Skip to main content

Umbilical-Type Surfaces in SpaceTime

  • Conference paper
  • First Online:
Recent Trends in Lorentzian Geometry

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 26))

Abstract

A space-like surface S immersed in a 4-dimensional Lorentzian manifold will be said to be umbilical along a direction N normal to S if the second fundamental form along N is proportional to the first fundamental form of S. In particular, S is pseudo-umbilical if it is umbilical along the mean curvature vector field H and (totally) umbilical if it is umbilical along all possible normal directions. The possibility that the surface be umbilical along the unique normal direction orthogonal to H—“ortho-umbilical” surface—is also considered. I prove that the necessary and sufficient condition for S to be umbilical along a normal direction is that two independent Weingarten operators (and, a fortiori, all of them) commute, or equivalently that the shape tensor be diagonalizable on S. The umbilical direction is then uniquely determined. This can be seen to be equivalent to a condition relating the normal curvature and the appropriate part of the Riemann tensor of the space time. In particular, for conformally flat space-times (including Lorentz space forms) the necessary and sufficient condition is that the normal curvature vanishes. Some further consequences are analyzed, and the extension of the main results to arbitrary signatures and higher dimensions is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There is a long-standing tradition among mathematicians who study submanifolds to use the opposite convention, that is, ∇ for the inherited connection and \(\bar{\nabla }\) for the background connection. I stress this point here in the hope that this will avoid any possible confusion.

  2. 2.

    If one chooses, say, σ N to be the positive root of \(\sqrt{{\sigma }_{N }^{2}}\) then it may fail to be differentiable at points where the two eigenvalues of A N coincide, that is, at points where σ N = 0. Of course, one can always set an “initial” condition for G | x at any point on xS and then the differentiable solution for the vector field G is fixed. Nevertheless, this initial condition is arbitrary.

  3. 3.

    Notice the sign convention, which may not coincide with the preferred one for everybody.

  4. 4.

    Up to proportionality factors, this K coincides with K N if N is non-null. If N is null, then N can be chosen to be either or k, and K is − K k or \(-{K}_{\mathcal{l}}\), respectively.

References

  1. Alías, L.J., Estudillo, F.J.M., Romero, A.: Spacelike submanifolds with parallel mean curvature in pseudo-Riemannian space forms. Tsukuba J. Math. 21, 169–179 (1997)

    MathSciNet  MATH  Google Scholar 

  2. Andersson, L., Metzger, J.: The area of horizons and the trapped region. Commun. Math. Phys. 290, 941–972 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andersson, L., Mars, M., Simon, W.: Local existence of dynamical and trapping horizons. Phys. Rev. Lett. 95, 111102 (2005)

    Article  Google Scholar 

  4. Andersson, L., Mars, M., Simon, W.: Stability of marginally outer trapped surfaces and existence of marginally outer trapped tubes. Adv. Theor. Math. Phys. 12, 853–888 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Beem, J.K., Ehrlich, P.E., Easley, K.L.: Global Lorentzian geometry. In: Pure and Applied Math. vol. 202. Marcel Dekker, New York (1996)

    Google Scholar 

  6. Bektaş, M., Ergüt, M.: Compact space-like submanifolds with parallel mean curvature vector of a pseudo-Riemannian space. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 38, 17–24 (1999)

    MathSciNet  MATH  Google Scholar 

  7. Bray, H., Hayward, S., Mars, M., Simon, W.: Generalized inverse mean curvature flows in spacetime. Commun. Math. Phys. 272, 119–138 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cabrerizo, J.L., Fernández, M., Gómez, J.S.: Isotropy and marginally trapped surfaces in a spacetime. Class. Quantum Grav. 27, 135005 (2010)

    Article  Google Scholar 

  9. Cao, Xi-F.: Pseudo-umbilical spacelike submanifolds in the indefinite space form. Balkan J. Geom. Appl. 6, 117–121 (2001)

    Google Scholar 

  10. Carrasco, A., Mars, M.: Stability of marginally outer trapped surfaces and symmetries. Class. Quantum Grav. 26, 175002 (2009)

    Article  MathSciNet  Google Scholar 

  11. Chen, B.Y.: Geometry of Submanifolds. Marcel Dekker, New York (1973)

    MATH  Google Scholar 

  12. Chen, B.Y.: Pseudo-Riemannian Geometries, δ-Invariants, and Applications. World Scientific, Singapore (2011)

    Book  Google Scholar 

  13. Chen, B.Y., Yano, K.: Submanifolds umbilical with respect to a non-parallel normal subbundle. Kōdai Math. Sem. Rep. 25, 289–296 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, B.Y., Yano, K.: Umbilical submanifolds with respect to a nonparallel normal direction. J. Diff. Geom. 8, 589–597 (1973)

    MathSciNet  MATH  Google Scholar 

  15. Cvetic, M., Gibbons, G.W., Pope, C.N.: More about Birkhoff’s Invariant and Thorne’s Hoop Conjecture for Horizons. Class. Quantum Grav. 28, 195001 (2011)

    Article  MathSciNet  Google Scholar 

  16. Decu, S., Haesen, S., Verstraelen, L.: Optimal inequalities characterising quasi-umbilical submanifolds. J. Inequal. Pure Appl. Math. 9(3), 79 (2008)

    MathSciNet  Google Scholar 

  17. Dursun, U.: On Chen immersions into Lorentzian space forms with nonflat normal space. Publ. Math. Debrecen 57, 375–387 (2000)

    MathSciNet  MATH  Google Scholar 

  18. Eisenhart, L.P., Riemannian Geometry. Princeton University Press, Princeton (1949)

    MATH  Google Scholar 

  19. Galloway, G.J., Senovilla, J.M.M.: Singularity theorems based on trapped submanifolds of arbitrary co-dimension. Class. Quantum Grav. 27, 152002 (2010)

    Article  MathSciNet  Google Scholar 

  20. Gibbons, G.W.: The isoperimetric and Bogomolny inequalities for black holes. In: Willmore, Y., Hitchin, H. (eds.) Global Riemannian Geometry, pp. 194–202. Ellis Horwood, Chichester (1984)

    Google Scholar 

  21. Gibbons, G.W.: Collapsing shells and the isoperimetric inequality for black holes. Class. Quantum Grav. 14, 2905–2915 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Haesen, S., Kowalczyk, D., Verstraelen, L.: On the extrinsic principal directions of Riemannian submanifolds. Note Mat. 29, 41–53 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Hawking, S.W., Ellis, G.F.R.: The large scale structure of space time. Cambridge Univ. Press, Cambridge (1973)

    Book  MATH  Google Scholar 

  24. Hawking, S.W., Penrose, R.: The singularities of gravitational collapse and cosmology. Proc. Roy. Soc. London A 314, 529–548 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  25. Houh, C.S.: On Chen surfaces in a Minkowski space time. J. Geom. 32, 40–50 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hu, Y.J., Ji, Y.Q., Niu, D.Q.: Space-like pseudo-umbilical submanifolds with parallel mean curvature in de Sitter spaces. J. Ningxia Univ. Nat. Sci. Ed. 26, 121–124 (2005)

    MathSciNet  MATH  Google Scholar 

  27. Kim, Y.H., Kim, Y.W.: Pseudo-umbilical surfaces in a pseudo-Riemannian sphere or a pseudo-hyperbolic space. J. Korean Math. Soc. 32, 151–160 (1995)

    MathSciNet  MATH  Google Scholar 

  28. Khuri, M.: A note on the non-existence of generalized apparent horizons in Minkowski space. Class. Quantum Grav. 26, 078001 (2009)

    Article  MathSciNet  Google Scholar 

  29. Kriele, M.: Spacetime. Springer, Berlin (1999)

    MATH  Google Scholar 

  30. Mars, M.: Present status of the Penrose inequality. Class. Quantum Grav. 26, 193001 (2009)

    Article  MathSciNet  Google Scholar 

  31. Mars, M., Senovilla, J.M.M.: Trapped surfaces and symmetries. Class. Quantum Grav. 20, L293–L300 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W.H. Freeman and Co., New York (1973)

    Google Scholar 

  33. O’Neill, B.: Semi-Riemannian Geometry: With Applications to Relativity. Academic, New York (1983)

    MATH  Google Scholar 

  34. Ôtsuki, T.: Pseudo-umbilical submanifolds with M-index ≤ 1 in Euclidean spaces. Kōdai Math. Sem. Rep. 20, 296–304 (1968)

    Article  MATH  Google Scholar 

  35. Penrose, R.: Gravitational collapse and space time singularities. Phys. Rev. Lett. 14, 57–59 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  36. Penrose, R.: Techniques of Differential Topology in Relativity, Regional Conference Series in Applied Math. vol. 7. SIAM, Philadelphia (1972)

    Google Scholar 

  37. Penrose, R.: Naked singularities. Ann. N.Y. Acad. Sci. 224, 125 (1973)

    Article  Google Scholar 

  38. Roşca, R.: Sur les variétés lorentziennes 2-dimensionnelles immergées pseudo-ombilicalement dans une variét relativiste. C. R. Acad. Sci. Paris Sr. A-B 274, A561–A564 (1972)

    Google Scholar 

  39. Roşca, R.: Varietatile bidimensionale dei spatiul Minkowski pentru care curburite lui Otsuki sint nule. St. cerc. Mat. 24, 133–141 (1972)

    MATH  Google Scholar 

  40. Roşca, R.: Sous-varietés pseudo-minimales et minimales d’une varieté pseudo-Riemannienne structure per une connexion spin-euclidienn. C. R. Ac. Sci. Paris (Serie A-B) 290, 331–333 (1980)

    Google Scholar 

  41. Rouxel, B.: A-submanifolds in Euclidean space. Kōdai Math. J. 4, 181–188 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  42. Rouxel, B.: Sur les A-surfaces d’un espace-temps de Minkowski M 4. Riv. Mat. Univ. Parma 8, 309–315 (1982)

    MathSciNet  MATH  Google Scholar 

  43. Schouten, J.A.: Ricci Calculus. Springer, Berlin (1954)

    MATH  Google Scholar 

  44. Senovilla, J.M.M.: Singularity theorems and their consequences. Gen. Rel. Grav. 30, 701–848 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  45. Senovilla, J.M.M.: Classification of spacelike surfaces in spacetime. Class. Quantum Grav. 24, 3091–3124 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  46. Senovilla, J.M.M.: A reformulation of the hoop conjecture. Europhys. Lett. 81, 20004 (2008)

    Article  MathSciNet  Google Scholar 

  47. Senovilla, J.M.M.: Trapped surfaces. Int. J. Mod. Phys. D 20, 2139–2168 (2011)

    Article  MathSciNet  Google Scholar 

  48. Song, W.D., Pan, X.Y.: Pseudo-umbilical spacelike submanifolds in de Sitter spaces. J. Math. Res. Exposition 26, 825–830 (2006)

    MathSciNet  MATH  Google Scholar 

  49. Sun, H.: On spacelike submanifolds of a pseudo-Riemannian space form. Note Mat. 15, 215–224(1995)

    MathSciNet  MATH  Google Scholar 

  50. Stephani, H., Kramer, D., MacCallum, M.A.H., Hoenselaers, C., Herlt, E.: Exact Solutions to Einstein’s Field Equations, 2nd edn. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  51. Wald, R.M.: General Relativity. The University of Chicago Press, Chicago (1984)

    MATH  Google Scholar 

  52. Yano, K., Ishihara, S.: Pseudo-umbilical submanifolds of co-dimension 2. Kōdai. Math. Sem. Rep. 21, 365–382 (1969)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

I thank Miguel Sánchez and the referees for some comments. Supported by grants FIS2010-15492 (MICINN), UFI 11/55 and GIU06/37 (UPV/EHU) and P09-FQM-4496 (J. Andalucía—FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. M. Senovilla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this paper

Cite this paper

Senovilla, J.M.M. (2012). Umbilical-Type Surfaces in SpaceTime. In: Sánchez, M., Ortega, M., Romero, A. (eds) Recent Trends in Lorentzian Geometry. Springer Proceedings in Mathematics & Statistics, vol 26. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4897-6_3

Download citation

Publish with us

Policies and ethics