Skip to main content

Part of the book series: Nebraska Symposium on Motivation ((NSM))

Abstract

This paper seeks out to reduce the role of the homunculus, the ‘little man in the head’ that is still prominent in most psychological theories regarding the control our behaviour. We argue that once engaged in a task (which is a volitional act), visual selection run off more or less in an automatic fashion. We argue that the salience map that drives automatic selection is not only determined by raw physical salience of the objects in the environment but also by the way these objects appear to the person. We provide evidence that priming (feature priming, priming by working memory and reward priming) sharpens the cortical representation of these objects such that these objects appear to be more salient above and beyond their physical salience. We demonstrate that this type of priming is not under volitional control: it occurs even if observers try to volitionally prepare for something else. In other words, looking at red prepares our brain for things that are red even if we volitionally try to prepare for green.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ansorge, U., Horstmann, G., & Scharlau, I. (2010). Top-down contingent attentional capture during feed-forward visual processing. Acta Psychologica, 135(2), 123–126.

    Article  PubMed  Google Scholar 

  • Awh, E., Armstrong, K. M., & Moore, T. (2006). Visual and oculomotor selection: links, causes and implications for spatial attention. Trends in Cognitive Sciences, 10(3), 124–130.

    Article  PubMed  Google Scholar 

  • Bacon, W. F., & Egeth, H. E. (1994). Overriding stimulus-driven attentional capture. Perception & Psychophysics, 55, 485–496.

    Article  Google Scholar 

  • Baldauf, D., & Deubel, H. (2008). Properties of attentional selection during the preparation of sequential saccades. Experimental Brain Research, 184(3), 411–425.

    Article  Google Scholar 

  • Bargh, J. (1992). The ecology of automaticity: Toward establishing the conditions needed to produce automatic processing effects. American Journal of Psychology, 105(2), 181–199.

    Article  PubMed  Google Scholar 

  • Bargh, J. A., & Chartrand, T. L. (1999). The unbearable automaticity of being. American Psychologist, 54(7), 462–479.

    Article  Google Scholar 

  • Belopolsky, A., Kramer, A. F., & Theeuwes, J. (2008). The role of awareness in processing of oculomotor capture: evidence from event-related potentials. Journal of Cognitive Neuroscience, 20(12), 2285–2297.

    Article  PubMed  Google Scholar 

  • Belopolsky, A. V., Schreij, D., & Theeuwes, J. (2010). What is top-down about contingent capture? Attention Perception & Psychophysics, 72(2), 326–341.

    Article  Google Scholar 

  • Belopolsky, A. V., & Theeuwes, J. (2009). When are attention and saccade preparation dissociated? Psychological Science, 20(11), 1340–1347.

    Article  PubMed  Google Scholar 

  • Belopolsky, A. V., & Theeuwes, J. (2010). No capture outside the attentional window. Vision Research, 50(23), 2543–2550.

    Article  PubMed  Google Scholar 

  • Belopolsky, A. V., Zwaan, L., Theeuwes, J., & Kramer, A. F. (2007). The size of an attentional window modulates attentional capture by color singletons. Psychonomic Bulletin & Review, 14(5), 934–938.

    Article  Google Scholar 

  • Berridge, K. C., & Robinson, T. E. (1998). What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Research Review, 28(3), 309–369.

    Article  Google Scholar 

  • Besner, D., & Stolz, J. A. (1999). Unconsciously controlled processing: The Stroop effect reconsidered. Psychonomic Bulletin & Review, 6(3), 449–455.

    Article  Google Scholar 

  • Bichot, N. P., & Schall, J. D. (2002). Priming in macaque frontal cortex during popout visual search: Feature-based facilitation and location-based inhibition of return. Journal of Neuroscience, 22, 4675–4685.

    PubMed  Google Scholar 

  • Born, S., Kerzel, D., & Theeuwes, J. (2011). Evidence for a dissociation between the control of oculomotor capture and disengagement. Experimental Brain Research, 208, 621–631.

    Article  Google Scholar 

  • Broadbent, D. E. (1958). Perception and communication. Oxford: Pergamon.

    Book  Google Scholar 

  • Burnham, B. R. (2007). Displaywide visual features associated with a search display’s appearance can mediate attentional capture. Psychonomic Bulletin & Review, 14(3), 392–422.

    Article  Google Scholar 

  • Burnham, B. R., & Neely, J. H. (2007). Involuntary capture of visual-spatial attention occurs for intersections, both real and “imagined”. Psychonomic Bulletin & Review, 14(4), 735–741.

    Article  Google Scholar 

  • Carrasco, M., Ling, S., & Read, S. (2004). Attention alters appearance. Nature Neuroscience, 7(3), 308–313.

    Article  PubMed  Google Scholar 

  • Cavanaugh, J., & Wurtz, R. H. (2004). Subcortical modulation of attention counters change blindness. Journal of Neuroscience, 24(50), 11236–11243.

    Article  PubMed  Google Scholar 

  • Corbetta, M., Kincade, J. M., & Shulman, G. L. (2002). Neural systems for visual orienting and their relationships to spatial working memory. Journal of Cognitive Neuroscience, 14(3), 508–523.

    Article  PubMed  Google Scholar 

  • Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Neuroscience, 3, 201–215.

    Google Scholar 

  • Craighero, L., Nascimben, M., & Fadiga, L. (2004). Eye position affects orienting of visuospatial attention. Current Biology, 14(4), 331–333.

    PubMed  Google Scholar 

  • Dalton, P., & Lavie, N. (2007). Overriding auditory attentional capture. Perception & Psychophysics, 69(2), 162–171.

    Article  Google Scholar 

  • Desimone R. (1996). Neural mechanisms for visual memory and their role in attention. Proceedings of the National Academy of Sciences USA, 93, 13494.

    Google Scholar 

  • Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222.

    Article  PubMed  Google Scholar 

  • Deubel, H., & Schneider, W. X. (1996). Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vision Research, 36(12), 1827–1837.

    Article  PubMed  Google Scholar 

  • Downing, P. E. (2000). Interactions between visual working memory and selective attention. Psychological Science, 11(6), 467–473.

    Article  PubMed  Google Scholar 

  • Duncan, J. (1985). Visual search and visual attention. In M. I. Posner, & O. S. M. Marin (Eds.), Attention and performance (Vol. XI, pp. 85–106). Hillsdale: Erlbaum.

    Google Scholar 

  • Egeth, H. E., Leonard, C. J., & Leber, A. B. (2010). Why salience is not enough: Reflections on top-down selection in vision. Acta Psychologica, 135(2), 130–132.

    Article  PubMed  Google Scholar 

  • Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18(4), 1030–1044.

    Article  PubMed  Google Scholar 

  • Folk, C. L., Remington, R. W., & Wright, J. H. (1994). The structure of attentional control: Contingent attentional capture by apparent motion, abrupt onset, and color. Journal of Experimental Psychology: Human Perception and Performance, 20, 317–329.

    Article  PubMed  Google Scholar 

  • Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., & Donchin, E. (1993). A neural system for error-detection and compensation. Psychological Science, 4(6), 385–390.

    Article  Google Scholar 

  • Geyer, T., Muller, H. J., & Krummenacher, J. (2008). Expectancies modulate attentional capture by salient color singletons. Vision Research, 48(11), 1315–1326.

    Article  PubMed  Google Scholar 

  • Godijn, R., & Theeuwes, J. (2002a). Oculomotor capture and inhibition of return: Evidence for an oculomotor suppression account of IOR. Psychological Research: Psychologische Forschung, 66(4), 234–246.

    Article  Google Scholar 

  • Godijn, R., & Theeuwes, J. (2002b). Programming of endogenous and exogenous saccades: Evidence for a competitive integration model. Journal of Experimental Psychology: Human Perception and Performance, 28(5), 1039–1054.

    Article  Google Scholar 

  • Godijn, R., & Theeuwes, J. (2003). Parallel allocation of attention prior to the execution of saccade sequences. Journal of Experimental Psychology: Human Perception and Performance, 29(5), 882–896.

    Article  PubMed  Google Scholar 

  • Graf, P., & Schacter, D. L. (1985). Implicit and explicit memory for new associations in normal and amnesic subjects. Journal of Experimental Psychology: Learning Memory and Cognition, 11(3), 501–518.

    Article  Google Scholar 

  • Hernandez, M., Costa, A., & Humphreys, G. W. (2010). The size of an attentional window affects working memory guidance. Attention Perception & Psychophysics, 72(4), 963–972.

    Article  Google Scholar 

  • Hickey, C., Chelazzi, L., & Theeuwes, J. (2010a). Reward changes salience in human vision via the anterior cingulate. Journal of Neuroscience, 30(33), 11096–11103.

    Article  Google Scholar 

  • Hickey, C., McDonald, J. J., & Theeuwes, J. (2006). Electrophysiological evidence of the capture of visual attention. Journal of Cognitive Neuroscience, 18(4), 604–613.

    Article  PubMed  Google Scholar 

  • Hickey, C., van Zoest, W., & Theeuwes, J. (2010). The time course of exogenous and endogenous control of covert attention. Experimental Brain Research, 201(4), 789–796.

    Article  Google Scholar 

  • Hoffman, J. E. (1986). Spatial attention in vision: Evidence for early selection. Psychological Research, 48, 221–229.

    Article  PubMed  Google Scholar 

  • Holroyd, C. B., & Coles, M. G. H. (2002). The neural basis. of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109(4), 679–709.

    Article  PubMed  Google Scholar 

  • Hopf, J.-M., Luck, S. J., Girelli, M., Hagner, T., Mangun, G. R., Scheich, H., et al. (2000). Neural sources of focused attention in visual search. Cerebral Cortex, 10, 1233–1241.

    Article  PubMed  Google Scholar 

  • Houtkamp, R., & Roelfsema, P. R. (2006). The effect of items in working memory on the deployment of attention and the eyes during visual search. Journal of Experimental Psychology: Human Perception and Performance, 32(2), 423–442.

    Article  PubMed  Google Scholar 

  • Hunt, A. R., & Kingstone, A. (2003). Covert and overt voluntary attention: linked or independent? Cognitive Brain Research, 18(1), 102–105.

    Article  PubMed  Google Scholar 

  • Hunt, A. R., von Muhlenen, A., & Kingstone, A. (2007). The time course of attentional. and oculomotor capture reveals a common cause. Journal of Experimental Psychology: Human Perception and Performance, 33(2), 271–284.

    Article  PubMed  Google Scholar 

  • Ikeda, T., & Hikosaka, O. (2003). Reward-dependent gain and bias of visual responses in primate superior colliculus. Neuron, 39(4), 693–700.

    Article  PubMed  Google Scholar 

  • Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nature Reviews Neuroscience, 2(3), 194–203.

    Article  PubMed  Google Scholar 

  • James, W. (1890). The principles of psychology. London: MacMillan.

    Book  Google Scholar 

  • Jonides, J., & Yantis, S. (1988). uniqueness of abrupt visual onset in capturing attention. Perception & Psychophysics, 43, 346–354.

    Article  Google Scholar 

  • Just, M. A., & Carpenter, P. A. (1980). A theory of reading—from eye fixations to comprehension. Psychological Review, 87(4), 329–354.

    Article  PubMed  Google Scholar 

  • Kim, M. S., & Cave, K. R. (1999). Top-down and bottom-up attentional control: On the nature of interference from a salient distractor. Perception & Psychophysics, 61, 1009–1023.

    Article  Google Scholar 

  • Kiss, M., Driver, J., & Eimer, M. (2009). Reward priority of visual target singletons modulates event-related potential signatures of attentional selection. Psychological Science, 20(2), 245–251.

    Article  PubMed  Google Scholar 

  • Klein, R. (1980). Does oculomotor readiness mediate cognitive control of visual attention? In R. S. Nickerson (Ed.), Attention and performance VIII. Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  • Klein, R. (2000). Inhibition of Return. Trends in Cognitive Sciences, 4(4), 138–147.

    Article  PubMed  Google Scholar 

  • Klein, R. M., & Pontefract, A. (1994). Does oculomotor readiness mediate cognitive control of visual attention? In: C. Umilta & M. Moscovitch (Eds.), Attention & performance XV: Conscious and unconscious processing (pp. 323–350). Cambridge: MIT Press.

    Google Scholar 

  • Koch, C., & Ullman, S. (1985). Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiology, 4, 219–227.

    PubMed  Google Scholar 

  • Kowler, E., Anderson, E., Dosher, B., & Blaser, E. (1995). The role of attention in the programming of saccades. Vision Research, 35(13), 1897–1916.

    Article  PubMed  Google Scholar 

  • Kramer, A. F., & Hahn, S. (1995). Splitting the beam: Distribution of attention over noncontiguous regions of the visual field. Psychological Science, 6, 381–386.

    Article  Google Scholar 

  • Kristjansson, A. (2010). Priming in visual search: A spanner in the works for Theeuwes’s bottom-up attention sweeps? Acta Psychologica, 135(2), 114–116.

    Article  PubMed  Google Scholar 

  • Kristjánsson, Á., Wang, D., & Nakayama, K. (2002). The role of priming in conjunctive visual search. Cognition, 85, 37–52.

    Article  PubMed  Google Scholar 

  • Kumada, T. (1999). Limitations in attending to a feature value for overriding stimulus-driven interference. Perception & Psychophysics, 61, 61–79.

    Article  Google Scholar 

  • Leber, A. B., & Egeth, H. E. (2006). It’s under control: Top-down search strategies can override attentional capture. Psychonomic Bulletin & Review, 13(1), 132–138.

    Article  Google Scholar 

  • Li, Z. (2002). A saliency map in primary visual cortex. Trends in Cognitive Sciences, 6(1), 9–16.

    Article  PubMed  Google Scholar 

  • Libet, B., Gleason, C. A., Wright, E. W., & Pearl, D. K. (1983). Time of conscious intention to act in relation to onset of cerebral-activity (readiness-potential)—the unconscious initiation of a freely voluntary act. Brain, 106(Sep.), 623–642.

    Article  PubMed  Google Scholar 

  • Logan, G. D. (1985). Executive control of thought and action. Acta Psychologica, 60, 193–210.

    Article  Google Scholar 

  • Lu, S. N., & Han, S. H. (2009). Attentional capture is contingent on the interaction between task demand and stimulus salience. Attention Perception & Psychophysics, 71(5), 1015–1026.

    Article  Google Scholar 

  • Luck, S. J., & Hillyard, S. A. (1994). electrophysiological correlates of feature analysis during visual-search. Psychophysiology, 31(3), 291–308.

    Article  PubMed  Google Scholar 

  • Ludwig, C. J. H., & Gilchrist, I. D. (2002). Stimulus-driven and goal-driven control over visual selection. Journal of Experimental Psychology: Human Perception and Performance, 28(4), 902–912.

    Article  PubMed  Google Scholar 

  • Macleod, C. M. (1991). Half a century of research on the stroop effect—an integrative review. Psychological Bulletin, 109(2), 163–203.

    Article  PubMed  Google Scholar 

  • Maljkovic, V., & Nakayama, K. (1994). Priming of pop-out: I. Role of features. Memory & Cognition, 22(6), 657–672.

    Article  Google Scholar 

  • Mathot, S., Hickey, C., & Theeuwes, J. (2010). From reorienting of attention to biased competition: Evidence from hemifield effects. Attention Perception & Psychophysics, 72(3), 651–657.

    Article  Google Scholar 

  • Moore, T., & Fallah, H. (2001). Control of eye movements and spatial attention (vol. 98, pg 1273, 2001). Proceedings of the National Academy of Sciences of the United States of America, 98(7), 4276.

    Google Scholar 

  • Moors, A., & De Houwer, J. (2006). Automaticity: A theoretical and conceptual analysis. Psychological Bulletin, 132(2), 297–326.

    Article  PubMed  Google Scholar 

  • Mounts, J. R. W. (2000). Evidence for suppressive mechanisms in attentional selection: Feature singletons produce inhibitory surrounds. Perception & Psychophysics, 62, 969–983.

    Article  Google Scholar 

  • Mulckhuyse, M., Van Der Stigchel, S., & Theeuwes, J. (2009). Early and late modulation of saccade deviations by target distractor similarity. Journal of Neurophysiology, 102(3), 1451–1458.

    Article  PubMed  Google Scholar 

  • Müller, H. J., Heller, D., & Ziegler, J. (1995). Visual search for singleton feature targets within and across feature dimensions. Perception & Psychophysics, 57, 1–17.

    Article  Google Scholar 

  • Müller, H. J., Reimann, B., & Krummenacher, J. (2003). Visual search for singleton feature targets across dimensions: Stimulus and expectancy-driven effects in dimensional weighing. Journal of Experimental Psychology: Human Perception and Performance, 29, 1021–1035.

    Article  PubMed  Google Scholar 

  • Muller, J. R., Philiastides, M. G., & Newsome, W. T. (2005). Microstimulation of the superior colliculus focuses attention without moving the eyes. Proceedings of the National Academy of Sciences of the United States of America, 102(3), 524–529.

    Google Scholar 

  • Neisser, U. (1967). Cognitive psychology. New York: Appleton Century Crofts.

    Google Scholar 

  • Nothdurft, H. C., Gallant, J. L., & Van Essen, D. C. (1999). Response modulation by texture surround in primate area V1: Correlates of “popout” under anesthesia. Visual Neuroscience, 16(1), 15–34.

    Article  PubMed  Google Scholar 

  • Olivers, C. N., & Hickey, C. (2010). Priming resolves perceptual ambiguity in visual search: Evidence from behaviour and electrophysiology. Vision Research, 50(14), 1362–1371.

    Article  PubMed  Google Scholar 

  • Olivers, C. N. L. (2009). What drives memory-driven attentional capture? The effects of memory type, display type, and search type. Journal of Experimental Psychology: Human Perception and Performance, 35(5), 1275–1291.

    Article  PubMed  Google Scholar 

  • Olivers, C. N. L., Meijer, F., & Theeuwes, J. (2006). Feature-based memory-driven attentional capture: Visual working memory content affects visual attention. Journal of Experimental Psychology: Human Perception and Performance, 32(5), 1243–1265.

    Article  PubMed  Google Scholar 

  • Pashler, H. E., & Shiu, L. P. (1999). Do images involuntarily trigger search? A test of Pillsbury’s hypothesis. Psychonomic Bulletin & Review, 6(3), 445–448.

    Article  Google Scholar 

  • Peck, C. J., Jangraw, D. C., Suzuki, M., Efem, R., & Gottlieb, J. (2009). Reward modulates attention independently of action value in posterior parietal cortex. Journal of Neuroscience, 29(36), 11182–11191.

    Article  PubMed  Google Scholar 

  • Pinto, Y., Olivers, C. N. L., & Theeuwes, J. (2005). Target uncertainty does not lead to more distraction by singletons: Intertrial priming does. Perception & Psychophysics, 67(8), 1354–1361.

    Article  Google Scholar 

  • Platt, M. L., & Glimcher, P. W. (1999). Effects of expected reward on LIP neuronal activity when monkeys choose to shift gaze away from the neuronal response field. Investigative Ophthalmology & Visual Science, 40(4), S60.

    Google Scholar 

  • Posner, M. I. (1978). Chronometric explorations of mind. Hillsdale: Erlbaum.

    Google Scholar 

  • Posner, M. I. (1980). Orienting of attention. The VIIth Sir Frederic Bartlett lecture. Quarterly Journal of Experimental Psychology, 32, 3–25.

    Article  PubMed  Google Scholar 

  • Posner, M. I., Davidson, B. J., & Snyder, C. R. R. (1980). Attention and the detection of signals. Journal of Experimental Psychology: General, 109, 160–174.

    Article  Google Scholar 

  • Posner, M. I., & Petersen, S. E. (1990). The Attention System of the Human Brain. Annual Review of Neuroscience, 13, 25–42.

    Article  PubMed  Google Scholar 

  • Proulx, M. J., & Egeth, H. E. (2006). Target-nontarget similarity modulates stimulus-driven control in visual search. Psychonomic Bulletin & Review, 13(3), 524–529.

    Article  Google Scholar 

  • Reynolds, J. H., & Chelazzi, L. (2004). Attentional modulation of visual processing. Annual Review of Neuroscience, 27, 611–647.

    Article  PubMed  Google Scholar 

  • Rizzolatti, G., Riggio, L., Dascola, I., & Umilta, C. (1987). Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention. Neuropsychologia, 25, 31–40.

    Article  Google Scholar 

  • Rizzolatti, G., Riggio, L., & Sheliga, B. M. (1994). Space and selective attention. In C. Umilta, & M. Moscovitch (Eds.), Attention and performance XIV. Cambridge: MIT Press.

    Google Scholar 

  • Robbins, S. J., & Ehrman, R. N. (2004). The role of attentional bias in substance abuse. Behavioral & Cognitive Neuroscience Reviews, 3(4), 243–260.

    Article  Google Scholar 

  • Rogers, R. D., & Monsell, S. (1995). Costs of a predictable switch between simple cognitive tasks. Journal of Experimental psychology: General, 124(2), 207–231.

    Article  Google Scholar 

  • Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: i. detection, search, and attention. Psychological Review, 84, 1–66.

    Article  Google Scholar 

  • Schubo, A. (2009). Salience detection and attentional capture. Psychological Research-Psychologische Forschung, 73(2), 233–243.

    Article  Google Scholar 

  • Sheliga, B. M., Riggio, L., & Rizzolatti, G. (1994). Orienting of attention and eye movements. Experimental Brain Research, 98, 507- 522.

    Article  Google Scholar 

  • Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending, and a general theory. Psychological Review, 84(3), 127–190.

    Article  Google Scholar 

  • Soto, D., Heinke, D., Humphreys, G. W., & Blanco, M. J. (2005). Early, involuntary top-down guidance of attention from working memory. Journal of Experimental Psychology: Human Perception and Performance, 31(2), 248–261.

    Article  PubMed  Google Scholar 

  • Soto, D., Hodsoll, J., Rotshtein, P., & Humphreys, G. W. (2008). Automatic guidance of attention from working memory. Trends in Cognitive Sciences, 12(9), 342–348.

    Article  PubMed  Google Scholar 

  • Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662.

    Article  Google Scholar 

  • Theeuwes, J. (1990). Perceptual selectivity is task dependent—evidence from selective search. Acta Psychologica, 74(1), 81–99.

    Article  PubMed  Google Scholar 

  • Theeuwes, J. (1991). Cross-dimensional perceptual selectivity. Perception & Psychophysics, 50(2), 184–193.

    Article  Google Scholar 

  • Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception & Psychophysics, 51(6), 599–606.

    Article  Google Scholar 

  • Theeuwes, J. (1994a). Endogenous and exogenous control of visual selection. Perception, 23(4), 429–440.

    Article  Google Scholar 

  • Theeuwes, J. (1994b). Stimulus-driven capture and attentional set—selective search for color and Visual Abrupt Onsets. Journal of Experimental Psychology: Human Perception and Performance, 20(4), 799–806.

    Article  Google Scholar 

  • Theeuwes, J. (1995). Perceptual selectivity for color and form: On the nature of the interference effect. In A. F. Kramer, M. G. H. Coles, & G. D. Logan (Eds.), Converging operations in the study of visual attention (pp. 297–314). Washington DC: American Psychological Association.

    Google Scholar 

  • Theeuwes, J. (2004). Top-down search strategies cannot override attentional capture. Psychonomic Bulletin & Review, 11(1), 65–70.

    Article  Google Scholar 

  • Theeuwes, J. (2010a). Top-down and bottom-up control of visual selection. Acta Psychologica, 135(2), 77–99.

    Article  Google Scholar 

  • Theeuwes, J. (2010b). Top-down and bottom-up control of visual selection: Reply to commentaries. Acta Psychologica, 135(2), 133–139.

    Article  Google Scholar 

  • Theeuwes, J., Atchley, P., & Kramer, A. F. (2000). On the time course of top-down and bottom-up control of visual attention. In S. M. J. Driver (Ed.), Attention & performance (Vol. 18, pp. 105 125): Cambridge: MIT Press.

    Google Scholar 

  • Theeuwes, J., Belopolsky, A., & Olivers, C. N. L. (2009). Interactions between working memory, attention and eye movements. Acta Psychologica, 132(2), 106–114.

    Article  PubMed  Google Scholar 

  • Theeuwes, J., & Chen, C. Y. D. (2005). Attentional capture and inhibition (of return): The effect on perceptual sensitivity. Perception & Psychophysics, 67(8), 1305–1312.

    Article  Google Scholar 

  • Theeuwes, J., De Vries, G. J., & Godjin, R. (2003). Attentional and oculomotor capture with static singletons. Perception & Psychophysics, 65(5), 735–746.

    Article  Google Scholar 

  • Theeuwes, J., & Hagenzieker, M. P. (1993). Visual search of traffic scenes: On the effect of location expectations. In A. Gale (Ed.), Vision in vehicles (Vol. 4, pp. 149–158). Amsterdam: Elsevier.

    Google Scholar 

  • Theeuwes, J., Kramer, A. F., Hahn, S., & Irwin, D. E. (1998). Our eyes do not always go where we want them to go: Capture of the eyes by new objects. Psychological Science, 9(5), 379–385.

    Article  Google Scholar 

  • Theeuwes, J., Kramer, A. F., Hahn, S., Irwin, D. E., & Zelinsky, G. J. (1999). Influence of attentional capture on oculomotor control. Journal of Experimental Psychology: Human Perception and Performance, 25(6), 1595–1608.

    Article  PubMed  Google Scholar 

  • Theeuwes, J., Kramer, A.F. & Irwin, D.E. (2011). Attention on our mind: the role of spatial attention in visual working memory. Acta Psychologica, 137(2), 248–251.

    Article  PubMed  Google Scholar 

  • Theeuwes, J., Kramer, A. F., & Kingstone, A. (2004). Attentional capture modulates perceptual sensitivity. Psychonomic Bulletin & Review, 11(3), 551–554.

    Article  Google Scholar 

  • Theeuwes, J., Reimann, B., & Mortier, K. (2006). Visual search for featural singletons: No top-down modulation, only bottom-up priming. Visual Cognition, 14(4–8), 466–489.

    Article  Google Scholar 

  • Theeuwes, J., & Van Der Burg, E. (2007). The role of spatial and nonspatial information in visual selection. Journal of Experimental Psychology: Human Perception and Performance, 33(6), 1335–1351.

    Article  PubMed  Google Scholar 

  • Theeuwes, J., Van Der Burg, E., & Belopolsky, A. (2008). Detecting the presence of a singleton involves focal attention. Psychonomic Bulletin & Review, 15(3), 555–560.

    Article  Google Scholar 

  • Theeuwes, J. & Van Der Burg, E. (2011). On the limits of top-down control. Attention, Perception & Psychophysics, 73, 2092–2103

    Article  Google Scholar 

  • Thompson, K. G., Bichot, N. P., & Sato, T. R. (2005). Frontal eye field activity before visual search errors reveals the integration of bottom-up and top-down salience. Journal of Neurophysiology, 93, 337–351.

    Article  PubMed  Google Scholar 

  • Thorndike, E. L. (1911). Animal intelligence. New York: Macmillan.

    Google Scholar 

  • Treisman, A., & Kahneman, D. (1981). An early interference effect in visual-perception. Bulletin of the Psychonomic Society, 18(2), 68–68.

    Google Scholar 

  • Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12, 97- 136.

    Article  PubMed  Google Scholar 

  • Tse, P. U., Sheinberg, D. L., & Logothetis, N. K. (2002). Fixational eye movements are not affected by abrupt onsets that capture attention. Vision Research, 42(13), 1663–1669.

    Article  PubMed  Google Scholar 

  • Van Der Stigchel, S., Meeter, M., & Theeuwes, J. (2007). The spatial coding of the inhibition evoked by distractors. Vision Research, 47(2), 210–218.

    Article  PubMed  Google Scholar 

  • Van Der Stigchel, S., & Theeuwes, J. (2007). The relationship between covert and overt attention in endogenous cuing. Perception & Psychophysics, 69(5), 719–731.

    Article  Google Scholar 

  • van Zoest, W., Donk, M., & Theeuwes, J. (2004a). The role of stimulus-driven and goal-driven control in saccadic visual selection. Journal of Experimental Psychology: Human Perception and Performance, 30(4), 746–759.

    Article  Google Scholar 

  • van Zoest, W., Donk, M., & Theeuwes, J. (2004b). Stimulus-driven and goal-directed control in saccadic target selection. Perception, 33, 146–146.

    Google Scholar 

  • Wolfe, J. M. (1994). Guided Search 2.0. A revised model of visual search. Psychonomic Bulletin & Review, 1, 202–238.

    Article  Google Scholar 

  • Wolfe, J. M., Butcher, S. J., Lee, C., & Hyle, M. (2003). Changing your mind: on the contributions of top-down and bottum-up guidance in visual search for feature singeltons. Journal of Experimental Psychology, 29(2), 483–502.

    PubMed  Google Scholar 

  • Woodman, G. F., & Luck, S. J. (2007). Do the contents of visual working memory automatically influence attentional selection during visual search? Journal of Experimental Psychology: Human Perception and Performance, 33(2), 363–377.

    Article  PubMed  Google Scholar 

  • Wu, S. C., & Remington, R. W. (2003). Characteristics of covert and overt visual orienting: Evidence from attentional and oculomotor capture. Journal of Experimental Psychology: Human Perception and Performance, 29(5), 1050–1067.

    Article  PubMed  Google Scholar 

  • Wundt, W. (1887). Grundzüge der physiologischen Psychologie [Foundations of physiological psychology]. Leipzig: Engelmann.

    Google Scholar 

  • Yantis, S., & Egeth, H. E. (1999). On the distinction between visual salience and stimulus-driven attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 25, 661–676.

    Article  PubMed  Google Scholar 

  • Yantis, S., & Jonides, J. (1984). Abrupt visual onsets and selective attention: Evidence from visual search. Journal of Experimental Psychology: Human Perception and Performance, 10, 601–621.

    Article  PubMed  Google Scholar 

  • Yantis, S., & Jonides, J. (1990). Abrupt visual onsets and selective attention: Voluntary versus automatic allocation. Journal of Experimental Psychology: Human Perception and Performance, 16, 121–134.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Theeuwes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Theeuwes, J. (2012). Automatic Control of Visual Selection. In: Dodd, M., Flowers, J. (eds) The Influence of Attention, Learning, and Motivation on Visual Search. Nebraska Symposium on Motivation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4794-8_3

Download citation

Publish with us

Policies and ethics