Skip to main content

Nonideal Considerations for Semi-decentralized Optimal Team Cooperation

  • Chapter
  • First Online:
Team Cooperation in a Network of Multi-Vehicle Unmanned Systems

Abstract

In practice, many impediments may prevent the team members to cooperate effectively and efficiently. To address this issue, in this chapter, two nonideal considerations are investigated for the team cooperation problem. Specifically, we will generalize the results that are obtained in the previous chapter to more challenging environments and considerations. We have considered two scenarios. First, the performance of the previously designed team in the presence of actuator faults is investigated. In the second part of this chapter, the control design is modified to address stability and consensus seeking in a switching network topology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Ait-Rami and X. Y. Zhou, Linear Matrix Inequalities, Riccati equations, and indefinite stochastic linear quadratic controls, IEEE Trans. Autom. Control 45 (2000), no. 6, 1131–1142.

    Article  MathSciNet  Google Scholar 

  2. M. Alighanbari and J.P. How, Decentralized task assignment for unmanned aerial vehicles, Proc. Conference on Decision and Control and European Control Conference, December 12–15, 2005, pp. 5668–5673.

    Google Scholar 

  3. B. D. O. Anderson and J. B. Moore, Optimal control: Linear quadratic methods, Prentice Hall Information and System Sciences Series, 1990.

    Google Scholar 

  4. B. Andrea-Novel, G. Bastin, and G. Campion, Modeling and control of non holonomic wheeled mobile robots, Proc. international conference on robotics and automation, 1991, pp. 1130–1135.

    Google Scholar 

  5. D. Angeli and P.A. Bliman, Tight estimates for non-stationary consensus with fixed underlying spanning tree, Proc. IFAC world congress, 2008, pp. 9021–9026.

    Google Scholar 

  6. M. Arcak, Passivity as a design tool for group coordination, Proc. American Control Conference, June 14–16, 2006, pp. 29–34.

    Google Scholar 

  7. B. D. O. Anderson and J. B. Moore, Passivity as a design tool for group coordination, IEEE Trans. Autom. Control 52 (2007), no. 8, 1380–1390.

    Article  Google Scholar 

  8. T. Baleh and R.C. Arkin, Behavior-based formation control for multi-robot teams, IEEE J. Robot. Autom. 14 (1998), 926–939.

    Article  Google Scholar 

  9. T. Basar and G.J. Olsder, Dynamic noncooperative game theory, Academic Press Inc., 1982.

    Google Scholar 

  10. D. Bauso, L. Giarre, and R. Pesenti, Mechanism design for optimal consensus problems, Proc. Conference on Decision and Control, December 13–15, 2006, pp. 3381–3386.

    Google Scholar 

  11. B. D. O. Anderson and J. B. Moore, Robust control in uncertain multi-inventory systems and consensus problems, Proc. IFAC world congress, 2008, pp. 9027–9032.

    Google Scholar 

  12. R. W. Beard, J. Lawton, and F. Y. Hadaegh, A feedback architecture for formation control, Proc. American Control Conference, vol. 6, June 28–30, 2000, pp. 4087–4091.

    Google Scholar 

  13. R. W. Beard, A coordination architecture for spacecraft formation control, IEEE Trans. Control Syst. Technol. 9 (2001), no. 6, 777–789.

    Article  Google Scholar 

  14. P. Benner and H. Mena, BDF methods for large-scale differential equations, Proc. 16th international symposium on mathematical theory of network and systems (MTNS), July 5–9, 2004.

    Google Scholar 

  15. J. D. Bošković, S. E. Bergstrom, and R. K. Mehra, Retrofit reconfigurable flight control in the presence of control effector damage, Proc. American Control Conference, June 8–10, 2005, pp. 2652–2657.

    Google Scholar 

  16. J. D. Bošković, S. M. Li, and R. K. Mehra, Formation flight control design in the presence of unknown leader commands, Proc. American Control Conference, May 8–10, 2002, pp. 2854–2859.

    Google Scholar 

  17. S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix inequalities in system and control theory, SIAM, 1994.

    Google Scholar 

  18. W. L. Brogan, Modern control theory, Prentice Hall, 1991.

    Google Scholar 

  19. F. Bullo, J. Cortés, and S. Martinez, Distributed control of robotic networks, series in applied mathematics ed., Princeton, 2009.

    Google Scholar 

  20. G. Campion, G. Bastin, and B. D Andrea-Novel, Structural properties and classification of kinematic and dynamic models of wheeled mobile robots, IEEE Trans. Robot. Autom. 12 (1996), no. 1, 47–62.

    Google Scholar 

  21. M. Cao, D.A. Spielman, and A.S. Morse, A lower bound on convergence of a distributed network consensus algorithm, Proc. Conference on Decision and Control, 2005, pp. 2356–2361.

    Google Scholar 

  22. S. Chaiken, A combinatorial proof of the all minors matrix tree theorem, SIAM J. Alg. Disc. Meth. 3 (1982), no. 3, 319–329.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Cortes, S. Martinez, and F. Bullo, Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions, IEEE Trans. Autom. Control 52 (2003), 166–180.

    Google Scholar 

  24. G. A. Decastro and F. Paganini, Convex synthesis of controllers for consensus, Proc. American Control Conference, June 30–July 2, 2004, pp. 4933–4938.

    Google Scholar 

  25. J. C. Delvenne, R. Carli, and S. Zampieri, Optimal strategies in the average consensus problem, Proc. Conference on Decision and Control-European Control Conference (CDC-ECC), 12–14, 2007, pp. 2498–2503.

    Google Scholar 

  26. J. C. Engwerda, LQ dynamic optimization and differential games, John Wiley & Sons, 2005.

    Google Scholar 

  27. F. Fagnani and S. Zampieri, Asymmetric randomized gossip algorithms for consensus, Proc. IFAC world congress, 2008, pp. 9051–9056.

    Google Scholar 

  28. L. Fang, P. J. Antsaklis, and A. Tzimas, Asynchronous consensus protocols: Preliminary results, simulations, and open questions, Proc. Conference on Decision and Control-European Control Conference (CDC-ECC), 12–15, 2005, pp. 2194–2199.

    Google Scholar 

  29. J. A. Fax, Optimal and cooperative control of vehicle formations, Ph.D. thesis, California Institute of Technology, 2002.

    Google Scholar 

  30. J. A. Fax and R. M. Murray, Information flow and cooperative control of vehicle formations, IEEE Trans. Autom. Control 49 (2004), no. 9, 1465–1476.

    Article  MathSciNet  Google Scholar 

  31. R. Fierro and A. K. Das, A modular architecture for formation control, Proc. IEEE workshop on robot motion and control, November 9–11, 2002, pp. 285–290.

    Google Scholar 

  32. V. Gazi, Stability analysis of swarms, Ph.D. thesis, The Ohio State University, 2002.

    Google Scholar 

  33. J. A. Fax and R. M. Murray, Stability of an asynchronous swarm with time-dependent communication links, IEEE Trans. Syst., Man, Cybern. B 38 (2008), no. 1, 267–274.

    Google Scholar 

  34. C. Godsil and G. Royle, Algebraic graph theory, Springer, 2001.

    Google Scholar 

  35. V. Gupta, B. Hassibi, and R. M. Murray, On the synthesis of control laws for a network of autonomous agents, Proc. American Control Conference, vol. 6, June 30–July 2, 2004, pp. 4927–4932.

    Google Scholar 

  36. F. Y. Hadaegh, A.R. Ghavimi, G. Singh, and M. Quadrelli, A centralized optimal controller for formation flying spacecraft, Proc. Int. conf. intel. tech., 2000.

    Google Scholar 

  37. F. Y. Hadaegh, D.P. Scharf, and S.R. Ploen, Initialization of distributed spacecraft for precision formation flying, Proc. Conference on Control Applications, vol. 2, June 23–25, 2003, pp. 1463–1468.

    Google Scholar 

  38. S. Hirche and S. Hara, Stabilizing interconnection characterization for multi-agent systems with dissipative properties, Proc. IFAC world congress, 2008, pp. 1571–1577.

    Google Scholar 

  39. Y. C. Ho and K. C. Chu, Team decision theory and information structures in optimal control problems-part I, IEEE Trans. Autom. Control 17 (1972), no. 1, 15–22.

    Article  MathSciNet  MATH  Google Scholar 

  40. Y. C. Ho and K. C. Chu, Team decision theory and information structures in optimal control problems-part II, IEEE Trans. Autom. Control 17 (1972), no. 1, 22–28.

    Article  Google Scholar 

  41. R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge University Press, 1990.

    Google Scholar 

  42. Q. Hui and W. M. Haddad, H 2 optimal semistable stabilization for linear discrete-time dynamical systems with applications to network consensus, Proc. Conference on Decision and Control (CDC), 12–14, 2007, pp. 2315–2320.

    Google Scholar 

  43. I.I. Hussein and A.M. Bloch, Dynamic coverage optimal control for interferometric imaging spacecraft formations (part ii): the nonlinear case, Proc. American Control Conference, June 8–10, 2005, pp. 2391–2396.

    Google Scholar 

  44. G. İnalhan, D. M. Stipanović, and C. J. Tomlin, Decentralized optimization, with application to multiple aircraft coordination, Proc. Conference on Decision and Control, December 10–13, 2002, pp. 1147–1155.

    Google Scholar 

  45. A. Jadbabaie, Robust, non-fragile controller synthesis using model-based fuzzy systems: A linear matrix inequality approach, Master’s thesis, The University of New Mexico, 1997.

    Google Scholar 

  46. A. Jadbabaie, J. Lin, and S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Trans. Autom. Control 48 (2003), no. 6, 988–1000.

    Article  MathSciNet  Google Scholar 

  47. S. Jinyan, W. Long, and Y. Junzhi, Cooperative control of multiple robotic fish in a disk-pushing task, Proc. American Control Conference, June 14–16, 2006, pp. 2730–2735.

    Google Scholar 

  48. H. K. Khalil, Nonlinear systems, Prentice Hall, 1996.

    Google Scholar 

  49. D. B. Kingston and R. W. Beard, Discrete-time average-consensus under switching network topologies, Proc. American Control Conference, June 14–16, 2006, pp. 3551–3556.

    Google Scholar 

  50. T. J. Koo and S. M. Shahruz, Formation of a group of unmanned aerial vehicles (UAVs), Proc. American Control Conference, June 25–27, 2001, pp. 69–74.

    Google Scholar 

  51. J. Lawton, R. W. Beard, and F. Y. Hadaegh, An adaptive control approach to satellite formation flying with relative distance constraints, Proc. American Control Conference, vol. 3, June 2–4, 1999, pp. 1545–1549.

    Google Scholar 

  52. D. Lee and M. W. spong, Agreement with non-uniform information delays, Proc. American Control Conference, June 14–16, 2006, pp. 756–761.

    Google Scholar 

  53. T. J. Koo and S. M. Shahruz, Stable flocking of multiple inertial agents on balanced graphs, Proc. American Control Conference, June 14–16, 2006, pp. 2136–2141.

    Google Scholar 

  54. T. J. Koo and S. M. Shahruz, Stable flocking of inertial agents on balanced communication graphs, IEEE Trans. Autom. Control 52 (2007), no. 8, 1469–1475.

    Article  Google Scholar 

  55. N.E. Leonard and E. Fiorelli, Virtual leaders, artificial potentials and coordinated control of groups, Proc. Conference on Decision and Control, June 30–July 2, 2001, pp. 2968–2973.

    Google Scholar 

  56. T. Li, Asymptotically unbiased average consensus under measurement noises and fixed topologies, Proc. IFAC world congress, 2008, pp. 2867–2873.

    Google Scholar 

  57. B. Liu, G. Xie, T. Chu, and L. Wang, Controllability of interconnected systems via switching networks with a leader, Proc. IEEE Conference on Systems, Man, and Cybernetics, October 8–11, 2006, pp. 3912–2849.

    Article  Google Scholar 

  58. A. Locatelli, Optimal control: An introduction, Birkhauser, 2001.

    Google Scholar 

  59. H. Lutkepohl, Handbook of matrices, Wiley publication, 1996.

    Google Scholar 

  60. C.Q. Ma, T. Li, and J.F. Zhang, Leader-following consensus control for multi-agent systems under measurement noises, Proc. IFAC world congress, 2008, pp. 1528–1533.

    Google Scholar 

  61. J. Marschak, Elements of a theory of teams, Management Science 1 (1955), 127–137.

    Article  MathSciNet  MATH  Google Scholar 

  62. J. Marschak and R. Radner, Economic theory of teams, Yale University Press, 1972.

    Google Scholar 

  63. M. Mesbahi and F. Y. Hadaegh, Reconfigurable control for the formation flying of multiple spacecraft, Proc. International Multi-Conference on Circuits, Systems, and Control, 1999.

    Google Scholar 

  64. C.Q. Ma, Formation flying of multiple spacecraft via graphs, matrix inequalities, and switching, AIAA Journal of Guidance, Control, and Dynamics 24 (2001), no. 2, 369–377.

    Article  Google Scholar 

  65. L. Moreau, Stability of continuous time distributed consensus algorithms, Proc. Conference on Decision and Control, December 14–17, 2004, pp. 3998–4003.

    Google Scholar 

  66. C.Q. Ma, Stability of multiagent systems with time-dependent communication links, IEEE Trans. Autom. Control 50 (2005), no. 2, 169–182.

    Article  Google Scholar 

  67. N. Moshtagh, A. Jadbabaie, and K. Daniilidis, Distributed geodesic control laws for flocking of nonholonomic agents, Proc. Conference on Decision and Control, December 12–15, 2005, pp. 2835–2840.

    Google Scholar 

  68. U. Münz, A. Papachristodoulou, and F. Allgöwer, Nonlinear multi-agent system consensus with time-varying delays, Proc. IFAC world congress, 2008, pp. 1522–1527.

    Google Scholar 

  69. E. Nett and S. Schemmer, Reliable real-time communication in cooperative mobile applications, IEEE Trans. Comput. 52 (2003), 166–180.

    Article  Google Scholar 

  70. R. Olfati-Saber, Ultrafast consensus in small-world networks, Proc. American Control Conference, June 8–10, 2005, pp. 2371–2378.

    Google Scholar 

  71. C.Q. Ma, Flocking for multi-agent dynamic systems: Algorithms and theory, IEEE Trans. Autom. Control 51 (2006), no. 3, 401–420.

    Article  Google Scholar 

  72. R. Olfati-Saber, J. A. Fax, and R. M. Murray, Consensus and cooperation in networked multi-agent systems, Proc. of the IEEE 95 (2007), no. 1, 215–233.

    Article  Google Scholar 

  73. R. Olfati-Saber and R. M. Murray, Distributed cooperative control of multiple vehicle formations using structural potential functions, Proc. IFAC World Congress, 2002.

    Google Scholar 

  74. C.Q. Ma, Distributed structural stabilization and tracking for formations of dynamic multi-agents, Proc. Conference on Decision and Control, December 10–13, 2002, pp. 209–215.

    Google Scholar 

  75. C.Q. Ma, Graph rigidity and distributed formation stabilization of multi-vehicle systems, Proc. Conference on Decision and Control, December 10–13, 2002, pp. 2965–2971.

    Google Scholar 

  76. C.Q. Ma, Agreement problems in networks with directed graphs and switching topology, Proc. Conference on Decision and Control, December 9–12, 2003, pp. 4126–4132.

    Google Scholar 

  77. C.Q. Ma, Consensus protocols for networks of dynamic agents, Proc. American Control Conference, June 4–6, 2003, pp. 951–956.

    Google Scholar 

  78. C.Q. Ma, Flocking with obstacle avoidance: cooperation with limited communication in mobile networks, Proc. Conference on Decision and Control, December 9–12, 2003, pp. 2022–2028.

    Google Scholar 

  79. C.Q. Ma, Consensus problems in networks of agents with switching topology and time-delays, IEEE Trans. Autom. Control 49 (2004), no. 9, 1520–1533.

    Article  Google Scholar 

  80. D. Paley, N. E. Leonard, and R. Sepulchre, Collective motion: Bistability and trajectory tracking, Proc. Conference on Decision and Control, December 14–17, 2004, pp. 1932–1937.

    Google Scholar 

  81. R. Radner, Team decision problems, Annals of Mathematical Statistics 33 (1962), no. 3, 857–881.

    Article  MathSciNet  MATH  Google Scholar 

  82. R. L. Raffard, C. J. Tomlin, and S. P. Boyd, Distributed optimization for cooperative agents: application to formation flight, Proc. Conference on Decision and Control, December 14–17, 2004, pp. 2453–2459.

    Google Scholar 

  83. A. Rahmani and M. Mesbahi, On the controlled agreement problem, Proc. American Control Conference, June 14–16, 2006, pp. 1376–1381.

    Google Scholar 

  84. R. L. Raffard, C. J. Tomlin, and S. P. Boyd, A graph-theoretic outlook on the controllability of the agreement dynamics, Proc. European Control Conference, July 2–5, 2007.

    Google Scholar 

  85. R. L. Raffard, C. J. Tomlin, and S. P. Boyd, Pulling the strings on agreement: Anchoring, controllability, and graph automorphisms, Proc. American Control Conference, July 9–13, 2007, pp. 2738–2743.

    Google Scholar 

  86. W. Ren, Distributed attitude consensus among multiple networked spacecraft, Proc. American Control Conference, 2006, pp. 1760–1765.

    Google Scholar 

  87. R. L. Raffard, C. J. Tomlin, and S. P. Boyd, Consensus strategies for cooperative control of vehicle formations, IET Control Theory Applications 1 (2007), no. 2, 505–512.

    Article  Google Scholar 

  88. R. L. Raffard, C. J. Tomlin, and S. P. Boyd, On consensus algorithms for double-integrator dynamics, Proc. Conference on Decision and Control, December 12–14, 2007, pp. 2295–2300.

    Google Scholar 

  89. R. L. Raffard, C. J. Tomlin, and S. P. Boyd, Second-order consensus algorithm with extensions to switching topologies and reference models, Proc. American Control Conference, July 11–13, 2007, pp. 1431–1436.

    Google Scholar 

  90. W. Ren and R. W. Beard, Consensus of information under dynamically changing interaction topologies, Proc. American Control Conference, June 30–July 2, 2004, pp. 4939–4944.

    Google Scholar 

  91. R. L. Raffard, C. J. Tomlin, and S. P. Boyd, Decentralized scheme for spacecraft formation flying via the virtual structure approach, Journal of guidance, control and dynamics 127 (2004), no. 1, 73–82.

    Google Scholar 

  92. R. L. Raffard, C. J. Tomlin, and S. P. Boyd, Formation feedback control for multiple spacecraft via virtual structures, IEE proc. control theory appl. 151 (2004), no. 3, 357–368.

    Article  Google Scholar 

  93. R. L. Raffard, C. J. Tomlin, and S. P. Boyd, Consensus seeking in multiagent systems under dynamically changing interaction topologies, IEEE Trans. Autom. Control 50 (2005), no. 5, 655–661.

    Article  Google Scholar 

  94. R. L. Raffard, C. J. Tomlin, and S. P. Boyd, Distributed consensus in multi-vehicle cooperative control, communications and control engineering series ed., Springer-Verlag, London, 2008.

    Google Scholar 

  95. W. Ren, R. W. Beard, and E. M. Atkins, A survey of consensus problems in multi-agent coordination, Proc. American Control Conference, June 8–10, 2005, pp. 1859–1864.

    Google Scholar 

  96. W. Ren and Yongcan Cao, Distributed coordination of multi-agent networks, communications and control engineering series ed., Springer-Verlag, London, 2011.

    Google Scholar 

  97. C. W. Reynolds, flocks, herds, and schools: a distributed behavioral model, Proc. Computer Graphics (ACM SIGGRAPH), 1987, pp. 25–34.

    Google Scholar 

  98. S. Samar, S. Boyd, and D. Gorinevsky, Distributed estimation via dual decomposition, Proc. European Control Conference, 2007, pp. 1511–1519.

    Google Scholar 

  99. D. P. Scharf, F. Y. Hadaegh, and S. R. Ploen, A survey of spacecraft formation flying guidance and control part II: control, Proc. American Control Conference, June 30–July 2, 2004, pp. 2976–2985.

    Google Scholar 

  100. D.P. Scharf, A.B. Acikmese, S.R. Ploen, and F. Y. Hadaegh, A direct solution for fuel-optimal reactive collision avoidance of collaborating spacecraft, Proc. American Control Conference, vol. 2, June 14–16, 2006, pp. 5201–5206.

    Google Scholar 

  101. E. Semsar and K. Khorasani, Adaptive formation control of UAVs in the presence of unknown vortex forces and leader commands, Proc. American Control Conference, June 14–16, 2006, pp. 3563–3568.

    Google Scholar 

  102. D.P. Scharf, A.B. Acikmese, S.R. Ploen, and F. Y. Hadaegh, Optimal control and game theoretic approaches to cooperative control of a team of multi-vehicle unmanned systems, Proc. IEEE International Conference on Networking, Sensing and Control, April 15–17, 2007, pp. 628–633.

    Google Scholar 

  103. E. Semsar-Kazerooni and K. Khorasani, Optimal cooperation in a modified leader-follower team of agents with partial availability of leader command, Proc. IEEE International Conference on Systems, Man, and Cybernetics, October 7–10, 2007, pp. 234–239.

    Article  Google Scholar 

  104. D.P. Scharf, A.B. Acikmese, S.R. Ploen, and F. Y. Hadaegh, Optimal performance of a modified leader-follower team of agents with partial availability of leader command and presence of team faults, Proc. IEEE Conference on Decision and Control, December12–14, 2007, pp. 2491–2497.

    Google Scholar 

  105. D.P. Scharf, A.B. Acikmese, S.R. Ploen, and F. Y. Hadaegh, Semi-decentralized optimal control of a cooperative team of agents, Proc. IEEE International Conference on System of Systems Engineering, April 17–19, 2007, pp. 1–7.

    Google Scholar 

  106. D.P. Scharf, A.B. Acikmese, S.R. Ploen, and F. Y. Hadaegh, Semi-decentralized optimal control technique for a leader-follower team of unmanned systems with partial availability of the leader command, Proc. IEEE International Conference on Control and Automation, May 30–June 1, 2007, pp. 475–480.

    Google Scholar 

  107. D.P. Scharf, A.B. Acikmese, S.R. Ploen, and F. Y. Hadaegh, Optimal consensus algorithms for cooperative team of agents subject to partial information, Automatica 44 (2008), no. 11, 2766–2777.

    Article  MathSciNet  Google Scholar 

  108. D.P. Scharf, A.B. Acikmese, S.R. Ploen, and F. Y. Hadaegh, Switching control of a modified leader-follower team of agents under the leader and network topological changes, Proc. IFAC world congress, vol. 17, 2008, pp. 1534–1540.

    Google Scholar 

  109. D.P. Scharf, A.B. Acikmese, S.R. Ploen, and F. Y. Hadaegh, Analysis of actuator faults in a cooperative team consensus of unmanned systems, Proc. American Control Conference, June 10–12, 2009, pp. 2618–2623.

    Google Scholar 

  110. D.P. Scharf, A.B. Acikmese, S.R. Ploen, and F. Y. Hadaegh, A game theory approach to multi-agent team cooperation, Proc. American Control Conference, June 10–12, 2009, pp. 4512–4518.

    Google Scholar 

  111. D.P. Scharf, A.B. Acikmese, S.R. Ploen, and F. Y. Hadaegh, An LMI approach to optimal consensus seeking in multi-agent systems, Proc. American Control Conference, June 10–12, 2009, pp. 4519–4524.

    Google Scholar 

  112. D.P. Scharf, A.B. Acikmese, S.R. Ploen, and F. Y. Hadaegh, Multi-agent team cooperation: A game theory approach, Automatica 45 (2009), no. 10, 2205–2213.

    Article  MathSciNet  Google Scholar 

  113. D.P. Scharf, A.B. Acikmese, S.R. Ploen, and F. Y. Hadaegh, An optimal cooperation in a team of agents subject to partial information, International Journal of Control 82 (2009), no. 3, 571–583.

    Article  MathSciNet  Google Scholar 

  114. D.P. Scharf, A.B. Acikmese, S.R. Ploen, and F. Y. Hadaegh, On optimal consensus seeking: An LMI approach, IEEE Trans. Systems, Man, Cybernetics: part B 40 (2010), no. 2, 540–547.

    Article  Google Scholar 

  115. D.P. Scharf, A.B. Acikmese, S.R. Ploen, and F. Y. Hadaegh, Team consensus for a network of unmanned vehicles in presence of actuator faults, IEEE Trans. Control System Technology 18 (2010), no. 5, 1155–1161.

    Article  Google Scholar 

  116. D.P. Scharf, A.B. Acikmese, S.R. Ploen, and F. Y. Hadaegh, Switching control of a modified leader-follower team of agents under the leader and network topological changes, IET Control Theory and Applications 5 (2011), no. 12, 1369–1377.

    Article  MathSciNet  Google Scholar 

  117. H. Shi, L. Wang, and T. Chu, Coordinated control of multiple interactive dynamical agents with asymmetric coupling pattern and switching topology, Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, October 9–15, 2006, pp. 3209–3214.

    Article  Google Scholar 

  118. S. N. Singh and M. Pachter, Adaptive feedback linearizing nonlinear close formation control of UAVs, Proc. American Control Conference, June 28–30, 2000, pp. 854–858.

    Google Scholar 

  119. B. Sinopoli, C. Sharp, L. Schenato, S. Schafferthim, and S. Sastry, Distributed control applications within sensor networks, Proc. IEEE 91 (2003), no. 8, 1235–1246.

    Article  Google Scholar 

  120. R. S. Smith and F. Y. Hadaegh, Control strategies for deep space formation flying spacecraft, Proc. American Control Conference, May 8–10, 2002, pp. 2836–2841.

    Google Scholar 

  121. R. S. Smith and F. Y. Hadaegh, Parallel estimators and communication in spacecraft formations, Proc. IFAC World Congress, 2005.

    Google Scholar 

  122. R. S. Smith and F. Y. Hadaegh, A distributed parallel estimation architecture for cooperative vehicle formation control, Proc. American Control Conference, June 14–16, 2006, pp. 4219–4224.

    Google Scholar 

  123. R. S. Smith and F. Y. Hadaegh, Distributed parallel estimation architecture for cooperative vehicle formation control, Proc. IFAC World Congress, July 14–16, 2006.

    Google Scholar 

  124. R. S. Smith and F. Y. Hadaegh, Closed-loop dynamics of cooperative vehicle formations with parallel estimators and communication, IEEE Trans. Autom. Control 52 (2007), no. 8, 1404–1414.

    Article  MathSciNet  Google Scholar 

  125. R. S. Smith and F. Y. Hadaegh, Distributed estimation, communication and control for deep space formations, IET Control Theory Applications 1 (2007), no. 2, 445–451.

    Article  Google Scholar 

  126. J. L. Speyer, I. Seok, and A. Michelin, Decentralized control based on the value of information in large vehicle arrays, Proc. American Control Conference, June 11–13, 2008, pp. 5047–5054.

    Article  Google Scholar 

  127. J. L. Speyer, N. Zika, and E. Franco, Determination of the value of information in large vehicle arrays, Proc. American Control Conference, June 14–16, 2006, pp. 1–7.

    Google Scholar 

  128. D. M. Stipanović, G. İnalhan, R. Teo, and C. J. Tomlin, Decentralized overlapping control of a formation of unmanned aerial vehicles, Automatica 40 (2004), 1285–1296.

    Article  MATH  Google Scholar 

  129. Y. G. Sun, L. Wang, and G. Xie, Average consensus in directed networks of dynamic agents with time-varying communication delays, Proc. Conference on Decision and Control, December 13–15, 2006, pp. 3393–3398.

    Google Scholar 

  130. H. G. Tanner, A. Jadbabaie, and G. J. Pappas, Stable flocking of mobile agents part I: fixed topology, Proc. Conference on Decision and Control, December 9–12, 2003, pp. 2010–2015.

    Google Scholar 

  131. H. G. Tanner, Stable flocking of mobile agents part II: Dynamic topology, Proc. Conference on Decision and Control, December 9–12, 2003, pp. 2016–2021.

    Google Scholar 

  132. H. G. Tanner, Flocking in fixed and switching networks, IEEE Trans. Autom. Control 52 (2007), no. 5, 863–868.

    Article  MathSciNet  Google Scholar 

  133. H. G. Tanner, V. Kumar, and G. J. Pappas, The effect of feedback and feedforward on formation ISS, Proc. IEEE International Conference on Robotics and Automation, 2002, pp. 3448–3453.

    Google Scholar 

  134. H. G. Tanner, G. J. Pappas, and V. Kumar, Leader-to-formation stability, IEEE J. Robot. Autom. 20 (2004), no. 3, 443–455.

    Article  Google Scholar 

  135. J. N. Tsitsiklis, Problems in decentralized decision making and computation, Ph.D. thesis, Massachusetts Institute of Technology, 1984.

    Google Scholar 

  136. J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans, Distributed asynchronous deterministic and stochastic gradient optimization algorithms, IEEE Trans. Autom. Control 31 (1986), no. 9, 803–812.

    Article  MathSciNet  MATH  Google Scholar 

  137. J.Z. Wang, I. Mareels, and Y. Tan, Robustness of distributed multi-agent consensus, Proc. IFAC world congress, 2008, pp. 1510–1515.

    Google Scholar 

  138. L. Wang and F. Xiao, A new approach to consensus problems for discrete-time multiagent systems with time-delays, Proc. American Control Conference, June 14–16, 2006, pp. 2118–2123.

    Google Scholar 

  139. P.K.C. Wang, Navigation strategies for multiple autonomous mobile robots moving in formation, IEEE J. Robot. Autom. 8 (1991), 177–195.

    MATH  Google Scholar 

  140. C. W. Wu, Agreement and consensus problems in groups of autonomous agents with linear dynamics, Proc. IEEE International Symposium on Circuits and Systems (ISCAS), May 23–26, 2005, pp. 292–295.

    Google Scholar 

  141. F. Xiao and L. Wang, Consensus problems for high-dimensional multi-agent systems, IET Control Theory Applications 1 (2007), no. 3, 830–837.

    Article  Google Scholar 

  142. L. Xiao and S. Boyd, Fast linear iterations for distributed averaging, Systems and control letters 53 (2004), no. 1, 65–78.

    Article  MathSciNet  MATH  Google Scholar 

  143. G. Xie and L. Wang, Consensus control for a class of networks of dynamic agents: Switching topology, Proc. American Control Conference, June 14–16, 2006, pp. 1382–1387.

    Google Scholar 

  144. H. Yamaguchi, Adaptive formation control for distributed autonomous mobile robot groups, Proc. International Conference on Robotics and Automation, April 20–25, 1997, pp. 2300–2305.

    Google Scholar 

  145. T. Yoshikawa, Decomposition of dynamic team decision problems, IEEE Trans. Autom. Control (1978), 627–632.

    Google Scholar 

  146. S. Zampieri, Trends in networked control systems, Proc. IFAC world congress, 2008, pp. 2886–2894.

    Google Scholar 

  147. G. Zimmermann, A minimax-condition for the characteristic center of a tree, Linear and Multilinear Algebra 45 (1998), 161–187.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Semsar-Kazerooni, E., Khorasani, K. (2013). Nonideal Considerations for Semi-decentralized Optimal Team Cooperation. In: Team Cooperation in a Network of Multi-Vehicle Unmanned Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5073-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5073-3_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5072-6

  • Online ISBN: 978-1-4614-5073-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics