Skip to main content

Nanotechnology in the Treatment of Infectious Diseases

  • Chapter
  • First Online:
Nanotechnology in Dermatology

Abstract

Nosocomial and community-acquired infections caused by multidrug-resistant (MDR) pathogens is rising at an alarming rate [1, 2]. Microbial resistance has developed as a result of the ease with which microorganisms can acquire and transfer antibiotic-resistant determinants as well as the inherent resistance in some species. In addition, the abuse of broad spectrum antibiotics has further influenced the development of antibiotic-resistant strains [3–6]. As a result, resistance to antibiotics and conventional therapies has become a public health threat resulting in increased patient morbidity and mortality, highlighting the need for novel approaches in the development of antimicrobial agents [7–9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010;35(4):322–32.

    Article  PubMed  CAS  Google Scholar 

  2. Shenoy MS, Bhat GK, Kishore A, Hassan MK. Significance of MRSA strains in community associated skin and soft tissue infections. Indian J Med Microbiol. 2010;28(2):152–4.

    Article  PubMed  CAS  Google Scholar 

  3. Maragakis LL, Perl TM. How can we stem the rising tide of multidrug-resistant gram-negative bacilli? Infect Control Hosp Epidemiol. 2010;31(4):338–40.

    Article  PubMed  Google Scholar 

  4. Maragakis LL, Perencevich EN, Cosgrove SE. Clinical and economic burden of antimicrobial resistance. Expert Rev Anti Infect Ther. 2008;6(5):751–63.

    Article  PubMed  Google Scholar 

  5. Boucher HW. Challenges in anti-infective development in the era of bad bugs, no drugs: a regulatory perspective using the example of bloodstream infection as an indication. Clin Infect Dis. 2010;50 Suppl 1:S4–9.

    Article  PubMed  Google Scholar 

  6. Spellberg B, Guidos R, Gilbert D, et al. The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis. 2008;46(2):155–64.

    Article  PubMed  Google Scholar 

  7. Cosgrove SE. The relationship between antimicrobial resistance and patient outcomes: mortality, length of hospital stay, and health care costs. Clin Infect Dis. 2006;42 Suppl 2:S82–9.

    Article  PubMed  Google Scholar 

  8. Cosgrove SE, Carmeli Y. The impact of antimicrobial resistance on health and economic outcomes. Clin Infect Dis. 2003;36(11):1433–7.

    Article  PubMed  Google Scholar 

  9. Friedman A, Blecher K, Sanchez D, et al. Susceptibility of Gram-positive and -negative bacteria to novel nitric oxide-releasing nanoparticle technology. Virulence. 2011;2(3):217–21.

    Article  PubMed  Google Scholar 

  10. Blecher K, Nasir A, Friedman A. The growing role of nanotechnology in combating infectious disease. Virulence. 2011;2(5):395–401.

    Article  PubMed  Google Scholar 

  11. Kim BYS, Rutka JT, Chan WCW. Nanomedicine. N Engl J Med. 2010;363(25):2434–43.

    Article  PubMed  CAS  Google Scholar 

  12. Banergee M, Mallick S, Paul A, Chattopadhyay A, Ghosh S. Heightened reactive oxygen species generation in the antimicrobial activity of three component iodinated chitosan-silver nanoparticle composite. Langmuir. 2010;26(8):5901–8.

    Article  CAS  Google Scholar 

  13. Ma Y, Zhou T, Zhao C. Preparation of chitosan-nylon-6 blended membranes containing silver ions as antibacterial materials. Carbohydr Res. 2008;343(2):230–7.

    Article  PubMed  CAS  Google Scholar 

  14. Sanpui P, Murugadoss A, Prasad PV, Ghosh SS, Chattopadhyay A. The antibacterial properties of a novel chitosan-Ag-nanoparticle composite. Int J Food Microbiol. 2008;124(2):142–6.

    Article  PubMed  CAS  Google Scholar 

  15. Qi L, Xu Z, Jiang X, Hu C, Zou X. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res. 2005;339:2693–700.

    Article  CAS  Google Scholar 

  16. Alburquenque C, Bucarey SA, Neira-Carrillo A, Urzua B, Hermosilla G, Tapia CV. Antifungal activity of low molecular weight chitosan against clinical isolates of Candida spp. Med Mycol. 2010;48(8):1018–23.

    Article  PubMed  CAS  Google Scholar 

  17. Albasarah YY, Somavarapu S, Stapleton P, Taylor KMG. Chitosan-coated antifungal formulations for nebulisation. J Pharm Pharmacol. 2010;62(7):821–8.

    PubMed  CAS  Google Scholar 

  18. Li RC, Guo ZY, Jiang PA. Synthesis, characterization, and antifungal activity of novel quaternary chitosan derivatives. Carbohydr Res. 2010;345(13):1896–900.

    Article  PubMed  CAS  Google Scholar 

  19. Kulikov SN, Tiurin Iu A, Fassakhov RS, Varlamov VP. [Antibacterial and antimycotic activity of chitosan: mechanisms of action and role of the structure]. Zh Mikrobiol Epidemiol Immunobiol. 2009;5:91–7.

    PubMed  Google Scholar 

  20. Chadwick S, Kriegel C, Amiji M. Nanotechnology solutions for mucosal immunization. Adv Drug Deliv Rev. 2010;62(4–5):394–407.

    Article  PubMed  CAS  Google Scholar 

  21. Friedman AJ, Han G, Navati MS, et al. Sustained release nitric oxide releasing nanoparticles: characterization of a novel delivery platform based on nitrite containing hydrogel/glass composites. Nitric Oxide. 2008;19(1):12–20.

    Article  PubMed  CAS  Google Scholar 

  22. Potara M, Jakab E, Damert A, Popescu O, Canpean V, Astilean S. Synergistic antibacterial activity of chitosan-silver nanocomposites on Staphylococcus aureus. Nanotechnology. 2011;22(13):135101.

    Article  PubMed  CAS  Google Scholar 

  23. Mahendra R, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27:76–83.

    Article  CAS  Google Scholar 

  24. Pal S, Tak Y, Song JM. Does the antibacterial actiivty of silver nanoparticles depend on the shape of the nanoparticles? A study of the gram-negative bacterium Escherechia coli. Appl Environ Microbiol. 2007;27(6):1712–20.

    Article  CAS  Google Scholar 

  25. Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 2008;4(3): 707–16.

    Article  PubMed  CAS  Google Scholar 

  26. Butkus MA, Labare MP, Starke JA, Moon K, Talbot M. Use of aqueous silver to enhance inactivation of coliphage MS-2 by UV disinfection. Appl Environ Microbiol. 2004;70(5):2848–53.

    Article  PubMed  CAS  Google Scholar 

  27. Lara HH, Ayala-Nunez NV, Ixtepan-Turrent L, Rodriguez-Padilla C. Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnol. 2010;8:1.

    Article  CAS  Google Scholar 

  28. Martinez-Gutierrez F, Olive PL, Banuelos A, et al. Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine. 2010;6(5):681–8.

    Article  PubMed  CAS  Google Scholar 

  29. Ghosh S, Kaushik R, Nagalakshmi K, et al. Antimicrobial activity of highly stable silver nanoparticles embedded in agar-agar matrix as a thin film. Carbohydr Res. 2010;345(15):2220–7.

    Article  PubMed  CAS  Google Scholar 

  30. Kim KJ, Sung WS, Suh BK, et al. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals. 2009;22(2):235–42.

    Article  PubMed  CAS  Google Scholar 

  31. Paulo CS, Vidal M, Ferreira LS. Antifungal nanoparticles and surfaces. Biomacromolecules. 2010;11(10):2810–7.

    Article  PubMed  CAS  Google Scholar 

  32. Panacek A, Kolar M, Vecerova R, et al. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials. 2009;30(31):6333–40.

    Article  PubMed  CAS  Google Scholar 

  33. Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, Pecharroman C, Moya JS. The antibacterial and antifungal activity of a soda-lime glass containing silver nanoparticles. Nanotechnology. 2009;20(8):085103.

    Article  PubMed  CAS  Google Scholar 

  34. Shrivastava S, Bera T, Roy A, Singh G, Ramachandararao P, Dash D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 2007;18:1–9.

    Article  CAS  Google Scholar 

  35. Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine. 2007;3(2):168–71.

    Article  PubMed  CAS  Google Scholar 

  36. Kim JS, Kuk E, Yu KN, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine. 2007;3(1):95–101.

    Article  PubMed  CAS  Google Scholar 

  37. Wu Y, Jia W, An Q, Liu Y, Chen J, Li G. Multiaction antibacterial nanofibrous membranes fabricated by electrospinning: an excellent system for antibacterial applications. Nanotechnology. 2009;20(24):245101.

    Article  PubMed  CAS  Google Scholar 

  38. Banerjee M, Mallick S, Paul A, Chattopadhyay A, Ghosh SS. Heightened reactive oxygen species generation in the antimicrobial activity of a three component iodinated chitosan-silver nanoparticle composite. Langmuir. 2010;26(8):5901–8.

    Article  PubMed  CAS  Google Scholar 

  39. Kwak S, Kim SH, Kim SS. Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling: 1. Preparation and characterization of TiO nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane. Environ Sci Technol. 2001;35(11):2388–94.

    Article  PubMed  CAS  Google Scholar 

  40. Kim SH, Kwak S, Sohn B, Park TH. Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem. J Membr Sci. 2003;211:157–65.

    Article  CAS  Google Scholar 

  41. Han G, Zippin JH, Friedman A. From bench to bedside: the therapeutic potential of nitric oxide in dermatology. J Drugs Dermatol. 2009;8(6):586–96.

    PubMed  Google Scholar 

  42. Englander L, Friedman A. Nitric oxide nanoparticle technology: a novel antimicrobial agent in the context of current treatment of skin and soft tissue infection. J Clin Aesthet Dermatol. 2010;3(6):45–50.

    PubMed  Google Scholar 

  43. Martinez LR, Han G, Chacko M, et al. Antimicrobial and healing efficacy of sustained release nitric oxide nanoparticles against Staphylococcus aureus skin infection. J Invest Dermatol. 2009;129(10):2463–9.

    Article  PubMed  CAS  Google Scholar 

  44. Cabrales P, Han G, Roche C, Nacharaju P, Friedman AJ, Friedman JM. Sustained release nitric oxide from long-lived circulating nanoparticles. Free Radic Biol Med. 2010;49(4):530–8.

    Article  PubMed  CAS  Google Scholar 

  45. Han G, Martinez LR, Mihu MR, Friedman AJ, Friedman JM, Nosanchuk JD. Nitric oxide releasing nanoparticles are therapeutic for Staphylococcus aureus abscesses in a murine model of infection. PLoS One. 2009;4(11):e7804.

    Article  PubMed  CAS  Google Scholar 

  46. Mihu MR, Sandkovsky U, Han G, Friedman JM, Nosanchuk JD, Martinez LR. Nitrix oxide releasing nanoparticles are therapeutic for Acinetobacter baumanni wound infections. Virulence. 2010;1(2):62–7.

    Article  PubMed  Google Scholar 

  47. Friedman AJ, Blecher K, Schairer D, et al. Improved antimicrobial efficacy with nitric oxide releasing nanoparticle generated S-nitrosoglutathione. Nitric Oxide. 2011;25(4):381–6.

    Article  PubMed  CAS  Google Scholar 

  48. Karthikeyan R, Amaechi BT, Rawls HR, Lee VA. Antimicrobial activity of nanoemulsion on cariogenic Streptococcus mutans. Arch Oral Biol. 2011;56(5):437–45.

    Article  PubMed  CAS  Google Scholar 

  49. Ziani K, Chang YH, McLandsborough L, McClements DJ. Influence of surfactant charge on antimicrobial efficacy of surfactant-stabilized thyme oil nanoemulsions. J Agric Food Chem. 2011;59(11):6247–55.

    Article  PubMed  CAS  Google Scholar 

  50. Hemmila MR, Mattar A, Taddonio MA, et al. Topical nanoemulsion therapy reduces bacterial wound infection and inflammation after burn injury. Surgery. 2010;148(3):499–509.

    Article  PubMed  Google Scholar 

  51. Ciotti S, Eisma R, Ma L, Baker JR. In-vitro skin penetration of novel antimicrobial nanoemulsion formulations containing antifungal agents. J Invest Dermatol. 2009;129:S78.

    Google Scholar 

  52. Fothergill AW, McCarthy DI, Sutcliffe JA, Rinaldi MG. Antifungal activity of NB-002 a topical nanoemulsion, against rare fungal pathogens of onychomycosis. J Am Acad Dermatol. 2009;60(3):AB117.

    Google Scholar 

  53. Jones T, Ijzerman M, Flack M. A randomized, double-blind, vehicle-controlled trial of a novel topical antifungal nanoemulsion (NB-002) in subjects with distal subungual onychomycosis. J Am Acad Dermatol. 2009;60(3):AB102.

    Google Scholar 

  54. Lipuma JJ, Makidon PE, Foster BK, Keoleian JC, Rathinavelu S, Kailkin LM, Baker JR Jr. In vitro activities of a novel nanoemulsion against Burkholderia and other multi-drug resistant cystic fibrosis-associated bacterial species. Antimicrob Agents Chemother. 2009;53(1):249–55.

    Google Scholar 

  55. Pengon S, Limmatvapirat C, Limmatvapirat S. Preparation and evaluation of antimicrobial nanoemulsion containing herbal extracts. Drug Metab Rev. 2009;41:85.

    Google Scholar 

  56. Hamouda T, Flack M, Baker J. Development of a novel topically applied antifungal agent (NB-002) based on nanoemulsion technology. J Am Acad Dermatol. 2008;58(2):AB90.

    Google Scholar 

  57. Teixeira PC, Leite GM, Domingues RJ, Silva J, Gibbs PA, Ferreira JP. Antimicrobial effects of a microemulsion and a nanoemulsion on enteric and other pathogens and biofilms. Int J Food Microbiol. 2007;118(1):15–9.

    Article  PubMed  CAS  Google Scholar 

  58. Hamouda T, Myc A, Donovan B, Shih AY, Reuter JD, Baker JR. A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi. Microbiol Res. 2001;156(1):1–7.

    Article  PubMed  CAS  Google Scholar 

  59. Hamouda T, Hayes MM, Cao ZY, et al. A novel surfactant nanoemulsion with broad-spectrum sporicidal activity against Bacillus species. J Infect Dis. 1999;180(6):1939–49.

    Article  PubMed  CAS  Google Scholar 

  60. Pannu J, McCarthy A, Martin A, et al. NB-002, a novel nanoemulsion with broad antifungal activity against dermatophytes, other filamentous fungi, and Candida albicans. Antimicrob Agents Chemother. 2009;53(8):3273–9.

    Article  PubMed  CAS  Google Scholar 

  61. Pannu J, Sutcliffe J, Ma LF, Ciotti S. Antifungal activity and mechanism of action of NB-002, a novel topical antifungal, against the major pathogens of onychomycosis. J Am Acad Dermatol. 2009;60(3):AB114.

    Google Scholar 

  62. Jones T, Flack M, Ijzerman M, Baker J. Safety, tolerance, and pharmacokinetics of topical nanoemulsion (NB-002) for the treatment of onychomycosis. J Am Acad Dermatol. 2008;58(2):AB83.

    Google Scholar 

  63. Ijzerman M, Baker J, Flack M, Robinson P. Efficacy of topical nanoemulsion (NB-002) for the treatment of distal subungual onychomycosis: a randomized, double-blind, vehicle-controlled trial. J Am Acad Dermatol. 2010;62(3):AB76.

    Google Scholar 

  64. Pinto-Alphandary H, Andremont A, Couvreur P. Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications. Int J Antimicrob Agents. 2000;13(3):155–68.

    Article  PubMed  CAS  Google Scholar 

  65. Vieira DB, Carmona-Ribeiro AM. Cationic nanoparticles for delivery of amphotericin B: preparation, characterization and activity in vitro. J Nanobiotechnol. 2008;6:6.

    Article  CAS  Google Scholar 

  66. Mohammadi G, Valizadeh H, Barzegar-Jalali M, et al. Development of azithromycin-PLGA nanoparticles: physicochemical characterization and antibacterial effect against Salmonella typhi. Colloids Surf B Biointerfaces. 2010;80(1):34–9.

    Article  PubMed  CAS  Google Scholar 

  67. Dillen K, Vandervoort J, Van den Mooter G, Ludwig A. Evaluation of ciprofloxacin-loaded Eudragit RS100 or RL100/PLGA nanoparticles. Int J Pharm. 2006;314(1):72–82.

    Article  PubMed  CAS  Google Scholar 

  68. Turos E, Reddy GS, Greenhalgh K, et al. Penicillin-bound polyacrylate nanoparticles: restoring the ­activity of beta-lactam antibiotics against MRSA. Bioorg Med Chem Lett. 2007;17(12):3468–72.

    Article  PubMed  CAS  Google Scholar 

  69. Abeylath SC, Turos E, Dickey S, Lim DV. Glyconanobiotics: novel carbohydrated nanoparticle antibiotics for MRSA and Bacillus anthracis. Bioorg Med Chem. 2008;16(5):2412–8.

    Article  PubMed  CAS  Google Scholar 

  70. Fattal E, Rojas J, Youssef M, Couvreur P, Andremont A. Liposome-entrapped ampicillin in the treatment of experimental murine listeriosis and salmonellosis. Antimicrob Agents Chemother. 1991;35(4):770–2.

    Article  PubMed  CAS  Google Scholar 

  71. Fontana G, Pitarresi G, Tomarchio V, Carlisi B, San Biagio PL. Preparation, characterization and in vitro antimicrobial activity of ampicillin-loaded polyethylcyanoacrylate nanoparticles. Biomaterials. 1998;19(11–12):1009–17.

    Article  PubMed  CAS  Google Scholar 

  72. Shim YH, Kim YC, Lee HJ, et al. Amphotericin B aggregation inhibition with novel nanoparticles prepared with poly(epsilon-caprolactone)/poly(n, n-dimethylamino-2-ethyl methacrylate) diblock copolymer. J Microbiol Biotechnol. 2011;21(1):28–36.

    Article  PubMed  CAS  Google Scholar 

  73. Sheikh S, Ali SM, Ahmad MU, et al. Nanosomal amphotericin B is an efficacious alternative to Ambisome for fungal therapy. Int J Pharm. 2010;397(1–2):103–8.

    Article  PubMed  CAS  Google Scholar 

  74. Burgess BL, Cavigiolio G, Fannucchi MV, Illek B, Forte TM, Oda MN. A phospholipid-apolipoprotein A-I nanoparticle containing amphotericin B as a drug delivery platform with cell membrane protective properties. Int J Pharm. 2010;399(1–2):148–55.

    Article  PubMed  CAS  Google Scholar 

  75. Shao K, Huang RQ, Li JF, et al. Angiopep-2 modified PE-PEG based polymeric micelles for amphotericin B delivery targeted to the brain. J Control Release. 2010;147(1):118–26.

    Article  PubMed  CAS  Google Scholar 

  76. Jung SH, Lim DH, Lee JE, Jeong KS, Seong H, Shin BC. Amphotericin B-entrapping lipid nanoparticles and their in vitro and in vivo characteristics. Eur J Pharm Sci. 2009;37(3–4):313–20.

    Article  PubMed  CAS  Google Scholar 

  77. Amaral AC, Bocca AL, Ribeiro AM, et al. Amphotericin B in poly(lactic-co-glycolic acid) (PLGA) and dimercaptosuccinic acid (DMSA) nanoparticles against paracoccidioidomycosis. J Antimicrob Chemother. 2009;63(3):526–33.

    Article  PubMed  CAS  Google Scholar 

  78. Fukui H, Koike T, Saheki A, Sonoke S, Tomii Y, Seki J. Evaluation of the efficacy and toxicity of amphotericin B incorporated in lipid nano-sphere (LNS (R)). Int J Pharm. 2003;263(1–2):51–60.

    Article  PubMed  CAS  Google Scholar 

  79. Ritter J. Amphotericin B and its lipid formulations. Mycoses. 2002;45:34–8.

    Article  PubMed  CAS  Google Scholar 

  80. Bekersky I, Boswell GW, Hiles R, Fielding RM, Buell D, Walsh TJ. Safety, toxicokinetics and tissue distribution of long-term intravenous liposomal amphotericin B (AmBisome (R)): a 91-day study in rats. Pharm Res. 2000;17(12):1494–502.

    Article  PubMed  CAS  Google Scholar 

  81. Bekersky I, Boswell GW, Hiles R, Fielding RM, Buell D, Walsh TJ. Safety and toxicokinetics of intravenous liposomal amphotericin B (AmBisome (R)) in beagle dogs. Pharm Res. 1999;16(11):1694–701.

    Article  PubMed  CAS  Google Scholar 

  82. Johnson EM, Ojwang JO, Szekely A, Wallace TL, Warnock DW. Comparison of in vitro antifungal activities of free and liposome-encapsulated nystatin with those of four amphotericin B formulations. Antimicrob Agents Chemother. 1998;42(6):1412–6.

    PubMed  CAS  Google Scholar 

  83. Gulati M, Bajad S, Singh S, Ferdous AJ, Singh M. Development of liposomal amphotericin B formulation. J Microencapsul. 1998;15(2):137–51.

    Article  PubMed  CAS  Google Scholar 

  84. Hiemenz JW, Walsh TJ. Lipid formulations of amphotericin B. J Liposome Res. 1998;8(4):443–67.

    Article  CAS  Google Scholar 

  85. Hillery AM. Supramolecular lipidic drug delivery systems: from laboratory to clinic—a review of the recently introduced commercial liposomal and lipid-based formulations of amphotericin B. Adv Drug Deliv Rev. 1997;24(2–3):345–63.

    Article  CAS  Google Scholar 

  86. Anstey NM, Stewart LM, Packard M, Graney WF, Bartlett JA. Open-label titration study of the safety of RMP-7 in patients with the acquired immune deficiency syndrome. Int J Antimicrob Agents. 1996;6(4):183–7.

    Article  PubMed  CAS  Google Scholar 

  87. Joly V, Farinotti R, Saintjulien L, Cheron M, Carbon C, Yeni P. In-vitro renal toxicity and in-vivo therapeutic efficacy in experimental murine cryptococcosis of amphotericin-B (fungizone) associated with intralipid. Antimicrob Agents Chemother. 1994;38(2):177–83.

    Article  PubMed  CAS  Google Scholar 

  88. Bekersky I, Fielding RM, Buell D, Lawrence I. Lipid-based amphotericin B formulations: from animals to man. Pharm Sci Technol Today. 1999;2(6):230–6.

    Article  PubMed  CAS  Google Scholar 

  89. Bhalekar MR, Pokharkar V, Madgulkar A, Patil N. Preparation and evaluation of miconazole nitrate-loaded solid lipid nanoparticles for topical delivery. AAPS PharmSciTech. 2009;10(1):289–96.

    Article  PubMed  CAS  Google Scholar 

  90. Naeff R. Feasibility of topical liposome drugs produced on an industrial scale. Adv Drug Deliv Rev. 1996;18(3):343–7.

    Article  CAS  Google Scholar 

  91. Nystatin—liposomal. AR 121, Nyotran. Drugs R D. 1999;1(2):181–3.

    Google Scholar 

  92. Groll AH, Petraitis V, Petraitiene R, et al. Safety and efficacy of multilamellar liposomal nystatin against disseminated candidiasis in persistently neutropenic rabbits. Antimicrob Agents Chemother. 1999;43(10):2463–7.

    PubMed  CAS  Google Scholar 

  93. Moribe K, Maruyama K. Pharmaceutical design of the liposomal antimicrobial agents for infectious disease. Curr Pharm Des. 2002;8(6):441–54.

    Article  PubMed  CAS  Google Scholar 

  94. Wallace TL, Paetznick V, Cossum PA, LopezBerestein G, Rex JH, Anaissie E. Activity of liposomal nystatin against disseminated Aspergillus fumigatus infection in neutropenic mice. Antimicrob Agents Chemother. 1997;41(10):2238–43.

    PubMed  CAS  Google Scholar 

  95. Wasan KM, Ramaswamy M, Cassidy SM, Kazemi M, Strobel FW, Thies RL. Physical characteristics and lipoprotein distribution of liposomal nystatin in human plasma. Antimicrob Agents Chemother. 1997;41(9):1871–5.

    PubMed  CAS  Google Scholar 

  96. Gupta M, Goyal AK, Paliwal SR, et al. Development and characterization of effective topical liposomal system for localized treatment of cutaneous candidiasis. J Liposome Res. 2010;20(4):341–50.

    Article  PubMed  CAS  Google Scholar 

  97. Korting HC, Klovekorn W, Klovekorn G, et al. Comparative efficacy and tolerability of econazole liposomal gel 1%, branded econazole conventional cream 1% and generic clotrimazole cream 1% in tinea pedis. Clin Drug Investig. 1997;14(4):286–93.

    Article  CAS  Google Scholar 

  98. Wiesenthal A, Hunter L, Wang SG, Wickliffe J, Wilkerson M. Nanoparticles: small and mighty. Int J Dermatol. 2011;50(3):247–54.

    Article  PubMed  CAS  Google Scholar 

  99. Chen H, Chang X, Du D, et al. Podophyllotoxin-loaded solid lipid nanoparticles for epidermal targeting. J Control Release. 2006;110(2):296–306.

    Article  PubMed  CAS  Google Scholar 

  100. Xie FM, Zeng K, Chen ZL, et al. [Treatment of recurrent condyloma acuminatum with solid lipid nanoparticle gel containing podophyllotoxin: a randomized double-blinded, controlled clinical trial]. Nan Fang Yi Ke Da Xue Xue Bao. 2007;27(5):657–9.

    PubMed  CAS  Google Scholar 

  101. Plummer, EM, Manchester, M. Viral nanoparticles and virus-like particles: platforms for contemporary vaccine design. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. John Wiley 24 Sep 2010.

    Google Scholar 

  102. Sun HX, Xie Y, Ye YP. ISCOMs and ISCOMATRIX. Vaccine. 2009;27(33):4388–401.

    Article  PubMed  CAS  Google Scholar 

  103. Singh R, Lillard Jr JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86(3):215–23.

    Article  PubMed  CAS  Google Scholar 

  104. Bal SM, Slutter B, van Riet E, et al. Efficient induction of immune responses through intradermal vaccination with N-trimethyl chitosan containing antigen formulations. J Control Release. 2010;142(3):374–83.

    Article  PubMed  CAS  Google Scholar 

  105. Huang M-H. Emulsified nanoparticles containing inactivated influenza virus and CpG oligodeoxynucleotides critically influences the host immune response in mice. PLoS One. 2010;5(8):e12270.

    Article  CAS  Google Scholar 

  106. Nasir A. Nanotechnology in vaccine development: a step forward. J Invest Dermatol. 2009;129(5):1055–9.

    Article  PubMed  CAS  Google Scholar 

  107. Liu L, Zhong Q, Tian T, Dubin K, Athale SK, Kupper TS. Epidermal injury and infection during poxvirus immunization is crucial for the generation of highly protective T cell-mediated immunity. Nat Med. 2010;16(2):224–7.

    Article  PubMed  CAS  Google Scholar 

  108. Combadiere B, Vogt A, Mahe B, et al. Preferential amplification of CD8 effector-T cells after transcutaneous application of an inactivated influenza vaccine: a randomized phase I trial. PLoS One. 2010;5(5):e10818.

    Article  PubMed  CAS  Google Scholar 

  109. Mahe B, Vogt A, Liard C, et al. Nanoparticle-based targeting of vaccine compounds to skin antigen-presenting cells by hair follicles and their transport in mice. J Invest Dermatol. 2009;129(5):1156–64.

    Article  PubMed  CAS  Google Scholar 

  110. Semete B, Booysen LI, Kalombo L, et al. In vivo uptake and acute immune response to orally administered chitosan and PEG coated PLGA nanoparticles. Toxicol Appl Pharmacol. 2010;249(2):158–65.

    Article  PubMed  CAS  Google Scholar 

  111. Csaba N, Sanchez A, Alonso MJ. PLGA:poloxamer and PLGA:poloxamine blend nanostructures as carriers for nasal gene delivery. J Control Release. 2006;113(2):164–72.

    Article  PubMed  CAS  Google Scholar 

  112. Rajananthanan P, Attard GS, Sheikh NA, Morrow WJ. Evaluation of novel aggregate structures as adjuvants: composition, toxicity studies and humoral responses. Vaccine. 1999;17(7–8):715–30.

    Article  PubMed  CAS  Google Scholar 

  113. Dykman LA, Sumaroka MV, Staroverov SA, Zaitseva IS, Bogatyrev VA. [Immunogenic properties of the colloidal gold]. Izv Akad Nauk Ser Biol. 2004;1:86–91.

    PubMed  Google Scholar 

  114. Diwan M, Elamanchili P, Lane H, Gainer A, Samuel J. Biodegradable nanoparticle mediated antigen delivery to human cord blood derived dendritic cells for induction of primary T cell responses. J Drug Target. 2003;11(8–10):495–507.

    Article  PubMed  CAS  Google Scholar 

  115. Moore MD, Cookson J, Coventry VK, et al. Protection of HIV neutralizing aptamers against rectal and vaginal nucleases: implications for RNA-based therapeutics. J Biol Chem. 2011;286(4):2526–35.

    Article  PubMed  CAS  Google Scholar 

  116. Kim SK, Sims CL, Wozniak SE, Drude SH, Whitson D, Shaw RW. Antibiotic resistance in bacteria: novel metalloenzyme inhibitors. Chem Biol Drug Des. 2009;74(4):343–8.

    Article  PubMed  CAS  Google Scholar 

  117. Saccucci L, Crance JM, Colas P, Bickle M, Garin D, Iseni F. Inhibition of vaccinia virus replication by peptide aptamers. Antiviral Res. 2009;82(3):134–40.

    Article  PubMed  CAS  Google Scholar 

  118. Tolentino M. Systemic and ocular safety of intravitreal anti-VEGF therapies for ocular neovascular disease. Surv Ophthalmol. 2011;56(2):95–113.

    Article  PubMed  Google Scholar 

  119. Makidon PE, Bielinska AU, Nigavekar SS, et al. Pre-clinical evaluation of a novel nanoemulsion-based hepatitis B mucosal vaccine. PLoS One. 2008;3(8):e2954.

    Article  PubMed  CAS  Google Scholar 

  120. Muttil P, Prego C, Garcia-Contreras L, et al. Immunization of Guinea pigs with novel hepatitis B antigen as nanoparticle aggregate powders administered by the pulmonary route. AAPS J. 2010;12(3):330–7.

    Article  PubMed  CAS  Google Scholar 

  121. Bielinska AU. A novel, killed-virus nasal vaccinia virus vaccine. Clin Vaccine Immunol. 2008;14(2):348–58.

    Article  CAS  Google Scholar 

  122. Helgeby A, Robson NC, Donachie AM, et al. The combined CTA1-DD/ISCOM adjuvant vector promotes priming of mucosal and systemic immunity to incorporated antigens by specific targeting of B cells. J Immunol. 2006;176(6):3697–706.

    PubMed  CAS  Google Scholar 

  123. Maloy KJ, Donachie AM, Mowat AM. Induction of Th1 and Th2 CD4+ T cell responses by oral or parenteral immunization with ISCOMS. Eur J Immunol. 1995;25(10):2835–41.

    Article  PubMed  CAS  Google Scholar 

  124. Brunner C, Seiderer J, Schlamp A, et al. Enhanced dendritic cell maturation by TNF-alpha or cytidine-phosphate-guanosine DNA drives T cell activation in vitro and therapeutic anti-tumor immune responses in vivo. J Immunol. 2000;165(11):6278–86.

    PubMed  CAS  Google Scholar 

  125. Bacon A, Makin J, Sizer PJ, et al. Carbohydrate biopolymers enhance antibody responses to mucosally delivered vaccine antigens. Infect Immun. 2000;68(10):5764–70.

    Article  PubMed  CAS  Google Scholar 

  126. Florindo HF, Pandit S, Lacerda L, Goncalves LMD, Alpar HO, Almeida AJ. The enhancement of the immune response against S. equi antigens through intranasal administration of poly-3-caprolactone-based nanoparticles. Biomaterials. 2009;30:879–91.

    Article  PubMed  CAS  Google Scholar 

  127. Massich MD, Giljohann DA, Seferos DS, Ludlow LE, Horvath CM, Mirkin CA. Regulating immune response using polyvalent nucleic acid-gold nanoparticle conjugates. Mol Pharm. 2009;6(6):1934–40.

    Article  PubMed  CAS  Google Scholar 

  128. Bastus NG, Sanchez-Tillo E, Pujals S, et al. Homogeneous conjugation of peptides onto gold nanoparticles enhances macrophage response. ACS Nano. 2009;3(6):1335–44.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Blecher M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Friedman, A., Blecher, K. (2013). Nanotechnology in the Treatment of Infectious Diseases. In: Nasir, A., Friedman, A., Wang, S. (eds) Nanotechnology in Dermatology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5034-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5034-4_18

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5033-7

  • Online ISBN: 978-1-4614-5034-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics