Skip to main content

Basic Concepts for Spatial Analysis

  • Chapter
  • First Online:
Imaging Brain Function With EEG

Abstract

In order to embark on the study of so complex organ as the brain, we select, observe, and measure one of the various forms of energy produced and used by the brain—electric, magnetic, chemical, thermal, and metabolic—and a hierarchical level of analysis—microscopic, mesoscopic, and macroscopic—each with its characteristic space-time scales. By choosing to read our book, we infer that readers have chosen to analyze the electroencephalogram from the scalp (EEG), the electrocorticogram from cortical surfaces (ECoG, Fig. 6.1), and the local field potentials from the depth of the brain (LFP) in any or all accessible forms and locations (Lopes da Silva 1993; Basar 1998). Then we characterize and classify the phenomena that we want to analyze and understand. We have begun with time series analysis of single channel recordings; now we undertake the spatial analysis of signals from arrays of channels. To that end, we require some basic concepts that we introduce in this chapter, with references to detailed treatments in other chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More details are given, Sect. 9.5 and in Freeman (2007). From a real ECoG signal, the Hilbert transform basically generates a complex signal. The original (real) signal together with its imaginary counterpart (obtained with the Hilbert transform) forms a complex analytic signal, in the sense that its Fourier transform is strictly positive. Using Euler’s theorem, the analytic signal is plotted as a vector (Fig. 9.8c) rotating counterclockwise. The length of the vector gives the analytic amplitude; the angle from the real axis gives the analytic phase.

  2. 2.

    We band-pass filter the 64 signals in the 20–80-Hz range and compute the spatial ensemble average signal A(t). We then construct a window twice the wavelength of the peak frequency in the mean PSDT of each 6 s trial and step it along the 64 signals and the spatial ensemble average at intervals of the wavelength. At each step we calculate the mean SD of the 64 standard deviations, SD T (t), and the SD of the average waveform, SDT(t), in the window.

  3. 3.

    Experimental demonstration of the mechanism for stabilization of positive feedback in mutual excitation requires use of an excitatory population with no effective inhibitory neurons. The illustration is from periglomerular interneurons in the outer layer of the olfactory bulb (Section 5.2.3 in Freeman 1975). They are GABAergic and therefore mistakenly regarded as inhibitory. In fact they have a high intracellular concentration of chloride ions (Siklós et al. 1995). The action of GABA is to allow chloride ions to exit the neurons, causing depolarization and therefore excitation.

References

  • Abraham RJ, Shaw CD (1983–1985) Dynamics, the geometry of behavior. Ariel Press, Santa Cruz, 220 pp (part 1), 137 pp (part 2), 121 pp (part 3)

    Google Scholar 

  • Freeman WJ, Ahlfors SM, Menon V (2009) Combining EEG, MEG and fMRI signals to characterize mesoscopic patterns of brain activity related to cognition. Special Issue (Lorig TS, ed) Intern J Psychophysiol 73(1):43–52

    Google Scholar 

  • Ahrens KF, Freeman WJ (2001) Response dynamics of entorhinal cortex in awake, anesthetized and bulbotomized rats. Brain Research BRES 911/2, pp. 193–202

    Google Scholar 

  • Amit DJ (1995) The Hebbian paradigm reintegrated: local reverberations as internal representations. Behav Brain Sci 18:617–657

    Article  Google Scholar 

  • Anastassiou CA, Perin R, Markram H and Koch C (2011) Ephaptic coupling of cortical neurons. Nature Neuroscience 14:217–223

    Article  Google Scholar 

  • Atmanspacher H, Scheingraber H (1990) Pragmatic information and dynamical instabilities in a multimode continuous-wave dye laser. Can J Phys 68:728–737

    Article  CAS  Google Scholar 

  • Bak P (1996) How nature works: the science of self-organized criticality. Copernicus, New York

    Google Scholar 

  • Barrie JM, Freeman WJ, Lenhart M (1996) Modulation by discriminative training of spatial patterns of gamma EEG amplitude and phase in neocortex of rabbits. J Neurophysiol 76:520–539

    PubMed  CAS  Google Scholar 

  • Basar E (ed) (1998) Brain function and oscillations. Vol 1: Principles and approaches. Vol II: Integrative brain function. Neurophysiology and cognitive processes, Springer series in synergetics. Springer, Berlin

    Google Scholar 

  • Beggs JM (2008) The criticality hypothesis: how local cortical networks might optimize information processing. Phil Trans R Soc A 366:329–343. doi:10.1098/rsta.2007.2092

    Article  PubMed  Google Scholar 

  • Biedenbach MA, Freeman WJ (1965) Linear domain of potentials from the prepyriform cortex with respect to stimulus parameters. Exp Neurol 11:400–417

    Article  PubMed  CAS  Google Scholar 

  • Bonachela JA, de Franciscis S, Torres JJ, Munoz MA (2010) Self-organization without conservation: are neuronal avalanches generically critical? J Stat Mech. doi:10.1088/1742-5468/2010/02/P02015

  • Braitenberg V, Schüz A (1998) Cortex: statistics and geometry of neuronal connectivity, 2nd edn. Springer, Berlin

    Google Scholar 

  • Breakspear M, Stam CJ (2005) Dynamics of a neural system with a multiscale architecture, Philos Trans R Soc Lond B Biol Sci 1457:1051–1074

    Google Scholar 

  • Bressler SL, Kelso JAS (2001) Cortical coordination dynamics and cognition. Trends Cogn Sci 5:2–36

    Article  Google Scholar 

  • Buzsaki G (2006) Rhythms of the brain. Oxford University Press, Oxford

    Book  Google Scholar 

  • Doya K, Ishii S, Pouget A, Rao RPN (2011) Bayesian brain. Probabilistic approaches to neural coding. MIT Press, Cambridge, MA

    Google Scholar 

  • Freeman WJ (1975) Mass action in the nervous system. Examination of the neurophysiological basis of adaptive behavior through the EEG. Academic Press, New York, Posted in e-formats (2004) http://sulcus.berkeley.edu/MANSWWW/MANSWWW.html

  • Freeman WJ (1979) Nonlinear dynamics of paleocortex manifested in the olfactory EEG. Biol Cybern 35:21–37

    Article  PubMed  CAS  Google Scholar 

  • Freeman WJ (1987) Simulation of chaotic EEG patterns with a dynamic model of the olfactory system. Biol Cybern 56:139–150

    Article  PubMed  CAS  Google Scholar 

  • Freeman WJ (2000) Neurodynamics. An exploration of mesoscopic brain dynamics. Springer, London. http://soma.berkeley.edu/books/BD/MesoBrainDyn.html

  • Freeman WJ (2001) How brains make up their minds. Columbia UP, New York

    Google Scholar 

  • Freeman WJ (2004a) Origin, structure, and role of background EEG activity. Part 1. Analytic amplitude. Clin Neurophysiol 115:2077–2088. http://repositories.cdlib.org/postprints/1006

    Google Scholar 

  • Freeman WJ (2004b) Origin, structure, and role of background EEG activity. Part 2. Analytic phase. Clin Neurophysiol 115:2089–2107. http://repositories.cdlib.org/postprints/1486

    Google Scholar 

  • Freeman WJ (2005a) Origin, structure, and role of background EEG activity. Part 3. Neural frame classification. Clin Neurophysiol 116(5):1118–1129. http://authors.elsevier.com/sd/article/S138824570504

    Google Scholar 

  • Freeman WJ (2005b) NDN, volume transmission, and self-organization in brain dynamics. J Integr Neurosci 4(4):407–421

    Article  PubMed  Google Scholar 

  • Freeman WJ (2006) Origin, structure, and role of background EEG activity. Part 4. Neural frame simulation. Clin Neurophysiol 117(3):572–589. http://repositories.cdlib.org/postprints/1480

    Google Scholar 

  • Freeman WJ (2007) Hilbert transform for brain waves. Scholarpedia 2(1):1338. http://www.scholarpedia.org/article/Hilbert_transform_forbrain_waves

    Google Scholar 

  • Freeman WJ (2009) Deep analysis of perception through dynamic structures that emerge in cortical activity from self-regulated noise. Cogn Neurodyn 3(1):105–116

    Article  PubMed  Google Scholar 

  • Freeman WJ, Baird B (1987) Relation of olfactory EEG to behavior: spatial analysis. Behav Neurosci 101:393–408

    Article  PubMed  CAS  Google Scholar 

  • Freeman WJ, Barrie JM (2000) Analysis of spatial patterns of phase in neocortical gamma EEGs in rabbit. J Neurophysiol 84:1266–1278

    PubMed  CAS  Google Scholar 

  • Freeman WJ, Breakspear M (2007) Scale-free neocortical dynamics. Scholarpedia 2(2):1357. http://www.scholarpedia.org/article/Scale-free_neocortical_dynamics

    Google Scholar 

  • Freeman WJ (2012) Movies of the filtered ECoG and the analytic amplitude and phase can be downloaded from http://soma.berkeley.edu/videos/?video=2

  • Freeman WJ, Holmes MD, West GA, Vanhatalo S (2006) Fine spatiotemporal structure of phase in human intracranial EEG. Clin Neurophysiol 117(6):1228–1243. http://soma.berkeley.edu/articles/EJ%20CLINPH02-28-06%20txt-fig.pdf

    Google Scholar 

  • Freeman WJ, Erwin H (2008) Freeman K-set. Scholarpedia 3(2):3238. http://www.scholarpedia.org/article/Freeman_K-set

    Google Scholar 

  • Freeman WJ, Kozma R (2010) Freeman’s mass action. Scholarpedia 5(1):8040. http://www.scholarpedia.org/article/Freeman%27s_mass_action

    Google Scholar 

  • Freeman WJ, Viana Di Prisco G (1986) Relation of olfactory EEG to behavior: time series analysis. Behav Neurosci 100:753–763

    Article  PubMed  CAS  Google Scholar 

  • Freeman WJ, Vitiello G (2006) Nonlinear brain dynamics as macroscopic manifestation of underlying many-body field dynamics. Phys Life Rev 3:93–118. http://dx.doi.org/10.1016/j.plrev.2006.02.001, http://dx.doi.org/10.1016/j.plrev.2006.02.001

  • Freeman WJ, Vitiello G (2010) Vortices in brain waves. Int J Mod Phys B 24(17):3269–3295. http://dx.doi.org/10.1142/S0217979210056025

    Google Scholar 

  • Freeman WJ, Zhai J (2009) Simulated power spectral density (PSD) of background electrocorticogram (ECoG). Cogn Neurodyn 3(1):97–103. http://repositories.cdlib.org/postprints/3374

    Google Scholar 

  • Freyer F, Aquino K, Robinson PA, Ritter P, Breakspear M (2009) Bistability and non-Gaussian fluctuations in spontaneous cortical activity. J Neurosci 29(26):8512–8524

    Article  PubMed  CAS  Google Scholar 

  • Gross CG (2008) Single neuron studies of inferior temporal cortex. Neuropsychologia 46(3):841–852

    Article  PubMed  Google Scholar 

  • Hagiwara S, Tasaki S (1958) A study on the mechanism of impulse transmission across the giant synapse of the squid. J Physiol 143:114–137

    PubMed  CAS  Google Scholar 

  • Haken H (2002) Brain dynamics: an introduction to models and simulations, Springer series in synergetics. Springer, Berlin

    Google Scholar 

  • Hebb DO (1949) The organization of behavior. Wiley, New York

    Google Scholar 

  • Houk JC, Rymer WZ (1981) Neural control of muscle length and tension. In: Brookhart JM, Mountcastle VB, Brooks VB (eds) Handbook of physiology, Sect 1, the nervous system, Vol. II, Motor control, Part 1. American Physiological Society, Bethesda, pp 257–323

    Google Scholar 

  • Izhikevich EM, Edelman GM (2008) Large-scale model of mammalian thalamocortical systems. Proc Natl Acad Sci USA 105(9):3593–3598

    Article  PubMed  CAS  Google Scholar 

  • Kay LM, Freeman WJ (1998) Bidirectional processing in the olfactory-limbic axis during olfactory behavior. Behav Neurosci 112:541–553

    Article  PubMed  CAS  Google Scholar 

  • Kellis SS, House PA, Thomson KE, Brown R, Greger B. (2009) Human neocortical electrical activity recorded on nonpenetrating microwire arrays: applicability for neuroprostheses. Neurosurg Focus 27:1–9

    Article  Google Scholar 

  • Kelso JAS (1995) Dynamic patterns: the self organization of brain and behavior. MIT Press, Cambridge

    Google Scholar 

  • Kozma R, Puljic M, Bollobás B, Balister P, Freeman WJ (2005) Phase transitions in the neuropercolation model of neural populations with mixed local and non-local interactions. Biol Cybern 92(6):367–379

    Article  PubMed  Google Scholar 

  • Kozma R, Puljic M, Freeman WJ (2012) Thermodynamic model of criticality in the cortex based on EEG/ECoG data. In: Plenz D (ed) Criticality in neural systems. Wiley, New York

    Google Scholar 

  • Kitzbichler MG, Smith ML, Christensen SR, Bullmore E (2009) Broadband criticality of human brain network synchronization. PLoS Comput Biol 5(3):e1000314. doi:10.1371/journal.pcbi.1000314

    Article  PubMed  Google Scholar 

  • Liley DTJ, Alexander DM, Wright JJ, Aldous MD (1999) Alpha rhythm emerges from large-scale networks of realistically coupled multicompartmental model cortical neurons. Netw Comput Neural Syst 10:79–92

    Article  CAS  Google Scholar 

  • Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature 453:869–878. doi:10.1038/nature06976

    Article  PubMed  CAS  Google Scholar 

  • Lopes da Silva F (1993) EEG analysis: theory and practice. In: Niedermeyer E, Lopes da Silva F (eds) Electroencephalography: basic principles, clinical applications and related fields. Williams and Wilkins, Baltimore, pp 1097–1123

    Google Scholar 

  • Lorente de Nó R (1934) Studies on the structure of the cerebral cortex. I. The area entorhinalis. J für Psychologie und Neurologie 45:381–438

    Google Scholar 

  • O’Connor SC, Robinson PA (2004) Unifying and interpreting the spectral wavenumber content of EEGs, ECoGs, and ERPs. J Theoret Biol 231:397–412

    Article  Google Scholar 

  • Panksepp J (1998) Affective neuroscience: the foundations of human and animal emotions. Oxford University Press, Oxford

    Google Scholar 

  • Petermann T, Thiagarajan TA, Lebedev M, Nicoleli M, Chialvo DR, Plenz D (2009) Spontaneous cortical activity in awake monkeys composed of neuronal avalanches. Proc Natl Acad Sci USA 106(37):15921–15926. doi:10.1073/pnas.0904089106

    Article  PubMed  CAS  Google Scholar 

  • Pikovsky A, Rosenblum M, Kurths J (2001) Synchronization—a universal concept in non-linear sciences. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Plenz D, Thiagarajan TC (2007) The organizing principles of neural avalanches: cell assemblies in the cortex. Trends Neurosci 30:101–110

    Article  PubMed  CAS  Google Scholar 

  • Pockett S, Bold GEJ, Freeman WJ (2009) EEG synchrony during a perceptual-cognitive task: widespread phase synchrony at all frequencies. Clin Neurophysiol 120:695–708. doi:10.1016/j.clinph.2008.12.044

    Article  PubMed  Google Scholar 

  • Pribram KH (1991) Brain and perception: holonomy and structure in figural processing. Lawrence Erlbaum Associates, Hillsdale

    Google Scholar 

  • Quian Quiroga R (2012) Concept cells: The building blocks of declarative memory functions. Nat Rev Neurosci 13:587–597. doi: 10.1038/nrn3251

  • Ratliff F (1965) Mach bands: quantitative studies on neural networks in the retina. Oxford University Press, Oxford

    Google Scholar 

  • Raichle M, Mintun M (2006) Brain work and brain imaging. Annu Rev Neurosci 29:449–476

    Article  PubMed  CAS  Google Scholar 

  • Rall W, Shepherd GM, Reese TS, Brightman MW (1966) Dendrodendritic synapses in the central nervous system. Exp Neurol 14:44–56

    Article  PubMed  CAS  Google Scholar 

  • Reichardt W (1962) Nervous integration in the facet eye. Biophys J 2:121–143

    Article  PubMed  CAS  Google Scholar 

  • Rice SO (1950) Mathematical Analysis of Random Noise - and Appendixes – Technical Publications Monograph B-1589. NY: Bell Telephone Labs Inc.

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu Rev Neurosci 27:169–192

    Article  PubMed  CAS  Google Scholar 

  • Sammon JW (1969) A nonlinear mapping for data structure analysis. IEEE Trans Comput C-18:401–409

    Article  Google Scholar 

  • Schroeder M (1991) Fractals, chaos, power laws. Minutes from an infinite paradise. WH Freeman, San Francisco

    Google Scholar 

  • Sherrington CS (1940) Man on his nature. Oxford University Press, Oxford, pp 177–178

    Google Scholar 

  • Siklós L, Rickmann M, Joó F, Freeman WJ, Wolff JR (1995) Chloride is preferentially accumulated in a subpopulation of dendrites and periglomerular cells of the main olfactory bulb in adult rats. Neuroscience 64:165–172

    Article  PubMed  Google Scholar 

  • Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18:555–586

    Article  PubMed  CAS  Google Scholar 

  • Skarda CA, Freeman WJ (1987) How brains make chaos in order to make sense of the world. Behav Brain Sci 10:161–195

    Article  Google Scholar 

  • Traub RD, Whittington MA, Stanford IM, Jefferys JGR (1996) A mechanism for generation of long-range synchronous fast oscillations in the cortex. Nature 383:421–424

    Article  Google Scholar 

  • Tsuda I (2001) Toward an interpretation of dynamics neural activity in terms of chaotic dynamical systems. Behav Brain Sci 24:793–847

    Article  PubMed  CAS  Google Scholar 

  • Vitiello G (2001) My double unveiled. John Benjamins, Amsterdam

    Google Scholar 

  • Wang X-J (2001) Synaptic reverberation underlying mnemonic persistent activity. Trends Neurosci 24(8):455–463. doi:10.1016/S0166-2236(00)01868-3

    Article  PubMed  CAS  Google Scholar 

  • Whittington MA, Faulkner HJ, Doheny HC, Traub RD (2000) Neuronal fast oscillations as a target site for psychoactive drugs. Pharmacol Ther 86:171–190

    Article  PubMed  CAS  Google Scholar 

  • Wright JJ, Liley DTJ (1996) Dynamics of the brain at global and microscopic scales: neural networks and the EEG. Behav Brain Sci 19:285–295

    Article  Google Scholar 

  • Wright JJ, Rennie CJ, Lees GJ, Robinson PA, Bourke PD, Chapman CL, Gordon E, Rowe DL (2003) Simulated electrocortical activity at microscopic, mesoscopic, and global scales. Neuropsychopharmacology 28:S80–S93

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Freeman, W.J., Quiroga, R.Q. (2013). Basic Concepts for Spatial Analysis. In: Imaging Brain Function With EEG. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4984-3_6

Download citation

Publish with us

Policies and ethics