Skip to main content

The Heat Equation, Semigroups, and Brownian Motion

  • Chapter
  • First Online:
Partial Differential Equations

Part of the book series: Graduate Texts in Mathematics ((GTM,volume 214))

  • 149k Accesses

Abstract

We first want to reinterpret some of our results about the heat equation. For that purpose, we again consider the heat kernel of \({\mathbb{R}}^{d}\), which we now denote by p(x, y, t),

$$p(x,y,t) = \frac{1} {{(4\pi t)}^{\frac{d} {2} }}{ \mathrm{e}}^{-\frac{{\left \vert x-y\right \vert }^{2}} {4t} }.$$
(8.1.1)

For a continuous and bounded function \(f : {\mathbb{R}}^{d} \rightarrow \mathbb{R}\), by Lemma 5.2.1,

$$u(x,t) =\int\limits_{{\mathbb{R}}^{d}}p(x,y,t)f(y)\mathrm{d}y$$
(8.1.2)

then solves the heat equation

$$\Delta u(x,t) - {u}_{t}(x,t) = 0.$$
(8.1.3)

For t > 0, and letting C b 0 denote the class of bounded continuous functions, we define the operator

$${P}_{t} : {C}_{b}^{0}({\mathbb{R}}^{d}) \rightarrow {C}_{ b}^{0}({\mathbb{R}}^{d})$$

via

$$({P}_{t}f)(x) = u(x,t),$$
(8.1.4)

with u from (8.1.2). By Lemma 5.2.2

$${P}_{0}f :{=\lim }_{t\rightarrow 0}{P}_{t}f = f;$$
(8.1.5)

i.e., P 0 is the identity operator. The crucial point is that we have for any \({t}_{1},{t}_{2} \geq 0\),

$${P}_{{t}_{1}+{t}_{2}} = {P}_{{t}_{2}} \circ {P}_{{t}_{1}}.$$
(8.1.6)

Written out, this means that for all \(f \in {C}_{b}^{0}({\mathbb{R}}^{d})\),

$$\begin{array}{rcl} & & \int\limits_{{\mathbb{R}}^{d}} \frac{1} {{\left (4\pi \left ({t}_{1} + {t}_{2}\right )\right )}^{\frac{d} {2} }}{ \mathrm{e}}^{- \frac{{\left \vert x-y\right \vert }^{2}} {4({t}_{1}+{t}_{2})} }f(y)\,\mathrm{d}y \\ & & \quad =\int\limits_{{\mathbb{R}}^{d}} \frac{1} {{(4\pi {t}_{2})}^{\frac{d} {2} }}{ \mathrm{e}}^{-\frac{{\left \vert x-z\right \vert }^{2}} {4{t}_{2}} }\int\limits_{{\mathbb{R}}^{d}} \frac{1} {{(4\pi {t}_{1})}^{\frac{d} {2} }}{ \mathrm{e}}^{-\frac{{\left \vert z-y\right \vert }^{2}} {4{t}_{1}} }f(y)\,\mathrm{d}y\,\mathrm{d}z.\end{array}$$
(8.1.7)

This follows from the formula

$$\frac{1} {{\left (4\pi \left ({t}_{1} + {t}_{2}\right )\right )}^{\frac{d} {2} }}{ \mathrm{e}}^{- \frac{{\left \vert x-y\right \vert }^{2}} {4({t}_{1}+{t}_{2})} } = \frac{1} {{(4\pi {t}_{2})}^{\frac{d} {2} }} \frac{1} {{(4\pi {t}_{1})}^{\frac{d} {2} }} \int\limits_{{\mathbb{R}}^{d}}{\mathrm{e}}^{-\frac{{\left \vert x-z\right \vert }^{2}} {4{t}_{2}} }{\mathrm{e}}^{-\frac{{\left \vert z-y\right \vert }^{2}} {4{t}_{1}} }\,\mathrm{d}z,$$
(8.1.8)

which can be verified by direct computation (cf. also Exercise 5.3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahlfors, L.: Complex Analysis. McGraw Hill, New York (1966)

    MATH  Google Scholar 

  2. Bers, L., Schechter, M.: Elliptic equations. In: Bers, L., John, F., Schechter, M. (eds.) Partial Differential Equations, pp. 131–299. Interscience, New York (1964)

    Google Scholar 

  3. Braess, D.: Finite Elemente. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  4. Chavel, I.: Eigenvalues in Riemannian Geometry. Academic, Orlando (1984)

    MATH  Google Scholar 

  5. Courant, R., Hilbert, D.: Methoden der Mathematischen Physik, vol. I and II, reprinted 1968, Springer. Methods of mathematical physics. Wiley-Interscience, vol. I, 1953, Vol. II, 1962, New York (the German and English versions do not coincide, but both are highly recommended)

    Google Scholar 

  6. Crandall, M., Lions, P.L.: Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 277, 1–42 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Evans, L.C.: Partial differential equations. Graduate Studies in Mathematics, vol. 19, AMS (2010)

    Google Scholar 

  8. Frehse, J.: A discontinuous solution to a mildly nonlinear elliptic system. Math. Zeitschr. 134, 229–230 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  9. Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice Hall, Englewood Cliffs (1964)

    MATH  Google Scholar 

  10. Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton University Press, Princeton (1983)

    MATH  Google Scholar 

  11. Giaquinta, M.: Introduction to Regularity Theory for Nonlinear Elliptic Systems. Birkhäuser, Basel (1993)

    MATH  Google Scholar 

  12. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  13. Hildebrandt, S., Kaul, H., Widman, K.O.: An existence theorem for harmonic mappings of Riemannian manifolds. Acta Math. 138, 1–16 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  14. John, F.: Partial Differential Equations. Springer, New York (1982)

    Book  MATH  Google Scholar 

  15. Jost, J.: Generalized Dirichlet forms and harmonic maps. Calc. Var. Partial Differ. Equ. 5, 1–19 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jost, J.: Nonpositive Curvature: Geometric and Analytic Aspects. Birkhäuser, Basel (1997)

    Book  MATH  Google Scholar 

  17. Jost, J.: Dynamical Systems. Springer, Berlin (2005)

    MATH  Google Scholar 

  18. Jost, J.: Postmodern Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  19. Jost, J.: Postmodern Analysis. Springer, Berlin (2005)

    MATH  Google Scholar 

  20. Jost, J.: Riemannian Geometry and Geometric Analysis. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  21. Jost, J., Li-Jost, X.: Calculus of Variations. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  22. Kolmogoroff, A., Petrovsky, I., Piscounoff, N.: Étude de l’ équation de la diffusion avec croissance de la quantité de la matière et son application à un problème biologique. Moscow Univ. Bull. Math.1, 1–25 (1937)

    MATH  Google Scholar 

  23. Ladyzhenskya, O.A., Solonnikov, V.A., Ural’tseva, N.N.: Linear and quasilinear equations of parabolic type. Amer. Math. Soc. (1968)

    Google Scholar 

  24. Ladyzhenskya, O.A., Ural’tseva, N.N.: Linear and Quasilinear Elliptic Equations. Nauka, Moskow, 1964 (in Russian); English translation: Academic Press, New York, 1968, 2nd Russian edition 1973

    Google Scholar 

  25. Lasota, A., Mackey, M.: Chaos, Fractals, and Noise. Springer, New York (1994)

    Book  MATH  Google Scholar 

  26. Lin, F.H.: Analysis on singular spaces. In: Li, T.T. (ed.) Geometry, Analysis and Mathematical Physics, in Honor of Prof. Chaohao Gu, 114–126, World Scientific (1997)

    Google Scholar 

  27. Moser, J.: On Harnack’s theorem for elliptic differential equations. Comm. Pure Appl. Math. 14, 577–591 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  28. Murray, J.: Mathematical Biology. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  29. Smoller, J.: Shock Waves and Reaction-Diffusion Equations. Springer, New York (1983)

    Book  MATH  Google Scholar 

  30. Strang, G., Fix, G.: An Analysis of the Finite Element Method. Prentice Hall, Englewood Cliffs (1973)

    MATH  Google Scholar 

  31. Taylor, M.: Partial Differential Equations, vol. I–III. Springer, Berlin (1996)

    Google Scholar 

  32. Yosida, K.: Functional Analysis. Springer, Berlin (1978)

    Book  MATH  Google Scholar 

  33. Zeidler, E.: Nonlinear Functional Analysis and Its Applications, vol. I–IV. Springer, New York (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jost, J. (2013). The Heat Equation, Semigroups, and Brownian Motion. In: Partial Differential Equations. Graduate Texts in Mathematics, vol 214. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4809-9_8

Download citation

Publish with us

Policies and ethics