Skip to main content

Nanoscale Photovoltaics and the Terawatt Challenge

  • Chapter
  • First Online:
Nanoscale Applications for Information and Energy Systems

Abstract

Achieving a sustainable energy system providing terawatts (TWs) of electricity is one of the defining challenges of the coming decades. Photovoltaic technology provides the most likely path to realizing TW scale conversion of solar energy in the future and has been on a nearly 40% growth curve over the past two decades. In order to maintain this rapid level of growth, innovations in cell design and conversion efficiency are needed that are compatible with existing technology and can lead to improved performance and lower cost. Nanotechnology offers a number of advantages to realizing such innovation, by providing new materials and the implementation of advanced concepts that circumvent the current physical limits on efficiency. This chapter reviews several of the promising applications of nanotechnology to photovoltaic technologies and their prospects for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Oil is not used for large-scale electricity production, but is coupled through suggestions of shifting transport demand to either natural gas derivatives (which impacts peaking power for electricity) or directly though electric hybrids.

References

  1. R.E. Smalley, Future global energy prosperity: The terawatt challenge. MRS Bull. 30, 412–417 (2005)

    Article  Google Scholar 

  2. N.A. Lewis, Powering the Planet. DOE Program Review (2005)

    Google Scholar 

  3. W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961)

    Article  CAS  Google Scholar 

  4. Solar Junction tips 43.5% efficient CPV cell, preps 250 MW capacity ramp. Photovoltaics World, Photovoltaics-CPV, Issue 2, March 2011

    Google Scholar 

  5. R.T. Ross, A.J. Nozik, Efficiency of hot-carrier solar energy converters. J. Appl. Phys. 53, 3813–3818 (1982)

    Article  CAS  Google Scholar 

  6. K.W.J. Barnham, G. Duggan, A new approach to multi bandgap solar cells. J. Appl. Phys. 67, 3490 (1990)

    Article  CAS  Google Scholar 

  7. S. Kolodinski, J.H. Werner, T. Wittchen, H.J. Queisser, Quantum efficiencies exceeding unity due to impact ionization in silicon solar cells. Appl. Phys. Lett. 63, 2405 (1993)

    Article  CAS  Google Scholar 

  8. M.A. Green, Third Generation Photovoltaics: Advanced Energy Conversion (Springer, Berlin, 2003)

    Google Scholar 

  9. S. Kolodinski, J.H. Werner, T. Wittchen, H.J. Queisser, Quantum efficiencies exceeding unity due to impact ionization in silicon solar cells. Appl. Phys. Lett. 63, 2405 (1993)

    Article  CAS  Google Scholar 

  10. R. Schaller, V. Klimov, High efficiency carrier multiplication in pbse nanocrystals: Implications for solar energy conversion. Phys. Rev. Lett. 92, 186601 (2004)

    Article  CAS  Google Scholar 

  11. H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, H. Yoon, N. Karam, III-V multijunction solar cells for concentrating photovoltaics. Energy Environ. Sci. 2, 174–192 (2009)

    Article  CAS  Google Scholar 

  12. A. Luque, A. Martí, Phys. Rev. Lett. 78, 5014 (1997)

    Article  CAS  Google Scholar 

  13. R.T. Ross, A.J. Nozik, Efficiency of hot-carrier solar energy converters. J. Appl. Phys 53, 3813 (1982)

    Article  CAS  Google Scholar 

  14. P. Würfel, Solar energy conversion with hot electrons from impact ionization. Sol. Energy Mater. Sol. Cells 46, 43 (1997)

    Article  Google Scholar 

  15. P. Würfel, A.S. Brown, T.E. Humphrey, M.A. Green, Particle conservation in the hot-carrier solar cell. Prog. Photovolt. Res. Appl. 13, 277 (2005)

    Article  Google Scholar 

  16. A.Y. Cho, J.R. Arthur, Molecular beam epitaxy. Prog. Solid State Chem. 10, 157–191 (1975)

    Article  Google Scholar 

  17. W. Lu, C.M. Lieber, Semiconductor nanowires. J. Phys. D Appl. Phys. 39, R387 (2006)

    Article  CAS  Google Scholar 

  18. L. Samuelson, Self-forming nanoscale devices. Mater. Today 6, 22–31 (2003)

    Article  CAS  Google Scholar 

  19. M.T. Björk, B.J. Ohlsson, T. Sass, A.I. Persson, C. Thelander, M.H. Magnusson, K. Deppert, L.R. Wallenberg, L. Samuelson, One-dimensional steeplechase for electrons realized. Nano Lett. 2, 87–89 (2002)

    Article  Google Scholar 

  20. M.T. Björk, B.J. Ohlsson, C. Thelander, A.I. Persson, K. Deppert, L.R. Wallenberg, L. Samuelson, Nanowire resonant tunneling diodes. Appl. Phys. Lett. 81, 4458–4460 (2002)

    Article  Google Scholar 

  21. C. Thelander, T. Martensson, M.T. Björk, B.J. Ohlsson, M.W. Larsson, L.R. Wallenberg, L. Samuelson, Single-electron transistors in heterostructure nanowires. Appl. Phys. Lett. 83, 2052–2054 (2003)

    Article  CAS  Google Scholar 

  22. A. Fuhrer, C. Fasth, L. Samuelson, Single electron pumping in InAs nanowire double quantum dots. Appl. Phys. Lett. 91 (2007). doi:10.1063/1.2767197

  23. A. Fuhrer, L.E. Froberg, J.N. Pedersen, M.W. Larsson, A. Wacker, M.E. Pistol, L. Samuelson, Few electron double quantum dots in InAs/InP nanowire heterostructures. Nano Lett. 7, 243–246 (2007)

    Article  CAS  Google Scholar 

  24. M.T. Björk, A. Fuhrer, A.E. Hansen, M.W. Larsson, L.E. Jensen, L. Samuelson, Tunable effective g factor in InAs nanowire quantum dots. Phys. Rev. B 72, 201307 (2005)

    Article  Google Scholar 

  25. A.P. Alivisatos, Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100, 13226–13239 (1996)

    Article  CAS  Google Scholar 

  26. D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures (Wiley, Chichester, UK, 1999)

    Google Scholar 

  27. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene. Nature 318, 162–163 (1985)

    Article  CAS  Google Scholar 

  28. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic Press, New York, 1996)

    Google Scholar 

  29. T. Dürkop, S.A. Getty, E. Cobas, M.S. Fuhrer, Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 4, 35–39 (2003)

    Article  Google Scholar 

  30. A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai, Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003)

    Article  CAS  Google Scholar 

  31. P.L. McEuen, M.S. Fuhrer, P. Hongkun, Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 1, 78–85 (2002)

    Article  Google Scholar 

  32. S. Kolodinski, J.H. Werner, T. Wittchen, H.J. Queisser, Quantum efficiencies exceeding unity due to impact ionization in silicon solar cells. Appl. Phys. Lett. 63(17), 2405–2407 (1993)

    Article  CAS  Google Scholar 

  33. R.D. Schaller, V.I. Klimov, High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys. Rev. Lett. 92(18), 186601 (2004)

    Article  CAS  Google Scholar 

  34. R.J. Ellingson, M.C. Beard, J.C. Johnson, P. Yu, O.I. Micic, A.J. Nozik, A. Shabaev, A.L. Efros, Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 5(5), 865–871 (2005)

    Article  CAS  Google Scholar 

  35. A.J. Nozick, Exciton multiplication and relaxation dynamics in quantum dots: Applications to ultrahigh-efficiency solar photon conversion. Inorg. Chem. 44, 6893 (2005)

    Article  Google Scholar 

  36. A. Shabaev, A.L. Efros, A.J. Nozik, Multiexciton generation by a single photon in nanocrystals. Nano Lett. 6, 8 (2006)

    Article  Google Scholar 

  37. R.D. Schaller, J.M. Pietryga, V.I. Klimov, Carrier multiplication in InAs nanocrystal quantum dots with an onset defined by the energy conservation limit. Nano Lett. 7(11), 3469–76 (2007)

    Article  CAS  Google Scholar 

  38. J.E. Murphy, M.C. Beard, A.G. Norman, S. Phillip, J.C. Johnson, S.P. Ahrenkiel, O.I. Micic, P. Yu, R.J. Ellingson, A.J. Nozik, PbTe colloidal nanocrystals: Synthesis, characterization, and multiple exciton generation. J. Am. Chem. Soc. 128(10), 3241–3247 (2006)

    Article  CAS  Google Scholar 

  39. J.H. Werner, S. Kolodinski, H.J. Queisser, Novel optimization principles and efficiency limits for semiconductor solar cells. Phys. Rev. Lett. 72(24), 3851–4 (1994)

    Article  CAS  Google Scholar 

  40. M.C. Beard, K.P. Knutsen, P. Yu, J.M. Luther, Q. Song, W.K. Metzger, R.J. Ellingson, A.J. Nozik, Multiple exciton generation in colloidal silicon nanocrystals. Nano Lett. 7(8), 2506–2512 (2007)

    Article  CAS  Google Scholar 

  41. A. de Vos, B. Desoete, On the ideal performance of solar cells with larger-than-unity quantum efficiency. Sol. Energy Mater. Sol. Cells 51(3), 413–424 (1998)

    Article  Google Scholar 

  42. T.-Y. Kim, N.-M. Park, K.-H. Kim, Y.-W. Ok, T.-Y. Seong, C.-J. Choi, G.Y. Sung, Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films. Mater. Res. Soc. Symp. Proc. 817, L4.3 (2004)

    Article  Google Scholar 

  43. Q. Chen, G. Hubbard, P.A. Shields, C. Liu, D.W.E. Allsopp, W.N. Wang, S. Abbott, Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting. Appl. Phys. Lett. 94(26), 263118 (2009)

    Article  Google Scholar 

  44. Y.M. Song, S.Y. Bae, J.S. Yu, Y.T. Lee, Closely packed and aspect-ratio-controlled antireflection subwavelength gratings on GaAs using a lenslike shape transfer. Opt. Lett. 34(11), 1702–4 (2009)

    Article  CAS  Google Scholar 

  45. S.A. Boden, D.M. Bagnall, Tunable reflection minima of nanostructured antireflective surfaces. Appl. Phys. Lett. 93(13), 133108 (2008)

    Article  Google Scholar 

  46. N. Wang, Y. Cai, R.Q. Zhang, Growth of nanowires. Mater. Sci. Eng. R Rep. 60(1), 1–51 (2008)

    Article  CAS  Google Scholar 

  47. M.D. Kelzenberg, D.B. Turner-Evans, B.M. Kayes, M.A. Filler, M.C. Putnam, N.S. Lewis, H.A. Atwater, Photovoltaic measurements in single-nanowire silicon solar cells. Nano Lett. 8(2), 710–14 (2008)

    Article  CAS  Google Scholar 

  48. Sean’s thesis

    Google Scholar 

  49. T. Ogi, K. Okuyama, L.B. Modesto-Lopez, F. Iskandar, Fabrication of a large area monolayer of silica particles on a sapphire substrate by a spin coating method. Colloids Surf. A Physicochem. Eng. Asp. 297(1), 71–78 (2007)

    Article  CAS  Google Scholar 

  50. A. Luque, A. Martí, The intermediate band solar cell: Progress toward the realization of an attractive concept. Adv. Mater. 22, 160–174 (2010)

    Article  CAS  Google Scholar 

  51. Y. Yao, W.O. Charles, T. Tsai, G. Wysocki, J. Chen, C.F. Gmachl, Broadband quantum cascade laser gain medium based on a “continuum-to-bound” active region design. Appl. Phys. Lett. 96(21), 211106 (2010)

    Article  Google Scholar 

  52. P. Bhattacharya, A.D. Stiff-Roberts, S. Krishna, S. Kennerly, Quantum dot infrared detectors and sources. Int. J. High Speed Electron. Syst. 12(4), 969–94 (2002)

    Article  CAS  Google Scholar 

  53. H.F. MacMillan, H.C. Hamaker, N.R. Kaminar, M.S. Kuryla, M.L. Ristow, D.D. Liu, G.F. Virshup, J.M. Gee, 28% Efficient GaAs concentrator solar cells. IEEE Photovoltaic Specialists Conference, pp. 462–8 (1988)

    Google Scholar 

  54. C.G. Bailey, D.V. Forbes, R.P. Raffaelle, S.M. Hubbard, Near 1 V open circuit voltage InAs/GaAs quantum dot solar cells. Appl. Phys. Lett. 98, 163105 (2011)

    Article  Google Scholar 

  55. S. Sauvage, P. Boucaud, F.H. Julien, J.-M. Gérard, V. Thierry-Mieg, Intraband absorption in n-doped InAs/GaAs quantum dots. Appl. Phys. Lett. 71, 2785 (1997)

    Article  CAS  Google Scholar 

  56. A. Martí, E. Antolín, C.R. Stanley, C.D. Farmer, N. López, P. Díaz, E. Cánovas, P.G. Linares, A. Luque, Production of photocurrent due to intermediate-to-conduction-band transitions: A demonstration of a key operating principle of the intermediate-band solar cell. Phys. Rev. Lett. 97, 247701 (2006)

    Article  Google Scholar 

  57. J. Nelson, J. Barnes, N. Ekins-Daukes, B. Kluftinger, E. Tsui, K. Barnham, C. Tom Foxon, T. Cheng, J. Roberts, Observation of suppressed radiative recombination in single quantum well p- i- n photodiodes. J. Appl. Phys. 82, 6240 (1997)

    Article  CAS  Google Scholar 

  58. K.-Y. Ban, S.P. Bremner, G. Liu, S.N. Dahal, P.C. Dippo, A.G. Norman, C.B. Honsberg, Use of a GaAsSb buffer layer for the formation of small, uniform, and dense InAs quantum dots. Appl. Phys. Lett. 96, 183101 (2010)

    Article  Google Scholar 

  59. K.-Y. Ban, S.P. Bremner, G. Liu, S.N. Dahal, P.C. Dippo, A.G. Norman, C.B. Honsberg, Controllability of the subband occupation of InAs quantum dots on a delta-doped GaAsSb barrier. J. Appl. Phys. 109, 014312 (2011)

    Article  Google Scholar 

  60. R.T. Ross, A.J. Nozik, Efficiency of hot-carrier solar energy converters. J. Appl. Phys. 53, 3813–3818 (1982)

    Article  CAS  Google Scholar 

  61. P.T. Landsberg, G. Tonge, Thermodynamic energy conversion efficiencies. J. Appl. Phys. 5(1), R1 (1980)

    Article  Google Scholar 

  62. P. Würfel, Solar energy conversion with hot electrons from impact ionization. Sol. Energy Mater. Sol. Cells 46, 43–52 (1997)

    Article  Google Scholar 

  63. P. Würfel, A.S. Brown, T.E. Humphrey, M.A. Green, Particle conservation in the hot-carrier solar cell. Prog. Photovolt. Res. Appl. 13, 277 (2005)

    Article  Google Scholar 

  64. G. Conibeer, M.A. Green, R. Corkish, Y. Cho, E. Chob, C. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, B. Richards, A. Shalav, K. Lind, Silicon nanostructures for third generation photovoltaic solar cells. Thin Solid Films 511–512, 654 (2006)

    Article  Google Scholar 

  65. W.S. Pelouch, R.J. Ellingson, P.E. Powers, C.L. Tang, D.M. Szmyd, A.J. Nozik, Comparison of hot-carrier relaxation in quantum wells and bulk GaAs at high carrier densities. Phys. Rev. B 45, 1450–1453 (1992)

    Article  CAS  Google Scholar 

  66. K.S. Tsen, K.R. Wald, T. Ruf, P.Y. Yu, H. Morkoc, Electron optical phonon interactions in ultrathin GaAs AlAs multiple quantum well structures. Phys. Rev. Lett. 67, 2557–2560 (1991)

    Article  CAS  Google Scholar 

  67. K.T. Tsen, R.P. Joshi, D.K. Ferry, A. Botcharev, B. Sverdlov, A. Salvador, H. Morkoc, Non-equlibrium electron distributions and phonon dynamics in wurtzite GaN. Appl. Phys. Lett. 68, 2990–2992 (1996)

    Article  CAS  Google Scholar 

  68. K.T. Tsen, J.G. Kiang, D.K. Ferry, H. Morkoc, Subpicosecond time-resolved Raman studies of LO phonons in GaN: Dependence on photoexcited carrier density. Appl. Phys. Lett. 89, 112111 (2006)

    Article  Google Scholar 

  69. K.T. Tsen, J.G. Kiang, D.K. Ferry, H. Lu, W.J. Schaff, H.-W. Lin, S. Gwo, Direct measurements of the lifetimes of longitudinal optical phonon modes and their dynamics in InN. Appl. Phys. Lett. 90, 152107-1-3 (2007)

    Google Scholar 

  70. S.M. Goodnick, P. Lugli, Hot carrier relaxation in quasi-2D systems, in Hot Carriers in Semiconductor Microstructures: Physics and Applications, ed. by J. Shah (Academic, New York, 1992), pp. 191–234

    Google Scholar 

  71. M. Dür, S.M. Goodnick, P. Lugli, Monte Carlo simulation of intersubband relaxation in wide, uniformly doped GaAs/AlxGa1-xAs quantum wells. Phys. Rev. B54, 17794 (1996)

    Google Scholar 

  72. G. Conibeer, R. Patterson, L. Huang, J.-F. Guillemoles, D. König, S. Shrestha, M.A. Green, Modelling of hot carrier solar cell absorbers. Sol. Energy Mater. Sol. Cells 94, 1516–1521 (2010)

    Article  CAS  Google Scholar 

  73. S.M. Goodnick, C. Honsberg, Modeling carrier relaxation in hot carrier solar cells. Proc. SPIE. 8256, 82560W (2012). doi:10.1117/12.910858

  74. C.B. Honsberg, J. Lee, A. Bailey, S. Dahal, Hybrid advanced concept solar cells. Proceedings of the 37th IEEE Photovoltaics Specialists Conference, Seattle, WA, 2011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen M. Goodnick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goodnick, S.M., Faleev, N., Honsberg, C. (2013). Nanoscale Photovoltaics and the Terawatt Challenge. In: Korkin, A., Lockwood, D. (eds) Nanoscale Applications for Information and Energy Systems. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5016-0_3

Download citation

Publish with us

Policies and ethics