Skip to main content

Adaptive Plasticity of Salt-Stressed Root Systems

  • Chapter
  • First Online:
Ecophysiology and Responses of Plants under Salt Stress

Abstract

Salinity can cause several challenges for plants, including water stress, mal-nutrition and accumulation of excess ions to potentially toxic levels. While salt exclusion, compartmentation and osmoregulation are the mechanisms particularly considered to increase the salt tolerance of plants, tolerance is determined by the integrating effects of several mechanisms at the cell, tissue and organ level.

Because roots are in direct contact with the soil solution, they are first to encounter excess salinity and are potentially the first sites of damage or “line of defence”. However, despite the likelihood that differences among root systems may (partially) underlie distinct salt tolerances, information on the phenotypical and physiological plasticity of root systems under salt stress is scant compared to aboveground organs.

This chapter reviews modifications among root size and architecture, morphological and anatomical root traits and root physiology under salinity. Furthermore, root elongation, halotropism and carbon metabolism of roots under salinity are addressed. The review explores the question of whether changes among roots are caused by ion toxicity or whether they could be an active response of plants, which may be of potential adaptive significance. A short overview of the chemical and physical properties of saline soils is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrol IP, Yadav JSP, Massoud FI (1988) Salt-affected soils and their management. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Akram M, Akhtar S, Javed IUH, Wahid A, Rasul E (2002) Anatomical attributes of different wheat (Triticum aestivum) accessions/varieties to NaCl salinity. Intern J Agricul Biol 4:166–168

    Google Scholar 

  • Albacete A, Ghanem ME, Martinez-Andujar C, Acosta M, Sanchez-Bravo J, Martinez V, Lutts S, Dodd IC, Perez-Alfocea F (2008) Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. J Exp Bot 59:4119–4131

    PubMed  CAS  Google Scholar 

  • Alemán F, Nieves-Cordones M, Martínez V, & Rubio F (2009) Differential regulation of the HAK5 genes encoding the high-affinity K+ transporters of Thellungiella halophila and Arabidopsis thaliana. Environmental and Experimental Botany, 65(2–3), 263–269. doi: 10.1016/j.envexpbot.2008.09.011

    PubMed  Google Scholar 

  • Alemán F, Nieves-Cordones M, Martínez V, Rubio F (2011) Root K+ acquisition in plants: the Arabidopsis thaliana model. Plant Cell Physiol 52:1603–1612

    PubMed  Google Scholar 

  • Almagro L, Gómez Ros LV, Belchi-Navarro S, Bru R, Ros Barceló A, Pedreño MA (2009) Class III peroxidases in plant defence reactions. J Exp Bot 60:377–390

    PubMed  CAS  Google Scholar 

  • Arbona V, Flors V, Jacas J, García-Agustín P, Gómez-Cadenas A (2003) Enzymatic and non-enzymatic antioxidant responses of Carrizo citrange, a salt-sensitive citrus rootstock, to different levels of salinity. Plant Cell Physiol 44:388–394

    PubMed  CAS  Google Scholar 

  • Aroca R, Porcel R, Ruiz-Lozano JM (2007) How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytol 173(4):808–816

    PubMed  CAS  Google Scholar 

  • Aroca R, Porcel R, Ruiz-Lozano JM (2012) Regulation of root water uptake under abiotic stress conditions. J Exp Bot 63:43–57

    PubMed  CAS  Google Scholar 

  • Ashraf M (1999) Interactive effect of salt (NaCl) and nitrogen form on growth, water relations and photosynthetic capacity of sunflower (Helianthus annum L.). Ann Appl Biol 135(2):509–513

    Google Scholar 

  • Ashraf M, Ozturk M, Ahmad MSA (2010) Plant adaptation and phytoremediation. Springer, Dordrecht

    Google Scholar 

  • Aslam M, Huffaker RC, Rains DW (1984) Early effects of salinity on nitrate assimilation in barley seedlings. Plant Physiol 76:321–325

    PubMed  CAS  Google Scholar 

  • Azaizeh H, Gunsé B, Steudle E (1992) Effects of NaCl and CaCl2 on water transport across root-cells of maize (Zea mays L.) seedlings. Plant Physiol 99:886–894

    PubMed  CAS  Google Scholar 

  • Baas P, Werker E, Fahn A (1983) Some ecological trends in vessel characters. Iawa Bull 4:141–159

    Google Scholar 

  • Barber SA (1995) Soil nutrient bioavailability: a mechanistic approach. Wiley, New York

    Google Scholar 

  • Baumeister W, Merten A (1981) Growth and root anatomy of two subspecies of Festuca rubra L. in response to NaCl salinization of the culture solution. Angew Bot 55:401–408

    Google Scholar 

  • Bazihizina N, Colmer TD, Barrett-Lennard EG (2009) Response to non-uniform salinity in the root zone of the halophyte Atriplex nummularia: growth, photosynthesis, water relations and tissue ion concentrations. Ann Bot 104:737–745

    PubMed  CAS  Google Scholar 

  • Bernstein N, Kafkafi U (2002) Root growth under salinity stress. In: Waisel Y, Eshel Y, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York, pp 787–805

    Google Scholar 

  • Bloom A, Epstein E (1984) Varietal differences in salt-induced respiration in barley. Plant Sci Lett 35:1–3

    CAS  Google Scholar 

  • Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochim Biophys Acta (BBA) – Biomembr 1465(1–2):140–151. doi:10.1016/s0005-2736(00)00135-8

    CAS  Google Scholar 

  • Bogeat-Triboulot MB, Brosché M, Renaut J, Jouve L, Le Thiec D, Fayyaz P, Vinocur B, Witters E, Laukens K, Teichmann T, Altman A, Hausman JF, Polle A, Kangasjarvi J, Dreyer E (2007) Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions. Plant Physiol 143:876–892

    PubMed  CAS  Google Scholar 

  • Boughalleb F, Denden M, Tiba B (2009) Anatomical changes induced by increasing NaCl salinity in three fodder shrubs, Nitraria retusa, Atriplex halimus and Medicago arborea. Acta Physiol Plant 31:947–960

    Google Scholar 

  • Brinker M, Brosché M, Vinocur B, Abo-Ogiala A, Fayyaz P, Janz D, Ottow EA, Cullmann AD, Saborowski J, Kangasjärvi J, Altman A, Polle A (2010) Linking the salt transcriptome with physiological responses of a salt-resistant Populus species as a strategy to identify genes important for stress acclimation. Plant Physiol 154:1697–1709

    PubMed  CAS  Google Scholar 

  • Brugnoli E, Lauteri M (1991) Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C3 non-halophytes. Plant Physiol 95:628–635

    PubMed  CAS  Google Scholar 

  • Burchett MD, Field CD, Pulkownik A (1984) Salinity, growth and root respiration in the Grey mangrove, Avicennia marina. Physiol Plantarum 60:113–118

    Google Scholar 

  • Burssens S, Himanen K, van de Cotte B, Beeckman T, Van Montagu M, Inzé D, Verbruggen N (2000) Expression of cell cycle regulatory genes and morphological alterations in response to salt stress in Arabidopsis thaliana. Planta 211:632–640

    PubMed  CAS  Google Scholar 

  • Cachorro P, Ortiz A, Barcelo AR, Cerdá A (1993) Lignin deposition in vascular tissues of Phaseolus vulgaris roots in response to salt stress. Phyton Ann Rei Bot 33:33–40

    CAS  Google Scholar 

  • Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett MJ (2003) Dissecting Arabidopsis lateral root development. Trends Plant Sci 8:165–171

    PubMed  CAS  Google Scholar 

  • Céccoli G, Ramos JC, Ortega LI, Acosta JM, Perreta MG (2011) Salinity induced anatomical and morphological changes in Chloris gayana Kunth roots. Biocell 35:9–17

    PubMed  Google Scholar 

  • Champagnol F (1979) Relationships between phosphate nutrition of plants and salt toxicity. Phosphorus Agric 76:35–43

    Google Scholar 

  • Chartzoulakis KS (2005) Salinity and olive: growth, salt tolerance, photosynthesis and yield. Agric Water Manage 78:108–121

    Google Scholar 

  • Cheng H, Wang YS, Ye ZH, Chen DT, Wang YT, Peng YL, Wang LY (2012) Influence of N deficiency and salinity on metal (Pb, Zn and Cu) accumulation and tolerance by Rhizophora stylosa in relation to root anatomy and permeability. Environ Poll 164:110–117

    CAS  Google Scholar 

  • Chhabra R (1996) Soil salinity and water quality. Taylor and Francis, New York

    Google Scholar 

  • Chhun T, Uno Y, Taketa S, Azuma T, Ichii M, Okamoto T, Tsurumi S (2007) Saturated humidity accelerates lateral root development in rice (Oryza sativa L.) seedlings by increasing phloem-based auxin transport. J Exp Bot 58:1695–1704

    PubMed  CAS  Google Scholar 

  • Chrispeels MJ, Daniels MJ, Weig A (1995) Aquaporins facilitate water transport through the plasma-membrane and the tonoplast. Plant Physiol 108:6

    Google Scholar 

  • Cimato A, Castelli S, Tattini M, Traversi ML (2010) An ecophysiological analysis of salinity tolerance in olive. Environ Exp Bot 68:214–221

    CAS  Google Scholar 

  • Clarkson DT, Robards AW, Stephens JE, Stark M (1987) Suberin lamellae in the hypodermis of maize (Zea mays) roots - Development and factors affecting the permeability of hypodermal layers. Plant Cell Environ 10:83–93

    Google Scholar 

  • Clarkson DT, Carvajal M, Henzler T, Waterhouse RN, Smyth AJ, Cooke DT, Steudle E (2000) Root hydraulic conductance: diurnal aquaporin expression and the effects of nutrient stress. J Exp Bot 51:61–70

    PubMed  CAS  Google Scholar 

  • Clought BF, Sim RG (1989) Changes in gas exchange characteristics and water use efficiency of mangroves in response to salinity and vapour pressure deficit. Oecologia 79:38–44

    Google Scholar 

  • Cramer GR, Läuchli A, Epstein E (1986) Effects of NaCl and CaCl2 on ion activities in complex nutrient solutions and root-growth of cotton. Plant Physiol 81:792–797

    PubMed  CAS  Google Scholar 

  • Cramer GR, Epstein E, Läuchli A (1988) Kinetics of root elongation of maize in response to short-term exposure to NaCl and elevated calcium-concentration. J Exp Bot 39:1513–1522

    CAS  Google Scholar 

  • Deak KI, Malamy J (2005) Osmotic regulation of root system architecture. Plant J 43:17–28

    PubMed  CAS  Google Scholar 

  • Degano CAM (1999) Morphology and anatomy of Tessaria absinthioides (Hook. et Arn.) DC. under salinity conditions [In Portuguese, English abstract]. Rev Bras Bot 22:357–363

    Google Scholar 

  • Degenhardt B, Gimmler H (2000) Cell wall adaptations to multiple environmental stresses in maize roots. J Exp Bot 51:595–603

    PubMed  CAS  Google Scholar 

  • del Amor F, Cuadra-Crespo P (2011) Alleviation of salinity stress in broccoli using foliar urea or methyl-jasmonate: analysis of growth, gas exchange, and isotope composition. Plant Growth Regul 63:55–62

    Google Scholar 

  • Delgado MJ, Ligero F, Lluch C (1994) Effects of salt stress on growth and nitrogen fixation by pea, faba-bean, common bean and soybean plants. Soil Biol Biochem 26:371–376

    CAS  Google Scholar 

  • Dunlap JR, Binzel ML (1996) NaCI reduces indole-3-acetic acid levels in the roots of tomato plants independent of stress-induced abscisic acid. Plant Physiol 112:379–384

    PubMed  CAS  Google Scholar 

  • Echeverria M, Scambato AA, Sannazzaro AI, Maiale S, Ruiz OA, Menéndez AB (2008) Phenotypic plasticity with respect to salt stress response by Lotus glaber: the role of its AM fungal and rhizobial symbionts. Mycorrhiza 18:317–329

    PubMed  Google Scholar 

  • Eckstein D, Liese W, Plossl P (1978) Histometrische Untersuchungen zur unterschiedlichen Streusalztoleranz von Weiden (Salix spp.). Forstwissenschaftliches Centralblatt 97(6):335–341

    Google Scholar 

  • Ehlting B, Dluzniewska P, Dietrich H, Selle A, Teuber M, Hansch R, Nehls U, Polle A, Schnitzler JP, Rennenberg H, Gessler A (2007) Interaction of nitrogen nutrition and salinity in Grey poplar (Populus tremula x alba). Plant Cell Environ 30:796–811

    PubMed  CAS  Google Scholar 

  • Eissenstat DM, Achor DS (1999) Anatomical characteristics of roots of citrus rootstocks that vary in specific root length. New Phytol 141:309–321

    Google Scholar 

  • Enstone DE, Peterson A, Ma FS (2003) Root endodermis and exodermis: structure, function, and responses to the environment. J Plant Growth Regul 21:335–351

    Google Scholar 

  • Epron D, Toussaint ML, Badot PM (1999) Effects of sodium chloride salinity on root growth and respiration in oak seedlings. Ann For Sci 56:41–47

    Google Scholar 

  • Evlagon D, Ravina I, Neumann P (1990) Interactive effects of salinity and calcium on hydraulic conductivity, osmotic adjustment, and growth in primary roots of maize seedlings. Israel J Bot 39:239–247

    CAS  Google Scholar 

  • Figueira E (2009) Pea cultivation in saline soils: influence of nitrogen nutrition. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer, Heidelberg, pp 267–286

    Google Scholar 

  • Fiscus EL, Markhart AH (1979) Relationships between root-system water transport properties and plant size in Phaseolus. Plant Physiol 64:770–773

    PubMed  CAS  Google Scholar 

  • Fitter AH, Stickland TR, Harvey ML, Wilson GW (1991) Architectural analysis of plant-root systems. 1. Architectural correlates of exploitation efficiency. New Phytol 118:375–382

    Google Scholar 

  • Fukaki H, Okushima Y, Tasaka M (2007) Auxin-mediated lateral root formation in higher plants. Int Rev Cytol 256:111–137

    PubMed  CAS  Google Scholar 

  • Ghanem M, Hichri I, Smigocki A, Albacete A, Fauconnier ML, Diatloff E, Martinez-Andujar C, Lutts S, Dodd I, Pérez-Alfocea F (2011) Root-targeted biotechnology to mediate hormonal signalling and improve crop stress tolerance. Plant Cell Rep 30:807–823

    PubMed  CAS  Google Scholar 

  • Ghassemi F, Jakeman AJ, Nix HA (1995) Salinisation of land and water resources: human causes, extent, management and case studies. Cab International, Wallingford

    Google Scholar 

  • Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytol 147:13–31

    Google Scholar 

  • Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255

    Google Scholar 

  • Gong HJ, Randall DP, Flowers TJ (2006) Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant Cell Environ 29:1970–1979

    PubMed  CAS  Google Scholar 

  • Grattan SR, Grieve CM (1992) Mineral element acquisition and growth-response of plants grown in saline environments. Agr Ecosyst Environ 38:275–300

    CAS  Google Scholar 

  • Grattan SR, Grieve CM (1999) Salinity mineral nutrient relations in horticultural crops. Sci Hortic 78(1–4):127–157

    CAS  Google Scholar 

  • Green SM, Machin R, Cresser MS (2008) Effect of long-term changes in soil chemistry induced by road salt applications on N-transformations in roadside soils. Environ Poll 152:20–31

    CAS  Google Scholar 

  • Grierson C, Schiefelbein J (2009) Genetics of root hair formation. In: Murphy AS, Peer W, Schulz B (eds) The plant plasma membrane. Springer, Berlin, pp 1–25

    Google Scholar 

  • Gruber V, Zahaf O, Diet A, Zélicourt A, Lorenzo L, Crespi M (2011) Impact of the environment on root architecture in dicotyledoneous plants. In: de Oliveira AC, Varshney RK (eds) Root genomics. Springer, Heidelberg, pp 113–132

    Google Scholar 

  • Gucci R, Tattini M (1997) Salinity tolerance in olive. Horticultural Rev 21:177–214

    CAS  Google Scholar 

  • Gucci R, Lombardini L, Tattini M (1997) Analysis of leaf water relations in leaves of two olive (Olea europaea) cultivars differing in tolerance to salinity. Tree Physiol 17(1):13–21

    PubMed  Google Scholar 

  • Hajibagheri MA, Yeo AR, Flowers TJ (1985) Salt tolerance in Suaeda maritima (L.) Dum. Fine-structure and ion concentrations in the apical region of roots. New Phytol 99:331–343

    Google Scholar 

  • Hameed M, Ashraf M, Naz N, Al-Qurainy F (2010) Anatomical adaptations of Cynodon dactylon (l.) pers., from the salt range Pakistan, to salinity stress. I. Root and stem anatomy. Pakistan J Bot 42:279–289

    Google Scholar 

  • Hartig K, Beck E (2006) Crosstalk between auxin, cytokinins, and sugars in the plant cell cycle. Plant Biol 8:389–396

    PubMed  CAS  Google Scholar 

  • He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44:903–916

    PubMed  CAS  Google Scholar 

  • He ZQ, He CX, Zhang ZB, Zou ZR, Wang HS (2007) Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloid Surfaces B 59:128–133

    CAS  Google Scholar 

  • Hilal M, Zenoff AM, Ponessa G, Moreno H, Massa EM (1998) Saline stress alters the temporal patterns of xylem differentiation and alternative oxidase expression in developing Soybean roots. Plant Physiol 117:695–701

    PubMed  CAS  Google Scholar 

  • Hill AE, Shachar-Hill B, Shachar-Hill Y (2004) What are aquaporins for? J Membrane Biol 197:1–32

    CAS  Google Scholar 

  • Hodges TK, Vaadia Y (1964) Chloride uptake and transport in roots of different salt status. Plant Physiol 39:109–114

    PubMed  CAS  Google Scholar 

  • Holloway RE, Alston AM (1992) The effects of salt and boron on growth of wheat. Aust J Agr Res 43:987–1001

    CAS  Google Scholar 

  • Hu YC, Schmidhalter U (2005) Drought and salinity: a comparison of their effects on mineral nutrition of plants. J Plant Nutr Soil Sci 168:541–549

    CAS  Google Scholar 

  • Huang J, Redmann RE (1995) Salt tolerance of Hordeum and Brassica species during germination and early seedling growth. Can J Plant Sci 75:815–819

    Google Scholar 

  • Huang CX, Van Steveninck RFM (1990) The role of particular pericycle cells in apoplastic transport in root-meristems of barley. J Plant Physiol 135:554–558

    Google Scholar 

  • Jackson RB, Mooney HA, Schulze ED (1997) A global budget for fine root biomass, surface area, and nutrient contents. PNAS 94:7362–7366

    PubMed  CAS  Google Scholar 

  • Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the In vitro development of Glomus intraradices and on the In vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol 55(1):45–53

    PubMed  Google Scholar 

  • Jbir N, Chaibi W, Ammar S, Jemmali A, Ayadi A (2001) Root growth and lignification of two wheat species differing in their sensitivity to NaCl, in response to salt stress. CR Acad Sci III-Vie 324:863–868

    CAS  Google Scholar 

  • Jeschke WD, Stelter W (1976) Measurement of longitudinal ion profiles in single roots of Hordeum and Atriplex by use of flameless atomic-absorption spectroscopy. Planta 128:107–112

    CAS  Google Scholar 

  • Joly RJ (1989) Effects of sodium-chloride on the hydraulic conductivity of soybean root systems. Plant Physiol 91:1262–1265

    PubMed  CAS  Google Scholar 

  • Jones MP (1985) Genetic analysis of salt tolerance in mangrove swamp rice. Rice Genetics I:411–422

    Google Scholar 

  • Kacprzyk J, Daly CT, McDabe PF (2011) The botanical dance of death: programmed cell death in plants. In: Kader JC, Delseny M (eds) Advances in botanical research, vol 60. Academic, San Diego, pp 170–263

    Google Scholar 

  • Karahara I, Ikeda A, Kondo T, Uetake Y (2004) Development of the Casparian strip in primary roots of maize under salt stress. Planta 219:41–47

    PubMed  CAS  Google Scholar 

  • Katsuhara M, Kawasaki T (1996) Salt stress induced nuclear and DNA degradation in meristematic cells of barley roots. Plant Cell Physiol 37:169–173

    CAS  Google Scholar 

  • Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–905

    PubMed  CAS  Google Scholar 

  • Kim EJ, Kwak JM, Uozumi N, Schroeder JI (1998) AtKUP1: an Arabidopsis gene encoding high-affinity potassium transport activity. Plant Cell 10:51–62

    PubMed  CAS  Google Scholar 

  • Kitin PB, Fujii T, Abe H, Funada R (2004) Anatomy of the vessel network within and between tree rings of Fraxinus lanuginosa (Oleaceae). Am J Bot 91:779–788

    PubMed  Google Scholar 

  • Koyro HW (1997) Ultrastructural and physiological changes in root cells of sorghum plants (Sorghum bicolor x S. sudanensis cv. Sweet Sioux) induced by NaCl. J Exp Bot 48:693–706

    CAS  Google Scholar 

  • Koyro HW (2004) Ultrastructural effects of salinity in higher plants. In: Läuchli A, Lüttge U (eds) Salinity: environment – plants – molecules. Springer, Den Hague, pp 139–157

    Google Scholar 

  • Kozlowski TT (1997) Responses of woody plants to flooding and salinity. Tree Physiol Monograph 1:1–29

    Google Scholar 

  • Kozlowski TT, Pallardy SG (1997) Physiology of woody plants. Elsevier, London

    Google Scholar 

  • Kramer D, Läuchli A, Yeo AR, Gullasch J (1977) Transfer cells in roots of phaseolus-coccineus – ultrastructure and possible function in exclusion of sodium from shoot. Ann Bot 41(175):1031–1040

    CAS  Google Scholar 

  • Kramer D, Anderson WP, Preston J (1978) Transfer cells in the root epidermis of Atriplex hastata L. as response to salinity: a comparative cytological and X-ray microprobe investigation. Aust J Plant Physiol 5:739–747

    CAS  Google Scholar 

  • Krishnamurthy P, Ranathunge K, Nayak S, Schreiber L, Mathew MK (2011) Root apoplastic barriers block Na+ transport to shoots in rice (Oryza sativa L.). J Exp Bot 62:4215–4228

    PubMed  CAS  Google Scholar 

  • Kshatriya K, Singh J, Singh D (2009) Salt tolerant mutant of Anabaena doliolum exhibiting efficient ammonium uptake and assimilation. Physiol Mol Biol Plants 15:377–381

    CAS  Google Scholar 

  • Kurth E, Cramer GR, Läuchli A, Epstein E (1986) Effects of NaCl and CaCl2 on cell enlargement and cell production in cotton roots. Plant Physiol 82:1102–1106

    PubMed  CAS  Google Scholar 

  • Laura RD (1977) Salinity and nitrogen mineralization in soil. Soil Biol Biochem 9:333–336

    CAS  Google Scholar 

  • Lin CC, Kao CH (2001) Cell wall peroxidase activity, hydrogen peroxide level and NaCl-inhibited root growth of rice seedlings. Plant Soil 230:135–143

    CAS  Google Scholar 

  • Liu AR, Zhao KF (2005) Osmotica accumulation and its role in osmotic adjustment in Thellungiella halophila under salt stress [In Chinese, English abstract]. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao 31:389–395

    PubMed  CAS  Google Scholar 

  • Liu T, Van Staden J, Cress WA (2000) Salinity induced nuclear and DNA degradation in meristematic cells of soybean (Glycine max (L.)) roots. Plant Growth Regul 30:49–54

    CAS  Google Scholar 

  • Liu SH, Fu BY, Xu HX, Zhu LH, Zhai HQ, Li ZK (2007) Cell death in response to osmotic and salt stresses in two rice (Oryza sativa L.) ecotypes. Plant Sci 172:897–902

    CAS  Google Scholar 

  • López-Berenguer C, García-Viguera C, Carvajal M (2006) Are root hydraulic conductivity responses to salinity controlled by aquaporins in Broccoli plants? Plant Soil 279:13–23

    Google Scholar 

  • López-Pérez L, Fernández-Garcia N, Olmos E, Carvajal M (2007) The phi thickening in roots of broccoli plants: an acclimation mechanism to salinity? Int J Plant Sci 168:1141–1149

    Google Scholar 

  • Ma SS, Gong QQ, Bohnert HJ (2006) Dissecting salt stress pathways. J Exp Bot 57:1097–1107

    PubMed  CAS  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448:209–212

    PubMed  CAS  Google Scholar 

  • Maas EV (1993) Salinity and citriculture. Tree Physiol 12:195–216

    PubMed  CAS  Google Scholar 

  • Maas EV, Ogata G, Finkel MH (1979) Salt-induced inhibition of phosphate transport and release of membrane proteins from barley roots. Plant Physiol 64:139–143

    PubMed  CAS  Google Scholar 

  • Mahmoodzadeh H (2008) Ultrastructural changes in shoot apical meristem of canola (Brassica napus cv. Symbol) treated with sodium chloride. Pakistan J Biol Sci 11:1161–1164

    Google Scholar 

  • Malamy JE (2009) Lateral root formation. Ann Plant Rev 37:83–126

    Google Scholar 

  • Manchanda G, Garg N (2008) Salinity and its effects on the functional biology of legumes. Acta Physiol Plant 30:595–618

    CAS  Google Scholar 

  • Mariaux JB, Bockel C, Salamini F, Bartels D (1998) Desiccation- and abscisic acid-responsive genes encoding major intrinsic proteins (MIPs) from the resurrection plant Craterostigma plantagineum. Plant Mol Biol 38:1089–1099

    PubMed  CAS  Google Scholar 

  • Martinez V, Läuchli A (1994) Salt-induced inhibition of phosphate-uptake in plants of cotton (Gossypium hirsutum L.). New Phytol 126:609–614

    CAS  Google Scholar 

  • Martinez V, Bernstein N, Läuchli A (1996) Salt-induced inhibition of phosphorus transport in lettuce plants. Physiol Plant 97:118–122

    CAS  Google Scholar 

  • Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Ann Rev Plant Biol 59:595–624

    CAS  Google Scholar 

  • Mckee KL (1993) Soil physicochemical patterns and mangrove species distribution – reciprocal effects? J Ecol 81:477–487

    Google Scholar 

  • Mei-fang D, Wang-jun Y, Fu-de S (2005) Relations between anatomic structures of vegetative organs of Thellungiella halophila and its brackish environment. Xibei Zhiwu Xuebao 25:1077–1082

    Google Scholar 

  • Miller RW, Donahue RL (1995) Soils in our environment. Prudence Hall, Englewood

    Google Scholar 

  • Mitani N, Chiba Y, Yamaji N, Ma JF (2009) Identification and characterization of maize and barley Lsi2-like silicon efflux transporters reveals a distinct silicon uptake system from that in rice. Plant Cell Online 21:2133–2142

    CAS  Google Scholar 

  • Mitani-Ueno N, Yamaji N, Zhao FJ, Ma JF (2011) The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic. J Exp Bot 62:4391–4398

    PubMed  CAS  Google Scholar 

  • Mittova V, Guy M, Tal M, Volokita M (2004) Salinity up − regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt − tolerant tomato species Lycopersicon pennellii. J Exp Bot 55:1105–1113

    PubMed  CAS  Google Scholar 

  • Mostafazadeh-Fard B, Mansouri H, Mousavi SF, Feizi M (2009) Effects of different levels of irrigation water salinity and leaching on yield and yield components of wheat in an arid region. J Irrig Drain E-ASCE 135:32–38

    Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25(2):239–250

    PubMed  CAS  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    PubMed  CAS  Google Scholar 

  • Munns R, Passioura JB (1984) Hydraulic resistance of plants. 3. Effects of NaCl in barley and lupin. Aust J Plant Physiol 11:351–359

    CAS  Google Scholar 

  • Munns R, Termaat A (1986) Whole-plant responses to salinity. Aust J Plant Physiol 13:143–160

    Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681

    CAS  Google Scholar 

  • Nadelhoffer KJ, Raich JW (1992) Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology 73:1139–1147

    Google Scholar 

  • Nedjimi B, Daoud Y, Touati M (2006) Growth, water relations, proline and ion content of in vitro cultured Atriplex halimus subsp. schweinfurthii as affected by CaCl2. Commun Biometry Crop Sci 1:79–89

    Google Scholar 

  • Neumann PM (1995) Inhibition of root growth by salinity stress: toxicity or an adaptive biophysical response? In: Baluska F, Ciamporova M, Gasparikova O, Barlow PW (eds) Structure and function of roots. Kluwer, Dordrecht, pp 299–304

    Google Scholar 

  • Neumann PM, Azaizeh H, Leon D (1994) Hardening of root cell-walls – a growth-inhibitory response to salinity stress. Plant Cell Environ 17:303–309

    Google Scholar 

  • Neves GYS, Marchiosi R, Ferrarese MLL, Siqueira-Soares RC, Ferrarese O (2010) Root growth inhibition and lignification induced by salt stress in soybean. J Agron Crop Sci 196:467–473

    CAS  Google Scholar 

  • Nibau C, Gibbs DJ, Coates JC (2008) Branching out in new directions: the control of root architecture by lateral root formation. New Phytol 179:595–614

    PubMed  CAS  Google Scholar 

  • Niknam V, Ebrahimzadeh H (2002) Free proline content in Astragalus species. Pakistan J Bot 34:129–134

    CAS  Google Scholar 

  • Niu DK, Wang MG, Wang YF (1997) Plant cellular osmotica. Acta Biotheor 45:161–169

    Google Scholar 

  • Norby RJ, Jackson RB (2000) Root dynamics and global change: seeking an ecosystem perspective. New Phytol 147:3–12

    CAS  Google Scholar 

  • Norrström AC, Bergstedt E (2001) The impact of road de-icing salts (NaCl) on colloid dispersion and base cation pools in roadside soils. Water Air Soil Poll 127:281–299

    Google Scholar 

  • North GB, Nobel PS (1998) Water uptake and structural plasticity along roots of a desert succulent during prolonged drought. Plant Cell Environ 21:705–713

    Google Scholar 

  • O´Leary PW (1969) The effect of salinity on permeability of roots to water. Israel J Bot 18:1–9

    Google Scholar 

  • Oron G, DeMalach Y, Gillerman L, David I, Rao VP (1999) Improved saline-water use under subsurface drip irrigation. Agric Water Manage 39:19–33

    Google Scholar 

  • Pagès L, Kervella J (1990) Growth and development of root systems: geometrical and structural aspects. Acta Biotheor 38:289–302

    Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotox Environ Safe 60:324–349

    CAS  Google Scholar 

  • Passioura JB (1972) The effect of root geometry on yield of wheat growing on stored water. Aust J Agric Res 23:745–752

    Google Scholar 

  • Passioura JB (1977) Determining soil-water diffusivities from 1-Step outflow experiments. Aust J Soil Res 15:1–8

    Google Scholar 

  • Perica S, Goreta S, Selak GV (2008) Growth, biomass allocation and leaf ion concentration of seven olive (Olea europaea L.) cultivars under increased salinity. Sci Hortic 117:123–129

    CAS  Google Scholar 

  • Petridis A, Therios I, Samouris G, Tananaki C (2012) Salinity-induced changes in phenolic compounds in leaves and roots of four olive cultivars (Olea europaea L.) and their relationship to antioxidant activity. Environ Exp Bot 79:37–43

    CAS  Google Scholar 

  • Petrusa LM, Winicov I (1997) Proline status in salt-tolerant and salt-sensitive alfalfa cell lines and plants in response to NaCl. Plant Physiol Biochem 35:303–310

    CAS  Google Scholar 

  • Peyrano G, Taleisnik E, Quiroga M, deForchetti SM, Tigier H (1997) Salinity effects on hydraulic conductance, lignin content and peroxidase activity in tomato roots. Plant Physiol Biochem 35:387–393

    CAS  Google Scholar 

  • Pitman M, Läuchli A (2004) Global impact of salinity and agricultural ecosystems. In: Läuchli A, Lüttge U (eds) Salinity: environment – plants – molecules. Springer, Dordrecht, pp 3–20

    Google Scholar 

  • Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002) Fine root architecture of nine North American trees. Ecol Monogr 72:293–309

    Google Scholar 

  • Rabie GH, Almadini AM (2005) Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. Afr J Biotech 4:210–222

    CAS  Google Scholar 

  • Rahayu YS, Walch-Liu P, Neumann G, Römheld V, von Wirén N, Bangerth F (2005) Root-derived cytokinins as long-distance signals for NO3–induced stimulation of leaf growth. J Exp Bot 56:1143–1152

    PubMed  CAS  Google Scholar 

  • Ramoliya P, Pandey A (2006) Effect of salinization of soil on emergence, growth and survival of Albizzia lebbek seedlings. Trop Ecol 47:27–36

    CAS  Google Scholar 

  • Reinhardt DH, Rost TL (1995) Salinity accelerates endodermal development and induces an exodermis in cotton seedling roots. Environ Exp Bot 35:563–574

    CAS  Google Scholar 

  • Reinoso H, Sosa L, Ramirez L, Luna V (2004) Salt-induced changes in the vegetative anatomy of Prosopis strombulifera (Leguminosae). Can J For Res 82:618–628

    Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023

    PubMed  CAS  Google Scholar 

  • Rewald B, Ephrath JE, Rachmilevitch S (2011a) A root is a root is a root? – Water uptake rates of Citrus root orders. Plant Cell Environ 34:33–42

    PubMed  Google Scholar 

  • Rewald B, Rachmilevitch S, Ephrath JE (2011b) Salt stress effects on root systems of two mature olive cultivars. Acta Hortic 888:109–128

    Google Scholar 

  • Rewald B, Leuschner C, Wiesman Z, Ephrath JE (2011c) Influence of salinity on root hydraulic properties of three olive varieties. Plant Biosyst 145:12–22

    Google Scholar 

  • Rewald B, Rachmilevitch S, McCue MD, Ephrath JE (2011d) Influence of saline drip-irrigation on fine root and sap-flow densities of two mature olive varieties. Environ Exp Bot 72:107–114

    Google Scholar 

  • Rewald B, Raveh E, Gendler T, Ephrath JE, Rachmilevitch S (2012) Phenotypic plasticity and water flux rates of Citrus root orders under salinity. J Exp Bot. doi:10.1093/jxb/err457

  • Roberts T, Lazarovitch N, Warrick AW, Thompson TL (2009) Modeling salt accumulation with subsurface drip irrigation using HYDRUS-2D. SSSAJ 73:233–240

    CAS  Google Scholar 

  • Rogers ME, Grieve CM, Shannon MC (2003) Plant growth and ion relations in lucerne (Medicago sativa L.) in response to the combined effects of NaCl and P. Plant Soil 253:187–194

    CAS  Google Scholar 

  • Rubinigg M, Wenisch J, Elzenga JTM, Stulen I (2004) NaCl salinity affects lateral root development in Plantago maritima. Funct Plant Biol 31:775–780

    CAS  Google Scholar 

  • Rubio F, Gassmann W, Schroeder JI (1995) Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270:1660–1663

    PubMed  CAS  Google Scholar 

  • Rubio JS, Garcia-Sanchez F, Rubio F, Garcia AL, Martinez V (2010) The importance of K+ in ameliorating the negative effects of salt stress on the growth of pepper plants. Eur J Hortic Sci 75:33–41

    CAS  Google Scholar 

  • Ruiz D, Martínez V, Cerdá A (1997) Citrus response to salinity: growth and nutrient uptake. Tree Physiol 17:141–150

    PubMed  CAS  Google Scholar 

  • Sachs T (2005) Auxin’s role as an example of the mechanisms of shoot/root relations. Plant Soil 268:13–19

    CAS  Google Scholar 

  • Samarajeewa PK, Barrero RA, Umeda-Hara C, Kawai M, Uchimiya H (1999) Cortical cell death, cell proliferation, macromolecular movements and rTip1 expression pattern in roots of rice (Oryza sativa L.) under NaCl stress. Planta 207:354–361

    CAS  Google Scholar 

  • Sánchez-Aguayo I, Rodriguez-Galan JM, Garcia R, Torreblanca J, Pardo JM (2004) Salt stress enhances xylem development and expression of S-adenosyl-L-methionine synthase in lignifying tissues of tomato plants. Planta 220:278–285

    PubMed  Google Scholar 

  • Santa-Maria GE, Rubio F, Dubcovsky J, Rodriguez-Navarro A (1997) The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell 9:2281–2289

    PubMed  CAS  Google Scholar 

  • Schwarz M, Gale J (1981) Maintenance respiration and carbon balance of plants at low levels of sodium chloride salinity. J Exp Bot 32:933–941

    CAS  Google Scholar 

  • Shafi M, Guoping Z, Bakht J, Khan MA, Islam EU, Khan MD, Raziuddin (2010) Effect of cadmium and salinity stress on root morphology of wheat. Pakistan J Bot 42:2747–2754

    CAS  Google Scholar 

  • Shalhevet J, Maas EV, Hoffman GJ, Ogata G (1976) Salinity and the hydraulic conductance of roots. Physiol Plant 38:224–232

    CAS  Google Scholar 

  • Shannon MC, Grieve CM, Francoise LE (1994) Whole-plant response to salinity. In: Wilkinson RE (ed) Plant environment interactions. Dekker, New York, pp 199–244

    Google Scholar 

  • Shelef O, Lazarovitch N, Rewald B, Golan-Goldhirsh A, Rachmilevitch S (2010) Root halotropism: salinity effects on Bassia indica root. Plant Biosyst 144:471–478

    Google Scholar 

  • Shukla RK, Raha S, Tripathi V, Chattopadhyay D (2006) Expression of CAP2, an APETALA2-family transcription factor from chickpea, enhances Growth and tolerance to dehydration and salt stress in transgenic tobacco. Plant Physiol 142:113–123

    PubMed  CAS  Google Scholar 

  • Siddikee MA, Glick BR, Chauhan PS, Yim WJ, Sa T (2011) Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol Biochem 49:427–434

    PubMed  CAS  Google Scholar 

  • Siefritz F, Tyree MT, Lovisolo C, Schubert A, Kaldenhoff R (2002) PIP1 plasma membrane aquaporins in tobacco: from cellular effects to function in plants. Plant Cell Online 14:869–876

    CAS  Google Scholar 

  • Silva C, Martínez V, Carvajal M (2008) Osmotic versus toxic effects of NaCl on pepper plants. Biol Plantarum 52:72–79

    CAS  Google Scholar 

  • Snapp SS, Shennan C (1992) Effects of salinity on root-growth and death dynamics of tomato, Lycopersicon esculentum mill. New Phytol 121:71–79

    Google Scholar 

  • Snapp SS, Shennan C (1994) Salinity effects on root-growth and senescence in tomato and the consequences for severity of Phytophthora root-rot infection. J Am Soc Horticultural Sci 119(3):458–463

    Google Scholar 

  • Steudle E (2000) Water uptake by roots: effects of water deficit. J Exp Bot 51:1531–1542

    PubMed  CAS  Google Scholar 

  • Steudle E, Peterson CA (1998) How does water get through roots? J Exp Bot 49:775–788

    CAS  Google Scholar 

  • Steward FC (1935) Mineral nutrition of plants. Ann Rev Biochem 4:519–544

    CAS  Google Scholar 

  • Strogonov BP (1964) Physiological basis of salt tolerance of plants (as affected by various types of salinity). Israel Progr Sci Trans, Jerusalem

    Google Scholar 

  • Su H, Golldack D, Zhao C, Bohnert HJ (2002) The expression of HAK-Type K+ transporters is regulated in response to salinity stress in common ice plant. Plant Physiol 129:1482–1493

    PubMed  CAS  Google Scholar 

  • Sun F, Zhang W, Hu H, Li B, Wang Y, Zhao Y, Li K, Liu M, Li X (2008) Salt modulates gravity signaling pathway to regulate growth direction of primary roots in Arabidopsis. Plant Physiol 146:178–188

    PubMed  CAS  Google Scholar 

  • Sutka M, Li G, Boudet J, Boursiac Y, Doumas P, Maurel C (2011) Natural variation of root hydraulics in Arabidopsis grown in normal and salt-stressed conditions. Plant Physiol 155:1264–1276

    PubMed  CAS  Google Scholar 

  • Taiz L, Zeiger E (1998) Water balance of the plant. In: Taiz L, Zeiger E (eds) Plant physiology. Sinauer Associates, Sunderland, pp 81–101

    Google Scholar 

  • Taleisnik E, Peyrano G, Córdoba A, Arias C (1999) Water retention capacity in root segments differing in the degree of exodermis development. Ann Bot 83:19–27

    Google Scholar 

  • Tanji KK (2002) Salinity in the soil environment. In: Läuchli A, Lüttge U (eds) Salinity: environments – plants – molecules. Kluwer, Dordrecht, pp 21–52

    Google Scholar 

  • Tarczynski MC, Jensen RG, Bohnert HJ (1992) Expression of a bacterial mtlD gene in transgenic tobacco leads to production and accumulation of mannitol. PNAS 89:2600–2604

    PubMed  CAS  Google Scholar 

  • Tattini M, Ponzio C, Coradeschi MA, Tafani R, Traversi ML (1994) Mechanisms of salt tolerance in olive plants. Acta Hort 356:181–184

    Google Scholar 

  • Therios IN, Misopolinos ND (1988) Genotypic response to sodium chloride salinity of four major olive cultivars (Olea europea L.). Plant Soil 106:105–111

    CAS  Google Scholar 

  • Tiku B, Snaydon R (1971) Salinity tolerance within the grass species Agrostis stolonifera L. Plant Soil 35:421–431

    Google Scholar 

  • Tyree MT, Sperry JS (1989) Vulnerability of xylem to cavitation and embolism. Ann Rev Plant Physiol Plant Mol Biol 40:19–38

    Google Scholar 

  • Vadez V, Krishnamurthy L, Kashiwagi J, Kholova J, Devi JM, Sharma KK, Bhatnagar P, Hoisington DA, Hash CT, Bidinger FR, Keatinge JDH (2007) Exploiting the functionality of root systems for dry, saline, and nutrient deficient environments in a changing climate. SAT eJournal 4:1–61

    Google Scholar 

  • Valenti GS, Ferro M, Ferraro D, Riveros F (1991) Anatomical changes in Prosopis tamarugo phil. seedlings growing at different levels of NaCl salinity. Ann Bot 68:47–53

    Google Scholar 

  • Valiela I, Teal JM, Persson NY (1976) Production and dynamics of experimentally enriched salt-marsh vegetation – belowground biomass. Limnol Oceanogr 21:245–252

    Google Scholar 

  • Van Der Werf A, Nagel OW (1996) Carbon allocation to shoots and roots in relation to nitrogen supply is mediated by cytokinins and sucrose: opinion. Plant Soil 185:21–32

    CAS  Google Scholar 

  • Ventorino V, Caputo R, De Pascale S, Fagnano M, Pepe O, Moschetti G (2011) Response to salinity stress of Rhizobium leguminosarum bv. viciae strains in the presence of different legume host plants. Ann Microbiol 62:811–82310.1007/s13213-011-0322-6

    Google Scholar 

  • Villagra PE, Cavagnaro JB (2005) Effects of salinity on the establishment and early growth of Prosopis argentina and Prosopis alpataco seedlings in two contrasting soils: implications for their ecological success. Austr Ecol 30:325–335

    Google Scholar 

  • Villar-Salvador P, Castro-Diez P, Perez-Rontome C, Montserrat-Marti G (1997) Stem xylem features in three Quercus (Fagaceae) species along a climatic gradient in NE Spain. Trees-Struct Funct 12:90–96

    Google Scholar 

  • Voigt EL, Caitano RF, Maia JM, Ferreira-Silva SL, De Macêdo CEC, Silveira JAG (2009) Involvement of cation channels and NH4+-sensitive K+-transporters in Na+ uptake by cowpea roots under salinity. Biol Plantarum 53:764–768

    CAS  Google Scholar 

  • Volkov V, Amtmann A (2006) Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, has specific root ion-channel features supporting K+/Na+ homeostasis under salinity stress. Plant J 48:342–353

    PubMed  CAS  Google Scholar 

  • Walker RR, Sedgley M, Blesing MA, Douglas TJ (1984) Anatomy, ultrastructure and assimilate concentrations of roots of Citrus genotypes differing in ability for salt exclusion. J Exp Bot 35:1481–1494

    CAS  Google Scholar 

  • Wan XC, Steudle E, Hartung W (2004) Gating of water channels (aquaporins) in cortical cells of young corn roots by mechanical stimuli (pressure pulses): effects of ABA and of HgCl2. J Exp Bot 55:411–422

    PubMed  CAS  Google Scholar 

  • Wang Y, Li X (2008) Salt stress-induced cell reprogramming, cell fate switch and adaptive plasticity during root hair development in Arabidopsis. Plant Signaling Behav 3:436–438

    CAS  Google Scholar 

  • Wang Y, Zhang W, Li K, Sun F, Han C, Wang Y, Li X (2008) Salt-induced plasticity of root hair development is caused by ion disequilibrium in Arabidopsis thaliana. J Plant Res 121:87–96

    PubMed  Google Scholar 

  • Wang YN, Li KX, Li X (2009) Auxin redistribution modulates plastic development of root system architecture under salt stress in Arabidopsis thaliana. J Plant Physiol 166:1637–1645

    PubMed  CAS  Google Scholar 

  • Wang Y, Zhang XM, Cao ZH, Liu W, Wang Q (2010) Effect of salt stress on seedlings biomass of two varieties of Elaeagnus spp. [In Chinese, English abstract]. China For Sci Technol 24:25–28

    Google Scholar 

  • Warrence NJ, Bauder JW, Pearson KE (2003) Basics of salinity and sodicity effects on soil physical properties. Montana State University, Bozeman

    Google Scholar 

  • West G, Inzé D, Beemster GTS (2004) Cell cycle modulation in the response of the primary root of Arabidopsis to salt stress. Plant Physiol 135:1050–1058

    PubMed  CAS  Google Scholar 

  • Wolf O, Jeschke WD, Hartung W (1990) Long-distance transport of abscisic-acid in NaCl-treated intact plants of Lupinus albus. J Exp Bot 41:593–600

    CAS  Google Scholar 

  • World Bank (2007) Agriculture for development. World Bank, Washington, DC

    Google Scholar 

  • Wyn Jones RG, Gorham J (2002) Intra- and inter-cellular compartmentation of ions – a study in specificity and plasticity. In: Läuchli A, Lüttge U (eds) Salinity: environments – plants – molecules. Kluwer, Dordrecht, pp 159–180

    Google Scholar 

  • Yakir D, Yechieli Y (1995) Plant invasion of newly exposed hypersaline Dead Sea shores. Nature 374:803–805

    CAS  Google Scholar 

  • Yamane K, Rahman MS, Kawasaki M, Taniguchi M, Miyake H (2004) Pretreatment with a low concentration of methyl viologen decreases the effects of salt stress on chloroplast ultrastructure in rice leaves (Oryza sativa L.). Plant Production Sci 7:435–441

    CAS  Google Scholar 

  • Yamaya T, Matsumoto H (1989) Accumulation of asparagines in NaCl-stressed barley seedlings [abstract]. Berichte des Ohara Instituts für Landwirtschaftliche Biologie – Okayama Universität 19:181–188

    Google Scholar 

  • Yeo AR (2007) Salinity. In: Yeo AR, Flowers TJ (eds) Plant solute transport. Blackwell, Oxford, pp 340–365

    Google Scholar 

  • Yeo AR, Flowers SA, Rao G, Welfare K, Senanayake N, Flowers TJ (1999) Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environ 22:559–565

    CAS  Google Scholar 

  • Yermiyahu U, Nir S, BenHayyim G, Kafkafi U, Kinraide TB (1997) Root elongation in saline solution related to calcium binding to root cell plasma membranes. Plant Soil 191:67–76

    CAS  Google Scholar 

  • Yi LP, Ma J, Li Y (2007) Impact of salt stress on the features and activities of root system for three desert halophyte species in their seedling stage. Sci China Ser D 50:97–106

    CAS  Google Scholar 

  • Zekri M, Parsons LR (1989) Growth and root hydraulic conductivity of several citrus rootstocks under salt and polyethylene glycol stresses. Physiol Plantarum 77:99–106

    Google Scholar 

  • Zekri M, Parsons LR (1992) Salinity tolerance of Citrus rootstocks: effects of salt on root and leaf mineral concentrations. Plant Soil 147:171–181

    CAS  Google Scholar 

  • Zhong HL, Läuchli A (1994) Spatial-distribution of solutes, K, Na, Ca and their deposition rates in the growth zone of primary cotton roots – effects of NaCl and CaCl2. Planta 194:34–41

    CAS  Google Scholar 

  • Zhu JK, Liu J, Xiong L (1998) Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. Plant Cell Online 10:1181–1192

    CAS  Google Scholar 

  • Zhu ZJ, Wei GQ, Li J, Qian QQ, Yu JQ (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci 167:527–533

    CAS  Google Scholar 

  • Zimmermann HM, Steudle E (1998) Apoplastic transport across young maize roots: effect of the exodermis. Planta 206:7–19

    CAS  Google Scholar 

  • Zimmermann HM, Hartmann K, Schreiber L, Steudle E (2000) Chemical composition of apoplastic transport barriers in relation to radial hydraulic conductivity of corn roots (Zea mays L.). Planta 210:302–311

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

B.R. acknowledges partial support by a postdoctoral fellowship awarded by the Jacob Blaustein Center for Scientific Cooperation (BCSC), Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Rewald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rewald, B., Shelef, O., Ephrath, J.E., Rachmilevitch, S. (2013). Adaptive Plasticity of Salt-Stressed Root Systems. In: Ahmad, P., Azooz, M., Prasad, M. (eds) Ecophysiology and Responses of Plants under Salt Stress. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4747-4_6

Download citation

Publish with us

Policies and ethics