2012;681(1–3):1–5.

    PubMed  CAS  Google Scholar 

  16. Leung L. Cannabis and its derivatives: review of medical use. J Am Board Fam Med. 2011;24(4):452–62.

    Article  PubMed  Google Scholar 

  17. Lynch ME, Campbell F. Cannabinoids for treatment of chronic non-cancer pain; a systematic review of randomized trials. Br J Clin Pharmacol. 2011;72(5):735–44.

    Article  PubMed  CAS  Google Scholar 

  18. DEA. Drug Enforcement Agency Definition of Controlled Substances. 2012. http://www.deadiversion.usdoj.gov/schedules/index.html.

  19. FDA. Marinol (dronabinol) FDA approved label. 2006. http://www.accessdata.fda.gov/drugsatfda_docs/label/2006/018651s025s026lbl.pdf.

  20. Svendsen KB, Jensen TS, Bach FW. Does the cannabinoid dronabinol reduce central pain in multiple sclerosis? Randomised double blind placebo controlled crossover trial. BMJ. 2004;329(7460):253.

    Article  PubMed  CAS  Google Scholar 

  21. Narang S, et al. Efficacy of dronabinol as an adjuvant treatment for chronic pain patients on opioid therapy. J Pain. 2008;9(3):254–64.

    Article  PubMed  CAS  Google Scholar 

  22. Rice AS, Farquhar-Smith WP, Nagy I. Endocannabinoids and pain: spinal and peripheral analgesia in inflammation and neuropathy. Prostaglandins Leukot Essent Fatty Acids. 2002;66(2–3):243–56.

    Article  PubMed  CAS  Google Scholar 

  23. Sasso O, et al. Peripheral FAAH inhibition causes profound antinociception and protects against indomethacin-induced gastric lesions. Pharmacol Res. 2012;65(5):553–63.

    Article  PubMed  CAS  Google Scholar 

  24. Cravatt BF, et al. Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc Natl Acad Sci USA. 2001;98(16):9371–6.

    Article  PubMed  CAS  Google Scholar 

  25. Kathuria S, et al. Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med. 2003;9(1):76–81.

    Article  PubMed  CAS  Google Scholar 

  26. Gobbi G, et al. Antidepressant-like activity and modulation of brain monoaminergic transmission by blockade of anandamide hydrolysis. Proc Natl Acad Sci USA. 2005;102(51):18620–5.

    Article  PubMed  CAS  Google Scholar 

  27. Russo R, et al. Synergistic antinociception by the cannabinoid receptor agonist anandamide and the PPAR-alpha receptor agonist GW7647. Eur J Pharmacol. 2007;566(1–3):117–9.

    Article  PubMed  CAS  Google Scholar 

  28. Catarzi D, Colotta V, Varano F. Competitive AMPA receptor antagonists. Med Res Rev. 2007;27(2):239–78.

    Article  PubMed  CAS  Google Scholar 

  29. Swanson GT. Targeting AMPA and kainate receptors in neurological disease: therapies on the horizon? Neuropsychopharmacology. 2009;34(1):249–50.

    Article  PubMed  CAS  Google Scholar 

  30. Zheng Y, et al. Effects of the Putative Cognitive-Enhancing Ampakine, CX717, on Attention and Object Recognition Memory. Curr Alzheimer Res. 2011;8(8):876–82.

    Article  PubMed  CAS  Google Scholar 

  31. Ren J, et al. Ampakine CX717 protects against fentanyl-induced respiratory depression and lethal apnea in rats. Anesthesiology. 2009;110(6):1364–70.

    Article  PubMed  CAS  Google Scholar 

  32. Lee HJ, Pogatzki-Zahn EM, Brennan TJ. The effect of the AMPA/kainate receptor antagonist LY293558 in a rat model of postoperative pain. J Pain. 2006;7(10):768–77.

    Article  PubMed  CAS  Google Scholar 

  33. Jin HC, et al. Epidural tezampanel, an AMPA/kainate receptor antagonist, produces postoperative analgesia in rats. Anesth Analg. 2007;105(4):1152–9. Table of contents.

    Article  PubMed  CAS  Google Scholar 

  34. Sang CN, et al. LY293558, a novel AMPA/GluR5 antagonist, is efficacious and well-tolerated in acute migraine. Cephalalgia. 2004;24(7):596–602.

    Article  PubMed  CAS  Google Scholar 

  35. Melmed S, Williams RH. Williams textbook of endocrinology. 12th ed. Philadelphia: Elsevier/Saunders; 2011. xviii, 1897 p.

    Google Scholar 

  36. FDA. FDA approved label: chorionic gonadotropin. http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/017067s057lbl.pdf 2011.

  37. Tennant FS. Hormone Treatments in Chronic and Intractable Pain. Pract Pain Manag. 2005;5(3):57–67.

    Google Scholar 

  38. Elliott JA, Horton E, Fibuch EE. The endocrine effects of long-term oral opioid therapy: a case report and review of the literature. J Opioid Manag. 2011;7(2):145–54.

    PubMed  Google Scholar 

  39. Aloisi AM, et al. Hormone replacement therapy in morphine-induced hypogonadic male chronic pain patients. Reprod Biol Endocrinol. 2011;9:26.

    Article  PubMed  CAS  Google Scholar 

  40. Reddy RG, et al. Opioid induced hypogonadism. BMJ. 2010;341:c4462.

    Article  PubMed  Google Scholar 

  41. Gullett NP, Hebbar G, Ziegler TR. Update on clinical trials of growth factors and anabolic steroids in cachexia and wasting. Am J Clin Nutr. 2010;91(4):1143S–7.

    Article  PubMed  CAS  Google Scholar 

  42. Anker SD, et al. Wasting as independent risk factor for mortality in chronic heart failure. Lancet. 1997;349(9058):1050–3.

    Article  PubMed  CAS  Google Scholar 

  43. Burdet L, et al. Administration of growth hormone to underweight patients with chronic obstructive pulmonary disease. A prospective, randomized, controlled study. Am J Respir Crit Care Med. 1997;156(6):1800–6.

    PubMed  CAS  Google Scholar 

  44. Cittadini A, et al. Growth hormone deficiency in patients with chronic heart failure and beneficial effects of its correction. J Clin Endocrinol Metab. 2009;94(9):3329–36.

    Article  PubMed  CAS  Google Scholar 

  45. Frustaci A, Gentiloni N, Russo MA. Growth hormone in the treatment of dilated cardiomyopathy. N Engl J Med. 1996;335(9):672–3. Author reply 673–4.

    Article  PubMed  CAS  Google Scholar 

  46. Isgaard J, et al. A placebo-controlled study of growth hormone in patients with congestive heart failure. Eur Heart J. 1998;19(11):1704–11.

    Article  PubMed  CAS  Google Scholar 

  47. Mijan-de-la-Torre A. Recent insights on chronic heart failure, cachexia and nutrition. Curr Opin Clin Nutr Metab Care. 2009;12(3):251–7.

    Article  PubMed  Google Scholar 

  48. Neary NM, Goldstone AP, Bloom SR. Appetite regulation: from the gut to the hypothalamus. Clin Endocrinol (Oxf). 2004;60(2):153–60.

    Article  Google Scholar 

  49. Osterziel KJ, et al. Randomised, double-blind, placebo-controlled trial of human recombinant growth hormone in patients with chronic heart failure due to dilated cardiomyopathy. Lancet. 1998;351(9111):1233–7.

    Article  PubMed  CAS  Google Scholar 

  50. Pape GS, et al. The effect of growth hormone on weight gain and pulmonary function in patients with chronic obstructive lung disease. Chest. 1991;99(6):1495–500.

    Article  PubMed  CAS  Google Scholar 

  51. Pupim LB, et al. Recombinant human growth hormone improves muscle amino acid uptake and whole-body protein metabolism in chronic hemodialysis patients. Am J Clin Nutr. 2005;82(6):1235–43.

    PubMed  CAS  Google Scholar 

  52. Garcia JM, Polvino WJ. Effect on body weight and safety of RC-1291, a novel, orally available ghrelin mimetic and growth hormone secretagogue: results of a phase I, randomized, placebo-controlled, multiple-dose study in healthy volunteers. Oncologist. 2007;12(5):594–600.

    Article  PubMed  CAS  Google Scholar 

  53. Nagaya N, et al. Treatment of cachexia with ghrelin in patients with COPD. Chest. 2005;128(3):1187–93.

    Article  PubMed  CAS  Google Scholar 

  54. Nagaya N, et al. Effects of ghrelin administration on left ventricular function, exercise capacity, and muscle wasting in patients with chronic heart failure. Circulation. 2004;110(24):3674–9.

    Article  PubMed  CAS  Google Scholar 

  55. Neary NM, et al. Ghrelin increases energy intake in cancer patients with impaired appetite: acute, randomized, placebo-controlled trial. J Clin Endocrinol Metab. 2004;89(6):2832–6.

    Article  PubMed  CAS  Google Scholar 

  56. Strasser F, et al. Safety, tolerability and pharmacokinetics of intravenous ghrelin for cancer-related anorexia/cachexia: a randomised, placebo-controlled, double-blind, double-crossover study. Br J Cancer. 2008;98(2):300–8.

    Article  PubMed  CAS  Google Scholar 

  57. Wynne K, et al. Subcutaneous ghrelin enhances acute food intake in malnourished patients who receive maintenance peritoneal dialysis: a randomized, placebo-controlled trial. J Am Soc Nephrol. 2005;16(7):2111–8.

    Article  PubMed  CAS  Google Scholar 

  58. Takala J, et al. Increased mortality associated with growth hormone treatment in critically ill adults. N Engl J Med. 1999;341(11):785–92.

    Article  PubMed  CAS  Google Scholar 

  59. Corsonello A, et al. Regimen complexity and medication nonadherence in elderly patients. Ther Clin Risk Manag. 2009;5(1):209–16.

    Article  PubMed  Google Scholar 

  60. Claxton AJ, Cramer J, Pierce C. A systematic review of the associations between dose regimens and medication compliance. Clin Ther. 2001;23(8):1296–310.

    Article  PubMed  CAS  Google Scholar 

  61. Chen C, Cowles VE, Hou E. Pharmacokinetics of gabapentin in a novel gastric-retentive extended-release formulation: comparison with an immediate-release formulation and effect of dose escalation and food. J Clin Pharmacol. 2011;51(3):346–58.

    Article  PubMed  CAS  Google Scholar 

  62. Sampathkumar P, Drage LA, Martin DP. Herpes zoster (shingles) and postherpetic neuralgia. Mayo Clin Proc. 2009;84(3):274–80.

    Article  PubMed  Google Scholar 

  63. Rowbotham M, et al. Gabapentin for the treatment of postherpetic neuralgia: a randomized controlled trial. JAMA. 1998;280(21):1837–42.

    Article  PubMed  CAS  Google Scholar 

  64. Irving G, et al. Efficacy and tolerability of gastric-retentive gabapentin for the treatment of postherpetic neuralgia: results of a double-blind, randomized, placebo-controlled clinical trial. Clin J Pain. 2009;25(3):185–92.

    Article  PubMed  Google Scholar 

  65. FDA. FDA approved label: IONSYSâ„¢ (fentanyl iontophoretic trandermal system). http://www.accessdata.fda.gov/drugsatfda_docs/label/2006/021338lbl.pdf 2006.

  66. Griffin DW, Skowronski RJ, Dasu BN, Palmer PP. A phase 2 open-label functionality, safety, and efficacy study of the sufentanil NanoTabâ„¢ PCA System in patients following elective unilateral knee replacement surgery. In: American Society of Regional Anesthesia and Pain Medicine: Poster Presentation, 35th annual spring meeting and workshops; 2010.

    Google Scholar 

  67. Monk JP, Beresford R, Ward A. Sufentanil. A review of its pharmacological properties and therapeutic use. Drugs. 1988;36(3):286–313.

    Article  PubMed  CAS  Google Scholar 

  68. Dale O, Hjortkjaer R, Kharasch ED. Nasal administration of opioids for pain management in adults. Acta Anaesthesiol Scand. 2002;46(7):759–70.

    Article  PubMed  CAS  Google Scholar 

  69. Kunz KM, Theisen JA, Schroeder ME. Severe episodic pain: management with sublingual sufentanil. J Pain Symptom Manage. 1993;8(4):189–90.

    Article  PubMed  CAS  Google Scholar 

  70. Palmer PP, Hamel LG, Skowronski RJ. Single- and repeat-dose pharmacokinetics of sublingual sufentanil NanoTab in healthy volunteers [abstract A1222]. In: Proceedings of the annual meeting of the American Society of Anesthesiologists; 2009.

    Google Scholar 

  71. Passmore MJ. Sublingual sufentanil for incident pain and dementia-related response agitation. Int Psychogeriatr. 2011; Feb 25:1–3.

    Google Scholar 

  72. Singla NK, Skowronski R, Palmer PP. A phase 2 multicenter, randomized, placebo-controlled study to evaluate the clinical efficacy, safety, and tolerability of sublingual sufentanil NanoTabâ„¢ in patients following major abdominal surgery. In: American Society of Regional Anesthesia and Pain Medicine: Poster Presentation, 35th annual spring meeting and workshops; 2010.

    Google Scholar 

  73. Information, V.G.P. 2009. http://www.voltarengel.com/common/pdf/Voltaren-PI-10-19.pdf. Cited March 2012.

  74. Blonk MI, et al. Use of oral ketamine in chronic pain management: a review. Eur J Pain. 2010;14(5):466–72.

    Article  PubMed  CAS  Google Scholar 

  75. Pogatzki-Zahn EM, Englbrecht JS, Schug SA. Acute pain management in patients with fibromyalgia and other diffuse chronic pain syndromes. Curr Opin Anaesthesiol. 2009;22(5):627–33.

    Article  PubMed  Google Scholar 

  76. Chambers WA. Nerve blocks in palliative care. Br J Anaesth. 2008;101(1):95–100.

    Article  PubMed  CAS  Google Scholar 

  77. Miller RD. Miller’s anesthesia. 7th ed. Philadelphia, PA: Churchill Livingstone/Elsevier; 2010.

    Google Scholar 

  78. Cuvillon P, et al. A comparison of the pharmacodynamics and pharmacokinetics of bupivacaine, ropivacaine (with epinephrine) and their equal volume mixtures with lidocaine used for femoral and sciatic nerve blocks: a double-blind randomized study. Anesth Analg. 2009;108(2):641–9.

    Article  PubMed  CAS  Google Scholar 

  79. Casati A, Baciarello M. Enantiomeric local anesthetics: can ropivacaine and levobupivacaine improve our practice? Curr Drug Ther. 2006;1:85–9.

    Article  CAS  Google Scholar 

  80. Niemi G, Breivik H. Epinephrine markedly improves thoracic epidural analgesia produced by a small-dose infusion of ropivacaine, fentanyl, and epinephrine after major thoracic or abdominal surgery: a randomized, double-blinded crossover study with and without epinephrine. Anesth Analg. 2002;94(6):1598–605. Table of contents.

    PubMed  CAS  Google Scholar 

  81. Congedo E, Sgreccia M, De Cosmo G. New drugs for epidural analgesia. Curr Drug Targets. 2009;10(8):696–706.

    Article  PubMed  CAS  Google Scholar 

  82. Corman SL, Skledar SJ. Use of lipid emulsion to reverse local anesthetic-induced toxicity. Ann Pharmacother. 2007;41(11):1873–7.

    Article  PubMed  CAS  Google Scholar 

  83. Guay J. Methemoglobinemia related to local anesthetics: a summary of 242 episodes. Anesth Analg. 2009;108(3):837–45.

    Article  PubMed  CAS  Google Scholar 

  84. Kaye A, Urman R, Vadivelu N, editors. Essentials of regional anesthesia. New York: Springer; 2011.

    Google Scholar 

  85. Swenson JD, et al. Outpatient management of continuous peripheral nerve catheters placed using ultrasound guidance: an experience in 620 patients. Anesth Analg. 2006;103(6):1436–43.

    Article  PubMed  Google Scholar 

  86. Lai TT, et al. Continuous peripheral nerve block catheter infections in combat-related injuries: a case report of five soldiers from Operation Enduring Freedom/Operation Iraqi Freedom. Pain Med. 2011;12(11):1676–81.

    Article  PubMed  Google Scholar 

  87. Head S, Enneking FK. Infusate contamination in regional anesthesia: what every anesthesiologist should know. Anesth Analg. 2008;107(4):1412–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher K. Merritt M.D. .

Editor information

Editors and Affiliations

Appendices

Review Questions

  1. 1.

    Members of which of the following classes of agents are currently available for clinical use (select all that apply):

    1. (a)

      Anti-NGF agents

    2. (b)

      VGCC blocking agents

    3. (c)

      High-dose topical capsaicin

    4. (d)

      FAAH inhibitors

  2. 2.

    Extended release enteral formulations may allow for all of the following except:

    1. (a)

      Improved compliance

    2. (b)

      Reduced adverse effects

    3. (c)

      Improved rapidity of effect onset

    4. (d)

      Simpler dosing regimen

  3. 3.

    Which of the following parenteral analgesics would be least suited to rapid control of breakthrough pain?

    1. (a)

      Sufentanil NanoTab® PCA System

    2. (b)

      Transdermal fentanyl patch

    3. (c)

      Buccal fentanyl lozenge

    4. (d)

      Ionsys® iontophoretic transdermal fentanyl

  4. 4.

    Monitoring for regional anesthesia under moderate sedation include all of the following except:

    1. (a)

      Electrocardiography

    2. (b)

      Pulse oximetry

    3. (c)

      Neurological checks every 1 h

    4. (d)

      End-tidal CO2 monitoring

  5. 5.

    Regional anesthesia:

    1. (a)

      May not be feasible in patients with severe edema or contractures

    2. (b)

      Can be used in any patient suffering from chronic pain

    3. (c)

      Is more effective than opioids and should be the first-line treatment for chronic pain

    4. (d)

      Is not recommended for patients experiencing a sickle cell crisis

  6. 6.

    Risks of continuous catheter regional nerve blocks include which of the following?

    1. (a)

      Infection at the site of catheter insertion

    2. (b)

      Cardiovascular collapse from local anesthetic toxicity

    3. (c)

      Falls from lower extremity nerve blocks

    4. (d)

      All of the above

Answers

  1. 1.

    (b, c)

  2. 2.

    (c)

  3. 3.

    (b)

  4. 4.

    (c)

  5. 5.

    (a)

  6. 6.

    (d)

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Merritt, C.K., Tran, L.B., Shah, R.V., Kaye, A.D. (2013). New Pain Management Vistas in Palliative Care. In: Vadivelu, N., Kaye, A., Berger, J. (eds) Essentials of Palliative Care. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5164-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5164-8_26

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5163-1

  • Online ISBN: 978-1-4614-5164-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics