Skip to main content

Pharmacogenetics in IBD

  • Chapter
  • First Online:
Pediatric Inflammatory Bowel Disease
  • 1536 Accesses

Abstract

Maximizing the efficacy of IBD-directed therapies while minimizing their toxicity remains the principal objective in developing management strategies for IBD patients. Pharmacogenetics of Thiopurine S-methyltransferase has helped clinicians achieve these objectives targeted at patients receiving either 6-Mercaptopurine (6-MP) or azathioprine, both members of the thiopurine family. This drug-metabolizing enzyme influences the concentration of thiopurine reaching its target (pharmacokinetics). Currently, most IBD patients are treated as if they are homogenous. However patients would certainly benefit from being stratified into those that will or will not have a benefit from a therapy and further divided into those that will or will not have a toxic response to a therapy. The recognition and understanding of the factors influencing therapeutic response have the potential to allow clinicians and the pharmaceutical industry the ability to individualize dosing and administration regimens to maximize benefit and avoid toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 259.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. US Department of Health and Human Services Food and Drug Administratio. Center for Drug Evaluation and Research, Center for Biologics Evaluation and Research & Center for Devices and Radiological Health; 2003. www.fda.org.

  2. Remy CN. Metabolism of thiopyrimidines and thiopurines. S-Methylation with S-adenosylmethionine transmethylase and catabolism in mammalian tissues. J Biol Chem. 1963;238:1078–84.

    PubMed  CAS  Google Scholar 

  3. Lennard L. The clinical pharmacology of 6-Mercaptopurine. Eur J Clin Pharmacol. 1992;43:329–339.

    Article  PubMed  CAS  Google Scholar 

  4. Lennard L, Van Loon JA, Weinshilboum RM. Pharmacogenetics of acute azathioprine toxicity: relationship to thiopurine methyltransferase genetic polymorphism. Clin Pharmacol Ther. 1989;46:149–154.

    Article  PubMed  CAS  Google Scholar 

  5. Evans WE, Horner M, Chu YQ, Kalwinsky D, Roberts WM. Altered mercaptopurine metabolism, toxic effects, and dosage requirement in a thiopurine methyltransferase-deficient child with acute lymphocytic leukemia. J Pediatr. 1991;119:985–9.

    Article  PubMed  CAS  Google Scholar 

  6. Lennard L, Van Loon JA, Lilleyman JS, Weinshilboum RM. Thiopurine pharmacogenetics in leukemia: correlation of erythrocyte thiopurine methyltransferase activity and 6-thioguanine nucleotide concentrations. Clin Pharmacol Ther. 1987;41:18–25.

    Article  PubMed  CAS  Google Scholar 

  7. Weinshilboum RM, Sladek SL. Mercaptopurine Pharmacogenetics: Monogenic.inheritance of erythrocyte thiopurine methyltransferase activity. Am J Human Genet. 1980;32:651–62.

    CAS  Google Scholar 

  8. Van Loon JA, Weinshilboum RM. Thiopurine methyltransferase biochemical genetics: human lymphocyte activity. Biochem Genet. 1982;20:637–58.

    Article  PubMed  Google Scholar 

  9. Woodson LC, Dunnette JH, Weinshilboum RM. Pharmacogenetics of human thiopurine methyltransferase: kidney-erythrocyte correlation and immunotitration studies. J Pharmacol Exp Ther. 1982;222:174–81.

    PubMed  CAS  Google Scholar 

  10. Szumlanski CL, Honchel R, Scott MC, Weinshilboum RM. Human liver thiopurine methyltransferase pharmacogenetics: biochemical properties, liver-erythrocyte correlation and presence of isozymes. Pharmacogenetics. 1992;2:148–59.

    Article  PubMed  CAS  Google Scholar 

  11. Coulthard SA, Howell C, Robson J, Hall AG. The relationship between thiopurine methyltransferase activity and genotype in blasts from patients with acute leukemia. Blood. 1998;92:2856–62.

    PubMed  CAS  Google Scholar 

  12. Honchel R, Aksoy I, Szumlanski C, Wood TC, Otterness DM, Wieben ED, et al. Human thiopurine methyltransferase: molecular cloning and expression of T84 colon carcinoma cell cDNA. Mol Pharmacol. 1993;43:878–87.

    PubMed  CAS  Google Scholar 

  13. Szumlanski C, Otterness D, Her C, Lee D, Brandriff B, Kelsell D, et al. Thiopurine methyltransferase pharmacogenetics: human gene cloning and characterization of a common polymorphism. DNA Cell Biol. 1996;15:17–30.

    Article  PubMed  CAS  Google Scholar 

  14. Tai H-L, Krynetski EY, Yates CR, Loennechen T, Fessing MY, Krynetskaia NF, et al. Thiopurine S-methyltransferase deficiency: two nucleotide transitions define the most prevalent mutant allele associated with loss of catalytic activity in Caucasians. Am J Hum Genet. 1996;58:694–702.

    PubMed  CAS  Google Scholar 

  15. Salavaggione OE, Wang L, Wiepert M, Yee VC, Weinshilboum RM. Pharmacogenetics Thiopurine S-methyltransferase pharmacogenetics: variant allele functional and comparative genomics. Genomics. 2005;15:801–15.

    Article  PubMed  CAS  Google Scholar 

  16. Hon YY, Fessing MY, Pui CH, Relling MV, Krynetski EY, Evans WE. Polymorphism of the thiopurine S-methyltransferase gene in African-Americans. Hum Mol Genet. 1999;8:371–6.

    Article  PubMed  CAS  Google Scholar 

  17. Lee FJ, Kalow W. Thiopurine S methyltransferase activity in a Chinese population. Clin Pharmacol Ther. 1993;54:28–33.

    Article  PubMed  CAS  Google Scholar 

  18. Lennard L, Lilleyman JS, Van Loon J, Weinshilboum RM. Genetic variation in response to 6-mercaptopurine for childhood acute lymphoblastic leukaemia. Lancet. 1990;336:225–9.

    Article  PubMed  CAS  Google Scholar 

  19. Tai H-L, Fessing MY, Bonten EJ, Yanishevsky Y, d’Azzo A, Krynetski EY, et al. Enhanced proteasomal degradation of mutant human thiopurine S-methyltransferase TPMT) in mammalian cells: mechanism for TPMT protein deficiency inherited by TPMT*2, TPMT*3A, TPMT*3B or TPMT*3C. Pharmacogenetics. 1999;9:641–50.

    Article  PubMed  CAS  Google Scholar 

  20. Wang L, Sullivan W, Toft D, Weinshilboum R. Thiopurine S-methyltransferase pharmacogenetics: chaperone protein association and allozyme degradation. Pharmacogenetics. 2003;13:555–64.

    Article  PubMed  CAS  Google Scholar 

  21. Tiede I, Fritz G, Strand S, Poppe D, Dvorsky R, Strand D, et al. CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes. J Clin Invest. 2003;111:1133–45.

    PubMed  CAS  Google Scholar 

  22. Neurath MF, Kiesslich R, Teichgraber U, Fischer C, Hofmann U, Eichelbaum M, et al. 6-thioguanosine diphosphate and triphosphate levels in red blood cells and response to azathioprine therapy in Crohn’s disease. Clin Gastroenterol Hepatol. 2005;3:1007–14.

    Article  PubMed  CAS  Google Scholar 

  23. Dubinsky MC, Lamothe S, Yang HY, Targan SR, Sinnett D, Theoret Y, et al. Pharmacogenomics and metabolite measurement for 6-mercaptopurine therapy in inflammatory bowel disease. Gastroenterology. 2000;118:705–7.

    Article  PubMed  CAS  Google Scholar 

  24. Szumlanski CL, Weinshilboum RM. Sulphasalazine inhibition of thiopurine methyltransferase: possible mechanism for interaction with 6-mercaptopurine and azathioprine. Br J Clin Pharmacol. 1995;39:456–9.

    Article  PubMed  CAS  Google Scholar 

  25. Lewis LD, Benin A, Szumlanski CL, Otterness DM, Lennard L, Weinshilboum RM, et al. Olsalazine and 6-mercaptopurine-related bone marrow suppression: a possible drug-drug interaction. Clin Pharmacol Ther. 1997;62:464–75.

    Article  PubMed  CAS  Google Scholar 

  26. Dewitt O, Vanheuverzwyn R, Desager JP, Horsmans Y. Interaction between azathioprine and aminosalicylates: an in vivo study in patients with Crohn’s disease. Aliment Pharmacol Ther. 2002;16:79–85.

    Article  Google Scholar 

  27. Colombel JF, Ferrari N, Debuysere H, Marteau P, Gendre JP, Bonaz B, et al. Genotypic analysis of thiopurine S-methyltransferase in patients with Crohn’s disease and severe myelosuppression during azathioprine therapy. Gastroenterology. 2000;118:1025–30.

    Article  PubMed  CAS  Google Scholar 

  28. Regueiro M, Mardini H. Determination of thiopurine methyltransferase genotype or phenotype optimizes initial dosing of azathioprine for the treatment of Crohn’s disease. J Clin Gastroenterol. 2002;35:240–4.

    Article  PubMed  CAS  Google Scholar 

  29. Campbell S, Kingstone K, Ghosh S. Relevance of thiopurine methyltransferase activity in inflammatory bowel disease patients maintained on low dose azathioprine. Aliment Pharmacol Ther. 2002;16:389–98.

    Article  PubMed  CAS  Google Scholar 

  30. Dubinsky MC, Hassard PV, Seidman EG, Kam LY, Abreu MT, Targan SR, et al. Preliminary evidence suggests that 6-MP metabolite profiles provide a biochemical explanation for 6-MP resistance in patients with inflammatory bowel disease. Gastroenterology. 2002;122:904–15.

    Article  PubMed  CAS  Google Scholar 

  31. Cuffari C, Théorêt Y, Latour S, Seidman EG. 6-mercaptopurine metabolism in Crohn’s disease: correlation with efficacy and toxicity. Gut. 1996;39:401–6.

    Article  PubMed  CAS  Google Scholar 

  32. Cuffari C, Hunt S, Bayless T. Utilization of erythrocyte 6-thioguanine metabolite levels to optimise azathioprine therapy in patients with inflammatory bowel disease. Gut. 2001;48:642–6.

    Article  PubMed  CAS  Google Scholar 

  33. Osterman MT, Kundu R, Lichtenstein GR, Lewis JD. Association of 6-thioguanine nucleotide levels and inflammatory bowel disease activity: a meta-analysis. Gastroenterology. 2006;130:47–53.

    Article  Google Scholar 

  34. Weinshilboum R. Inheritance and drug response. New Engl J Med. 2003;348:529–37.

    Article  PubMed  Google Scholar 

  35. Weinshilboum R, Wang L. Pharmacogenomics: bench to bedside. Nat Rev Drug Disc. 2004;3:739–48.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marla C. Dubinsky MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dubinsky, M.C. (2013). Pharmacogenetics in IBD. In: Mamula, P., Markowitz, J., Baldassano, R. (eds) Pediatric Inflammatory Bowel Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5061-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5061-0_25

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5060-3

  • Online ISBN: 978-1-4614-5061-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics