Skip to main content

Sources of Mismatch and Errors

  • Chapter
  • First Online:
Physical Unclonable Functions in Theory and Practice

Abstract

All PUF circuits base on mismatches between different circuit components. These mismatches are utilized to generate the PUF specific output. To design a PUF it is important to know the mismatch properties of the available components. Since this work concentrates on microelectronic circuits, microelectronic components are analyzed towards their usability as PUF components in this chapter. Since MOS transistors are the major source of mismatch in microelectronic circuits, a focus is put on this kind of devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alam MA (2005) On the reliability of micro-electronic devices: An introductory lecture on negative bias temperature instability. URL http://nanohub.org/resources/193 (visited Sep 23, 2012)

  2. Asenov A, Brown A, Davies J, Kaya S, Slavcheva G (2003) Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale mosfets. IEEE Trans Electron Dev 50(9):1837–1852. DOI 10.1109/TED.2003.815862

    Article  Google Scholar 

  3. Bernstein K, Frank DJ, Gattiker AE, Haensch W, Ji BL, Nassif SR, Nowak EJ, Pearson DJ, Rohrer NJ (2006) High-performance cmos variability in the 65-nm regime and beyond. IBM J Res Develop 50(4.5):433–449. DOI 10.1147/rd.504.0433

    Google Scholar 

  4. Black J (1969) Electromigration; a brief survey and some recent results. IEEE Trans Electron Dev 16(4):338–347. DOI 10.1109/T-ED.1969.16754

    Article  Google Scholar 

  5. Drennan P, McAndrew C (1999) A comprehensive mosfet mismatch model. In: International electron devices meeting, 1999. IEDM Technical Digest, pp 167–170, 1999. DOI 10.1109/IEDM.1999.823871

  6. Drennan P, McAndrew C (2003) Understanding mosfet mismatch for analog design. IEEE J Solid State Circ 38(3):450–456. DOI 10.1109/JSSC.2002.808305

    Article  Google Scholar 

  7. Hastings A (2001) The art of analg layout. Prentice Hall, Englewood Cliffs

    Google Scholar 

  8. Hu C, Tam SC, Hsu FC, Ko PK, Chan TY, Terrill K (1985) Hot-electron-induced mosfet degradation – model, monitor, and improvement. IEEE J Solid State Circ 20(1):295–305. DOI 10.1109/JSSC.1985.1052306

    Article  Google Scholar 

  9. Islam A, Alam M (2010) Mobility enhancement due to charge trapping x00026; defect generation: Physics of self-compensated bti. In: IEEE international reliability physics symposium (IRPS), pp 65–72, 2010. DOI 10.1109/IRPS.2010.5488853

  10. Koutsoyannopoulos Y, Papananos Y (2000) Systematic analysis and modeling of integrated inductors and transformers in rf ic design. IEEE Trans Circ Syst II: Anal Dig Signal Process 47(8):699–713. DOI 10.1109/82.861403

    Article  Google Scholar 

  11. Mezzomo C, Bajolet A, Cathignol A, Di Frenza R, Ghibaudo G (2011) Characterization and modeling of transistor variability in advanced cmos technologies. IEEE Trans Electron Dev 58(8):2235–2248. DOI 10.1109/TED.2011.2141140

    Article  Google Scholar 

  12. Pelgrom M, Duinmaijer A, Welbers A (1989) Matching properties of mos-transistors. IEEE J Solid State Circ 24(5):1433–1440

    Article  Google Scholar 

  13. Ribes G, Mitard J, Denais M, Bruyere S, Monsieur F, Parthasarathy C, Vincent E, Ghibaudo G (2005) Review on high-k dielectrics reliability issues. IEEE Trans Dev Mater Reliabil 5(1): 5–19. DOI 10.1109/TDMR.2005.845236

    Article  Google Scholar 

  14. Schaper U, Einfeld J (2011) Matching model for planar bulk transistors with halo implantation. IEEE Electron Dev Lett 32(7):859–861. DOI 10.1109/LED.2011.2150194

    Article  Google Scholar 

  15. Sune J, Placencia I, Barniol N, Farres E, Aymerich X (1989) Degradation and breakdown of gate oxides in vlsi devices. Physica Status Solidi (a) 111(2):675–685. DOI 10.1002/pssa.2211110235, URL http://dx.doi.org/10.1002/pssa.2211110235

  16. Tsividis Y, McAndrew C (2011) Operation and modeling of the MOS transistor, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  17. Tuinhout H, Montree A, Schmitz J, Stolk P (1997) Effects of gate depletion and boron penetration on matching of deep submicron cmos transistors. In: International electron devices meeting, 1997. IEDM ’97. Technical digest, pp 631–634, 1997. DOI 10.1109/IEDM.1997.650463

  18. Varghese D, Moens P, Alam M (2010) on-state hot carrier degradation in drain-extended nmos transistors. IEEE Trans Electron Dev 57(10):2704–2710. DOI 10.1109/TED.2010.2059632

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Böhm, C., Hofer, M. (2013). Sources of Mismatch and Errors. In: Physical Unclonable Functions in Theory and Practice. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5040-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5040-5_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5039-9

  • Online ISBN: 978-1-4614-5040-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics